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Introduction: Advancements in sensing technologies have enabled the
integration of inertial sensors, such as accelerometers and gyroscopes, into
everyday devices like smartphones and wearables. These sensors, initially
intended to enhance device functionality, are now pivotal in applications such
as Human Locomotion Recognition (HLR), with relevance in sports, healthcare,
rehabilitation, and context-aware systems. This study presents a robust system
for accurately recognizing human movement and localization characteristics
using sensor data.

Methods: Two datasets were used: the Extrasensory dataset and the KU-HAR
dataset. The Extrasensory dataset includesmultimodal sensor data (IMU, GPS, and
audio) from 60 participants, while the KU-HAR dataset provides accelerometer
and gyroscope data from 90 participants performing 18 distinct activities. Raw
sensor signals were first denoised using a second-order Butterworth filter, and
segmentation was performed using Hamming windows. Feature extraction
included Skewness, Energy, Kurtosis, Linear Prediction Cepstral Coefficients
(LPCC), and Dynamic Time Warping (DTW) for locomotion, as well as Step
Count and Step Length for localization. Yeo-Johnson power transformation
was employed to optimize the extracted features.

Results: The proposed system achieved 90% accuracy on the Extrasensory
dataset and 91% on the KU-HAR dataset. These results surpass the
performance of several existing state-of-the-art methods. Statistical analysis
and additional testing confirmed the robustness and generalization capabilities
of the model across both datasets.

Discussion: The developed system demonstrates strong performance in
recognizing human locomotion and localization across different sensor
environments, even when dealing with noisy data. Its effectiveness in real-
world scenarios highlights its potential for integration into healthcare

OPEN ACCESS

EDITED BY

Keyi Wang,
Harbin Engineering University, China

REVIEWED BY

Andrea Tigrini,
Marche Polytechnic University, Italy
Gamal Atia,
Suez Canal University, Egypt

*CORRESPONDENCE

Hui Liu,
hui.liu@uni-bremen.de

Ahmad Jalal,
ahmadjalal@mail.au.edu.pk

RECEIVED 10 January 2025
ACCEPTED 17 June 2025
PUBLISHED 09 July 2025

CITATION

Rafiq M, Almujally NA, Algarni A, Alshehri M,
AlQahtani Y, Jalal A and Liu H (2025) Intelligent
biosensors for human movement rehabilitation
and intention recognition.
Front. Bioeng. Biotechnol. 13:1558529.
doi: 10.3389/fbioe.2025.1558529

COPYRIGHT

© 2025 Rafiq, Almujally, Algarni, Alshehri,
AlQahtani, Jalal and Liu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 09 July 2025
DOI 10.3389/fbioe.2025.1558529

https://www.frontiersin.org/articles/10.3389/fbioe.2025.1558529/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1558529/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1558529/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2025.1558529&domain=pdf&date_stamp=2025-07-09
mailto:hui.liu@uni-bremen.de
mailto:hui.liu@uni-bremen.de
mailto:ahmadjalal@mail.au.edu.pk
mailto:ahmadjalal@mail.au.edu.pk
https://doi.org/10.3389/fbioe.2025.1558529
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2025.1558529


monitoring, physical rehabilitation, and intelligent wearable systems. The model’s
scalability and high accuracy support its applicability for deployment on embedded
platforms in future implementations.

KEYWORDS

wearable sensors, remote sensing, rehabilitation, intelligent perception, human
movement, motion intention recognition wearable sensors, motion intention recognition

1 Introduction

New Intelligent Applications Emerging daily with each
advancement in artificial intelligence, many intelligent
applications are finding their way into the realm every day to
make human life better. They include some applications in
entertainment, medicine, indoor navigation, home automation,
lifelogging, rescue, and surveillance (Qi et al., 2022; Wang et al.,
2022; Yan et al., 2023; Iqra et al., 2025). Accessibility of the
internet also drives the development of these applications
primarily by letting developers access a huge sum of data. One
example of such an application is the recognition and localization of
human activity from data obtained from the IoT (Zhang et al.,
2023a; Wen et al., 2023a; Wen et al., 2023b). Modern smart devices
are equipped with multiple sensors to collect information about the
locomotion and localization of a person (Li L. et al., 2023; Zhang
et al., 2023k; Zhang et al., 2023l). If these smart devices are used
correctly, their built-in sensors can accurately report users’ activities
and locations. However, there is a significant challenge in processing
sensor data because users are free to operate their smart devices in
many different ways (Yao et al., 2023a). They could hold their
device, mainly smartphones, in their hand or put them in their
pockets or bags, which increases data sparsity and complicates the
task. Besides, noise in the sensor signals is another challenge that
needs to be addressed when processing IoT data. These sensors are
very susceptible to interference (Zheng et al., 2022; Hu Z. et al., 2023;
Zhou and Zhang, 2022; Zhang et al., 2022); sometimes, all the data
can be corrupted, leading to misleading results for the artificial
intelligence model. Such problems require innovative solutions that
incorporate multisensory modalities, methods of feature selection,
and advanced machine learning techniques. With the promise to
revolutionize various aspects of our daily lives with the effective
creation of accurate and reliable human locomotion recognition and
localization systems (Zhao et al., 2022; Zhang et al., 2023m; Zhang et
al., 2023n), this is a vital and exciting area of research.

The sensor modalities that are part of the IoT system in this
study include smartphones and smartwatches. These devices
provide data on accelerometers, gyroscopes, magnetometers,
global positioning system (GPS), and microphone. The
accelerometer senses the translational forces working on the
smartphone in three axes, x, y, and z, thus estimating the speed
and direction of movement (Zhang et al., 2023m; Zhang et al.,

2023n). The gyroscope measures the orientation of the smartphone
along the x, y, and z-axes, which can be used to estimate the
orientation of the device. Simultaneously, the magnetometer
provides information regarding the strength and direction of the
earth’s magnetic field, which helps determine the absolute location
of the user (Qu et al., 2023b). In addition, microphone data would be
very useful in determining the location and activity that a user is
performing. For instance, sound data may provide relevant
information about the activity that is occurring such as heavy
breathing of running or distinct sounds by the crowd in a
shopping mall (Li et al., 2023c; Li Z. et al., 2023). Finally, the
effectiveness of GPS in ascertaining a person’s location outdoors has
been successfully established. However, GPS suffers from noise
inside the building and its accuracy deteriorates. Instead of
eliminating the GPS location, the other IoT sensors enhance it
for better estimation of the user’s location (Qu et al., 2023a; Liu Z.
et al., 2023; Liang et al., 2018). Inertial sensors comprise gyroscopes
and accelerometers that are found in all types of devices, ranging
from smartphones to smartwatches and many other wearable
devices. One of the advantages of this sensor over camera-based
methodologies and clear lines of sight methods is that it does not
require any additional equipment or devices (Li H. et al., 2023). It
also consumes power at a very low level, which renders it suitable for
continuous and long-term monitoring purposes (Tigrini et al.,
2024a). explored the feasibility of handwriting recognition using
combined wrist and forearm EMG signals, confirming the potential
of myoelectric control for intelligent human-computer interaction.
The study employed consolidated machine learning techniques,
including SVM, LDA, and KNN, along with advanced feature
extraction from both time and frequency domains. Their findings
highlight that integrating forearm and wrist EMG probes can
significantly enhance handwriting recognition performance.
Similarly (Tigrini et al., 2024b; Zhang et al., 2023o), proposed
PHASOR, a phasor-based feature extraction method designed to
enhance gait phase recognition using surface EMG signals.
Achieving an accuracy of 82% in a five-phase gait classification
task, PHASOR outperformed state-of-the-art deep learning
approaches such as Rocket and Mini-Rocket, while also offering
reduced computational time. The study also noted performance
degradation when extending beyond the traditional stance and
swing phase classification.

Two datasets are used for this study, KU-HAR and Extrasensory,
to address the problems of noise, sparsity, and different user
behaviors in IoT data. The KU-HAR dataset provides labeled
examples of human activities recorded from wearable devices in
a controlled setting, whereas the Extrasensory dataset provides
extensive multi-modal sensor data gathered from an
uncontrolled, real-world environment (Mekruksavanich and
Jitpattanakul, 2021). These datasets provide a good starting point

Abbreviations: HAR, Human Activity Recognition; IMU, Inertial Measurement
Unit; DTW, Dynamic Time Warping; LPCC, Linear Prediction Cepstral
Coefficient; GPS, Global Positioning System; FEC, Fuzzy Entropy Classifier;
SMOTE, Synthetic Minority Over-sampling Technique; AUC, Area Under
Curve; ROC, Receiver Operating Characteristic.
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for developing a strong system for human activity recognition and
localization by leveraging their various data features. However, GPS
data provides critical spatial and temporal information that forms
the basis of understanding and predicting human mobility and
behavior under different circumstances (Yao et al., 2023a; Zheng
et al., 2022; Hu et al., 2023b; Zhou et al., 2023). The use of GPS data
and inertial sensors has a wide range of applications beyond HAR
(Zhao et al., 2022; Zhu et al., 2023; Qu et al., 2023a). One of the
physical behavior biometrics is gait analysis, which can be an
innovative biometric authentication method that identifies
individuals based on their unique walking patterns, known as
gait (Qu et al., 2023b; Liu et al., 2023b). Similarly, the vast use of
GPS data has changed many aspects of life, from location-based
services to urban planning and transportation research (Liang et al.,
2018; Liu et al., 2022; Ma et al., 2023).

However, some limitations prevent the proper exploitation of
inertial sensors and GPS data for human activity recognition (Sikder
and Al Nahid, 2021; Zhang et al., 2023p). Background noise, location
variability, erratic human movement, and the wide variety of
different activities make it difficult to achieve accurate
recognition. This paper presents an advanced HAR and
localization system that provides deeper insights into various
forms of human locomotion using wearable sensors and
smartphones (Dai et al., 2021; Bashar et al., 2020). Our
methodology involves a Hamming window-based segmentation
phase and an effective noise reduction process by using a
second-order Butterworth filter. We outline our major
contributions as follows.

• To compensate for the class imbalances observed in the
Extrasensory dataset, the study employs the synthetic
minority oversampling method (SMOTE) which effectively
elevates model performance and robustness over rare
performances.

• Enhancing the field’s understanding of spatial movement
through innovative feature extraction and identification for
localization tasks.

• A combination strategy that combines various machine
learning and signal processing techniques to efficiently
identify patterns of human activity.

• Comprehensive testing on three benchmark datasets shows
that our solution outperforms the most cutting-edge methods.

• The robustness of the HARmodel was enhanced by: Using data
from several users and smartphones with varying ranges and
using the human activity identification module of an indoor
positioning system to enhance positioning results overall.

With the rapid proliferation of smart environments and
ubiquitous computing, the demand for intelligent systems capable
of understanding human behavior in real time has intensified (Wang
W. et al., 2023). Human Activity Recognition (HAR) and
localization systems not only play a vital role in healthcare
monitoring, elderly assistance, and personal fitness tracking but
are also becoming essential components in smart cities, intelligent
transportation systems, and context-aware services. The growing
integration of Internet of Things (IoT) devices in everyday life
necessitates robust algorithms that can process vast,
heterogeneous sensor data efficiently (Wang H. et al., 2023;
Wang Q. et al., 2023). Moreover, the importance of real-time
processing, scalability, and energy efficiency in such systems
cannot be overstated, especially as the volume and variety of
sensor data continue to grow. In this regard, combining
traditional signal processing with machine learning techniques
offers a powerful approach to managing complex data streams
and extracting meaningful patterns. This study aims to contribute
to this evolving domain by designing a hybrid system that addresses
real-world challenges in activity recognition and localization
through innovative preprocessing, feature extraction, and
classification methods (Wu Y. et al., 2023; Wu et al., 2023b). By
leveraging data from both controlled and uncontrolled
environments, our system strives to bridge the gap between
academic research and practical deployment.

The remaining content of the article forms the following parts.
Section 2 describes a review of the literature on HAR using

TABLE 1 Human locomotion over KU-HAR dataset.

LM ST SI TS TS SS LA LS PI JU PU

ST 0.89 0.01 0.01 0.00 0.01 0.02 0.01 0.01 0.03 0.01

SI 0.01 0.89 0.00 0.03 0.00 0.01 0.01 0.02 0.03 0.00

TS 0.00 0.03 0.89 0.03 0.01 0.00 0.00 0.02 0.02 0.00

TS 0.02 0.00 0.01 0.90 0.00 0.04 0.00 0.01 0.01 0.01

SS 0.02 0.00 0.03 0.01 0.86 0.04 0.02 0.00 0.01 0.01

LA 0.00 0.00 0.01 0.00 0.00 0.96 0.02 0.00 0.01 0.00

LS 0.03 0.03 0.01 0.00 0.00 0.00 0.90 0.01 0.00 0.02

PI 0.00 0.00 0.01 0.00 0.01 0.01 0.02 0.92 0.00 0.03

JU 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.95 0.01

PU 0.00 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0.94

Recognition accuracy = 91%

LM, Locomotion’s; ST, stand; SI, sit; TS, Talk-sit; TS, Talk-stand; SS, Stand-sit; LA, lay; LS , Lay-stand, P, Pick, JU, jump; PU, Push-up.
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smartphone sensors. Section 3 elaborates on the proposed system
design. Section 4 presents the experimental setup. A description of
the results and the experimental data from this study is presented in
Section 5. Section 6.1 introduces the implications of the proposed
system, and Section 6 describes the conclusion and the next steps.

2 Literature review

The literature review explores various approaches to recognizing
human locomotion using sensory data. Studies have examined
methods such as thermal imaging combined with generative
adversarial networks (GANs) for identifying joint and skeletal
information, as well as deep learning models like CNN and
LSTM to classify human activities (Wu et al., 2023c; Xu Y. et al.,
2023). Research also highlights the use of inertial sensors,

particularly in smartphones, to track movement and classify
actions like walking and stair climbing. Furthermore,
advancements in multisensory systems, integrating data from
GPS, IMUs, and ambient sensors, have improved the accuracy of
locomotion recognition by addressing challenges like noise and
irregular mobility patterns (Xu F. et al., 2023; Xu G. et al., 2023;
Yang et al., 2023). These systems, leveraging techniques like
segmentation, noise reduction, and feature extraction, are pivotal
in applications such as healthcare and sports analytics.

2.1 Visual sensory-based recognition of
human locomotion

A study introduced a new technique for gleaning details about
joints and skeletons from photographs (Batchuluun et al., 2021).
First, a single-channel thermal image was converted to a three-
channel image. The photographs were merged in this way to
enhance the information extraction process. In the study, a
generative adversarial network (GAN) was used to help extract
skeletal and joint data. Moreover, with the information obtained
about skeletons and joints, the study attempted to identify various
human gestures. CNN and LSTM were the two methods applied in
combination to identify human activities. When the study tested
their approach using both publicly available data and data they had
individually collected, they found that it performed well compared
to other best practices. However, the performance of the system is
poor due to its inability to recognize images with limited spatial
textual information. The study developed a model to recognize
various human behaviors in a real-time healthcare environment
(Yin et al., 2021). The authors used the multichannel LSTM. This
system was developed to recognize activities using three-
dimensional skeleton data. A unique loss function was added to
enhance accuracy. They used two benchmark datasets: the TST fall
detection database and the NTU RGB + D dataset. However, the
capacity of the system to deliver skeleton data flawlessly is
constrained because it uses a frame-level error detection

TABLE 2 Human localization over extrasensory dataset.

LO LH As IC IC IM EL AP AG AB LW

LH 0.89 0.01 0.01 0.00 0.01 0.02 0.01 0.01 0.03 0.01

AS 0.01 0.86 0.02 0.03 0.00 0.01 0.01 0.02 0.03 0.01

I-C 0.00 0.03 0.89 0.03 0.01 0.00 0.00 0.02 0.02 0.00

IC 0.02 0.00 0.01 0.90 0.00 0.04 0.00 0.01 0.01 0.01

IM 0.02 0.00 0.04 0.01 0.84 0.04 0.03 0.00 0.01 0.01

EL 0.00 0.00 0.01 0.00 0.01 0.95 0.02 0.00 0.01 0.00

AP 0.04 0.03 0.01 0.00 0.00 0.02 0.87 0.01 0.00 0.02

AG 0.00 0.00 0.01 0.00 0.01 0.01 0.02 0.92 0.00 0.03

AB 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.95 0.01

LW 0.00 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.01 0.93

Recognition accuracy = 90%

LO, localization; LH, Location-home; AS, at school, I-C, In-class; IC, In-car; IM, In-meeting; EL, elevator; AP, at party; AG, at gym; AB, At-bar; LW, At Lab-work.

TABLE 3 Measurement of the KU-HAR dataset in terms of precision,
specificity, and F1-score.

Locomotion’s Precision Recall F1-score

ST 0.91 0.89 0.90

SI 0.90 0.89 0.89

TS 0.90 0.89 0.89

TS 0.91 0.90 0.90

SS 0.94 0.86 0.90

LA 0.87 0.96 0.91

LS 0.90 0.90 0.90

PI 0.92 0.92 0.92

JU 0.89 0.95 0.92

PU 0.91 0.94 0.92

Average 0.91 0.91 0.90
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methodology. It fails to identify the cause of dimensionality-related
problems and, as a result, compromises the overall accuracy of the
system. Using different video frames, the authors of a different study
(Cheng et al., 2023) concentrated on activity recognition. A second
spatial attention module and residual CNN are used to identify
activities. The performance of the proposed system suffers from the
absence of integrated optical flow maps. To track human motion,
recent research has advanced remote sensing techniques and
concentrated on developing effective traffic monitoring systems.
Human locomotion activity recognition (HLAR) relies heavily on
inertial sensors, particularly those found in smartphones (such as
gyroscopes and accelerometers). The study by (Xie et al., 2018), for
example, employed these sensors to extract characteristics, classify
them using deep neural networks, and select them using
neighborhood component analysis. To identify actions such as
walking and stair climbing, (Xie et al., 2017; Lee et al., 2017),
investigated kernel functions in an SVM model and verified their
findings using 10-fold cross-validation.

Hsu et al. (Abdel-Basset et al., 2022; Konak et al., 2016) integrated
CNN with LSTM for sensor data classification improvement, whereas
(Chetty et al., 2016) used wearable inertial sensors to track the
movements of the body. A different study (Ehatisham-ul-Haq et al.,
2020; Azam et al., 2020) used naive Bayes classifiers, decision trees, and
random forests to categorize activities. Its small sample size, however,
raised concerns about its generalizability. Our approach, on the other
hand, uses hybrid LSTM and the Extrasensory dataset (60 participants)
to produce a more reliable model.

The information theory-based feature ranking algorithm created
by (Chetty et al., 2020; Mutegeki and Han, 2020; Han et al., 2020)
was only evaluated on one dataset, which limited its practical use.
Our model improves adaptability after being trained on a variety of
datasets. Although multimodal inputs were combined by
(Ehatisham-ul-Haq et al., 2022; Liu et al., 2022) for robust
activity recognition, our hybrid LSTM performs better in
challenging tasks. For simple jobs, Mutegeki et al. (Jaramillo
et al., 2022) employed CNN-LSTM, but they had trouble
performing more complicated operations. While (Hussain et al.,
2023) used five deep-learning architectures to identify human
activities, they encountered lengthy training times (Hajjej et al.,
2023; Garcia-Gonzalez et al., 2023). used Quaternion-based filtering
and data windows. On the other hand, our method attains great
accuracy in fewer epochs. Lastly, HARwas developed using EEG and
smartphone sensor data by (Zhang et al., 2021; Al-qaness et al.,
2022a) but with limitations due to dataset homogeneity.

2.2 Wearable system recognition of human
locomotion

(Mutegeki andHan, 2020; Han et al., 2020) proposed an integrative
architecture of deep learning for recognizing activity by a CNN-LSTM
model. In addition to reducing model complexity and, in this case,
ending the need for intricate feature engineering, the approach
purported to improve predictability related to human activity from
raw data. The network architecture CNNLSTM required deep temporal
as well as spatial dimensions that were proposed. The model had 99%
and 92% accuracy rates when tested on the publicly available UCI HAR
dataset and the internal iSPL dataset. Results, however, indicate

degradation of performance when handling complex activities like
atomic-level actions. Additionally, the SoftMax loss increased as the
model complexity increased, indicating that combining CNN and
LSTM layers did not improve the results (Jaramillo et al., 2022).
used an approach known as quaternion filtration in a system with
one sensor. In the next step, several segmentationmethods were used to
divide the data. Features are then eliminated. Finally, activities have
been classified using the LSTM classifier. We found that the system
requires more processing power.

As per (Hu F. et al., 2023), an IMU sensor-based human activity
detection system uses a data set generated through wearable devices.
Many preprocessing operations are used, including moving averages,
sliding overlap windows, and data segmentation. CNN, recurrent neural
network, LSTM, bidirectional LSTM (BiLSTM), and gate recurrent unit
are the five different classifiers utilized for activity recognition. The high
number of epochs in the proposed system makes it especially costly in
terms of temporal complexity. The hiddenMarkov model is a relatively
new concept among researchers (Liu et al., 2018; Schultz et al., 2018).
The ability to logically model a time series gives the recognition of
human activity some interpretability.

2.3 Multisensory system recognition of
human locomotion

Multisensory systems integrate data from various sensors, such
as inertial measurement units (IMUs), GPS, and ambient sensors, to

FIGURE 1
The graphical abstract of the system.
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enhance human locomotion recognition accuracy. These systems
leverage the complementary nature of different sensor modalities to
overcome challenges such as noise, diversity of activities, and
irregular human mobility patterns. For instance, GPS sensors
provide spatial-temporal data critical for localization tasks, while
IMUs like accelerometers and gyroscopes offer precise information
about movement dynamics. The study (Yin et al., 2021) developed a
model to detect different human actions in a real-time healthcare
environment. The authors utilized a multichannel LSTM.

Recent advancements in signal processing and machine learning
have enabled the development of robust multi-sensory frameworks.
Techniques such as segmentation using Hamming windows, noise
reduction via Butterworth filters, and feature extraction methods
like skewness, kurtosis, and LPCC enhance data reliability and
interpretability. Furthermore, integrating classifiers such as CNN-
LSTM or Fuzzy Entropy classifiers has improved activity recognition
performance, even for complex locomotion tasks. Such systems are
instrumental in applications like health monitoring, sports analytics,
and navigation. By optimizing features using methods like Yeo-
Johnson Power Optimization, multisensory systems can provide
reliable and efficient solutions for recognizing diverse locomotion
behaviors across varied environments.

3 Materials and methods

This section describes, in detail, the recommended Human
Locomotion and Localization process. To address this problem,
we proposed the following methodology (Figure 1):

To overcome the issues, the architecture is rigid and well-
defined. The second-order Butterworth filter is used to pre-
process the input signal to enhance quality and reduce noise.
Hammering windows are used to divide the pre-processed signal
for windowing. Localization (Step Count and Step Length) and
locomotion (Linear Prediction Cepstral Coefficient (LPCC),
Dynamic Time Wrapping (DTW), Skewness, Kurtosis, and
Energy) make up feature extraction. The Fuzzy Entropy Classifier
is used for classification, and Yeo John Power Optimization
enhances features.

3.1 Preprocessing

Preprocessing is an important data analysis step, ensuring the
quality and reliability of data when further analyzed and features
extracted. It cleans, transforms, and enhances raw data to reduce
noise and clear the signal (Yao et al., 2023b; Zhang et al., 2023b).
Among these techniques, filtering is widely used in
preprocessing, mainly to remove unwanted components that
may be present in data, such as high-frequency noise (Tayyab
and Jalal, 2025). This filter is widely used because it has a flat
frequency response in the passband and is ideal for signal
preservation while removing noise. The Butterworth filter of
order two is a good balance between computational efficiency
and performance in terms of the smooth transition from the
passband to the stopband (Mahmood et al., 2020; Azmat and
Ahmad, 2021.). This filter is defined by its transfer function,
which ensures minimal distortion to the original signal. It is the

second-order Butterworth filter as preprocessing in both graphs.
Specifically, the preprocessing is applied on the KU-HAR dataset,
as demonstrated in Figure 1, and on the Extrasensory dataset
(Zhang et al., 2023c). The preprocessing using the second-order
Butterworth filter as in shown in equation 1 which effectively
removed the noise while keeping the intrinsic characteristics of
the data that ensured clarity and reliability in further analysis
(Muneeb et al., 2023). These preprocessing steps are important in
preparing the datasets for subsequent feature extraction and
visualization (Mahwish and Ahmad, 2023), thereby enhancing
the quality of the results and their ease of interpretability
(See Figure 2).

H w( )| | � 1�����������
1 + ∈2T2

n
ω
ω°

( )√ (1)

3.2 Window and segmentation

Windowing and segmentation are important steps of time
series data analysis, particularly in applications such as signal
processing and activity recognition (Zhang et al., 2023b). The
idea of these techniques is the division of continuous data into a
smaller number of overlapping, or non-overlapping pieces, called
windows. Segmentation simplifies complex data streams,
allowing for localized analysis and extraction of relevant
features from each segment, which is very important for
pattern identification and model improvement (Zhang et al.,
2023d). In this research, the Hamming window was used
during the windowing process. The Hamming window is a
tapered window function that minimizes spectral leakage by
smoothly reducing the signal amplitude at the edges of the
window while preserving the central portion of the data
(Majid et al., 2020). This property ensures that each segment
captures the key characteristics of the signal without introducing
artifacts, thus improving the reliability of subsequent feature
extraction and classification tasks (Saleha et al., 2025). The
application of the Hamming window to the segmentation
process improved the quality and resolution of the data, thus
making it more suitable for accurate analysis and modeling is
shown in Figure 3. The hamming window is implemented using
Equation 2.

ω x( ) � 0.54 − 0.46 cos
2πx
X − 1

( ) (2)

whereWn is the value of the hamming window at index n, while N is
the length of the window.

3.3 Feature extraction for locomotion’s

It has two sections on feature extraction: one deals with
localization, and the other with movement. The steps count and
the length of steps (localization) as well as locomotion belong to the
feature extraction such as LPCC, DTW, skewness, kurtosis, and
energy. Classification is by Fuzzy Entropy Classifier, while Yeo John
Power Optimization enhances the feature.
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3.3.1 Linear prediction cepstral coefficient (LPCC)
For the task of feature extraction, Linear Prediction Cepstral

Coefficients (LPCC) were used because they are robust in capturing
spectral characteristics of time-series signals. LPCCs are based on
the linear predictive coding model that predicts future samples of a
signal from its past values. The cepstral coefficients represent the
logarithmic spectrum of the signal (Fatima et al., 2024a), hence
capturing its fundamental features in the frequency domain.
Features were extracted using LPCCs from the KU HAR dataset
as shown in Figure 1. In human activity recognition, LPCCs were
used to classify the activities (Iqra and Jalal, 2025). They picked up
the unique spectral pattern relating to the different activities

undertaken during their execution, such as walking or jumping
while sitting. The compact and discriminative representation
improves the classification performance of features obtained from
the underlying activities. This scenario happened to be the case for
Extrasensory as well. This dataset includes a wide variety of sensory
data, which contains motion and environmental signals where
LPCCs captured the subtle variations in the signal spectrum
across different activities and contexts. The application of LPCC
to both datasets demonstrated its versatility and effectiveness in
representing temporal and spectral characteristics, facilitating
accurate and reliable activity recognition in diverse scenarios (See
Figure 4). The LPCC is implemented using Equation 3.

FIGURE 2
The architecture of the proposed system.

FIGURE 3
Pre-processing using second order Butterworth filter (a) KU-HAR Dataset (b) Extrasensory dataset.
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x n( ) � −∑p
k�1

akx n − k( ) + e n( ) (3)

x(n) is the current sample of the signal at time n, ak are the LPC
coefficients, p is the order of the predictor, x(n−k) is the past
samples, and e(n) is the prediction error (or residual).

3.3.2 Dynamic time wrapping (DTW)
DTW is one of the widely used feature extraction techniques and

similarity measurement in time-series data. It has its best
applications in comparing sequences that differ in speed or
length. The basic idea behind DTW is to warp the time axes of
two time-series sequences so that the distance between them is
minimized (Amir et al., 2020). This alignment allows for a robust
comparison by accounting for variations over time, making DTW an

ideal algorithm for the analysis of time-dependent data such as
human activity recognition. DTW was applied to the KU-HAR
dataset for analyzing and extracting features from various human
activities. The dataset contains time-series data representing actions
such as walking, sitting, standing, and jumping (Seerat et al., 2025).
The DTW distance and alignment of activity sequences captured
both temporal and structural properties of actions and were used for
calculating them. This led to discriminative feature extraction that
made it possible to clearly explain the relation of activities based on
time-series patterns between different activities. By using DTW, this
feature extraction process captures the variability in human
movements effectively and provides a robust representation
towards subsequent classification and analysis processes (Zhang
R. et al., 2023). This approach demonstrates its aptness to
address real variations in activity execution within real

FIGURE 4
Windows and segmentation using the Hamming window.

FIGURE 5
LPCC computed for different locomotion over (a) the KU-HAR dataset and (b) the Extrasensory dataset.
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application scenarios, which is shown in Figure 5. DTW is calculated
using Equation 4.

D i, j( ) � d(xi, yi) +min
D i − 1, j( ), insertion( )
D i, j − 1( ), deletion( )
D i − 1, j − 1( ), match( )

⎧⎪⎨⎪⎩ (4)

3.3.3 Skewness
Skewness is a statistical measure that describes the

asymmetry of distribution of probabilities of a dataset relative
to its mean. In such a manner, it offers valuable insights into the
shape of the data distribution. Positive skewness represents a
long right tail; negative skewness symbolizes a long left tail of the
data distribution. Skewness is used in feature extraction to
capture the asymmetry of time-series signals, providing a
discriminative characteristic to distinguish between different
patterns or actions (Ahmad et al., 2019). Skewness was
calculated as a feature from the KU-HAR dataset, which
contains time-series data of various human activities such as
walking, sitting, standing, and jumping. The skewness values of
these actions were analyzed to identify their distinct distribution
patterns (Hafeez et al., 2021). A graph has thus been designed to
portray different activities to visualize their respective skewness
(Zhang et al., 2023f). Based on the different skewness measures
of different activities, its variation from asymmetrically of the
data is reported. Hence, for skewness features, a special
distinction profile in the skewness could always be there for
differentiation classification. As such, capturing different
variations of signal distributions might make a feature more
feasible in recognizing human activities while leveraging the
effectiveness of these extracted features. This method thus
proved the use of skewness in describing and distinguishing

complex time-series data (See Figure 6). Skewness is calculated
using Equation 5.

Skewness � n
�����
n − 1

√
n − 2

∑n
i�1(xi − x)...

s3
(5)

3.3.4 Kurtosis
Kurtosis is a statistical measure that quantifies the “tailedness”

or sharpness of a data distribution relative to a normal distribution.
It gives information about the extremities of the data and whether
the distribution has heavier or lighter tails compared to a normal
distribution (Zahra et al., 2025). A high kurtosis value indicates
that the distribution is peaked with heavy tails, while a low kurtosis
indicates flat distributions. In feature extraction, kurtosis is used in
the process of analyzing the shape of time-series data. Such
analysis captures crucial characteristics, which distinguish
activities or patterns (Zhang T. et al., 2023). Kurtosis was
determined for the KU HAR dataset, which contained time-
series data representing several human actions, including
walking, sitting, standing, and jumping. A graph was
constructed to illustrate the values of kurtosis for various
activities, demonstrating the difference in the shape of the
distribution of data between these different activities (Iqra and
Ahmad, 2024a). The kurtosis graph showed clear patterns for each
action, which was an indication of the differences in their data
distribution characteristics (Tayyab et al., 2025). Actions with
sharper peaks and heavier tails were more kurtosis, while
actions with flatter distributions were less kurtosis. By including
kurtosis in feature extraction, this work captured critical aspects of
the data distribution, thereby enhancing the differentiation and
classification of human activities. The graphic displayed a clear
visualization of such patterns so that it could better explain the

FIGURE 6
DTW computed for different locomotion over the KU-HAR dataset.
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peculiar characteristics of each action (See Figure 7). Kurtosis is
calculated using Equation 6.

Kurtosis � n n + 1( )
n − 1) n − 2( ) n − 3( )( ∑n

i�1
xi − �x

s
( )4

− 3 n − 1( )2
n − 2( ) n − 3( )

(6)

3.3.5 Energy
Energy is one of the features widely applied in time-series

analysis and signal processing. It measures the sum of the squared
magnitude of the signal over a window or segment. This will give
the total power or intensity of the signal (Iqra and Ahmad, 2024b).
It is used as a robust measure for activity recognition or pattern
identification between various activities. It is one of the features
used for human activity data because energy shows the difference
in intensity of the signal, related to different movements. The KU
HAR dataset involves time-series data for walking, sitting,
standing, and jumping activities. The energy level associated
with each activity was graphed to visualize it. Patterns in the
energy graph were unique, with large energy values for jumping,
which has high energy, while sitting activity had low-energy
values (Zhang F. et al., 2023; Naif et al., 2025). This
visualization gave insights into the intensity of each action and
its variability over time. By including energy as a feature, the study
captured dynamic differences in activity patterns, allowing for
better classification and analysis (Laiba and Ahmad, 2024a). The
energy graph served as a powerful tool to interpret the data,
bringing out the unique characteristics of each activity in terms of
signal intensity as shown in Figure 8. Energy function is calculated
using Equation 7.

E � ∫∞

−∞
x t( )| |2dt (7)

|x(t)| is the magnitude of the signal at time t.

3.4 Feature extraction for location

3.4.1 Step count
Step count is the number of steps taken during a certain period

in human activity recognition and behavior analysis. It is a critical
feature often derived from accelerometer data where periodic peaks
in signal magnitude correspond to individual steps (Fatima et al.,
2024b). Step count is most useful for feature extraction as it can
provide insight into physical activities, such as walking or running,
or transitions between an active and a sedentary state. In the chart
Extrasensory dataset applies for a particular location, index, or time
progression that appears on the x-axis and magnitude, which is its
proxy for step count on the y-axis (Hanzla and Jalal, 2025). The
vector sum of the three axes of the accelerometer computes as the
signal magnitude: This graph is divided into two phases, training
data (blue), and validation data (orange). Periodic fluctuations in the
signal correspond to steps, peaks of which correspond to the
moments of increased acceleration caused by footfalls (Zhang
et al., 2023i). The part between indices 0–2,000 (validation data)
demonstrates a steady activity so it can be a walk or run, whereas the
rest of the training data is more varied and can correspond to
transitions between different activities or periods of rest as shown in
Equation 8.

L � k.
��������
H.Δastride

√
(8)

where: k: Calibration constant (accounts for individual
differences), h: Height of the individual (correlated with step
length), Δastride: Average acceleration during one stride,
calculated as the difference between peak and trough
acceleration for each step.

For feature extraction, the step count can be quantified by
detecting these peaks in the magnitude signal. Other features
that can be derived from the step count data include the total
number of steps, step rate, statistical measures such as mean,
variance, and standard deviation, and energy of the signal. These

FIGURE 7
Skewness calculated over the KU-HAR dataset.
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features are invaluable for recognizing patterns, analyzing
activity levels, and understanding user behavior in different
locations or contexts. From the graph, you can identify

activity trends and transitions that serve as a basis for
developing robust activity recognition systems by visualizing
step counts (See Figure 9).

FIGURE 8
Kurtosis calculated over the KU-HAR dataset.

FIGURE 9
Energy calculated over the KU-HAR dataset.
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3.4.2 Step length
The distance traveled in one step is represented by the step

length feature, which is important in the analysis of human mobility
(Ahmad et al., 2025). It can be helpful to understand the
characteristics of movement, such as walking or running, and
offers insight into the person’s gait and stride. The environment
or location also influences step length since it depends on factors like
walking speed, terrain, and individual behavior for covering a
distance per step (Sumbul et al., 2025). The Extrasensory dataset,
which contains sensor data from various sources such as
accelerometers and location-tracking sensors, was used to
calculate step length. This dataset contains both activity and
location information, allowing us to estimate step length across
different locations (Hanzla et al., 2024). The sensor signals were
analyzed to derive step length by detecting the peaks corresponding
to each step and measuring the distance between them (Ashraf et al.,
2025). A graph was plotted to show step length for different
locations in the dataset. This gives an idea of how movement
changes in different environments. For instance, outdoor
locations or open spaces would have longer step lengths because
one would walk at a normal pace, whereas indoor locations or
constrained spaces would have smaller step lengths due to a lack of
space or reduced movement. The graph provided a clear comparison
of step length across the locations, showing how spatial context
influences the individual’s movement (Saleha and Jalal, 2024; Sara
et al., 2024). This study thereby extracted and visualized the step
length for different locations, which brought to the fore the
relationship between the movement patterns and the
environment. The step length graph was a powerful tool that
helped understand the dynamics of human movement across
different spaces, aiding in location-based activity recognition
(Zhang et al., 2023j; Nazar and Jalal, 2025). This would enhance
the ability to distinguish between activities and locations in the
context of mobility characteristics. The importance of this feature
for the enhancement of location-aware system accuracy, as well as
insights into how environmental factors may impact step length and

movement patterns, cannot be overlooked, is shown in Figure 10.
Step length is calculated using Equation 9.

S � ∑n
i�1 ai| |

Δathreshold
(9)

where: ai: Accelerometer data at time i (magnitude of acceleration
vector:

�����������
xi2 + yi

2 + zi2
√

), Δathreshold: A threshold value to detect step
peaks (based on signal filtering and gait analysis), n: Total number of
samples collected during the measurement period.

3.5 Feature optimization

Feature optimization is considered an important step in
preprocessing data, with the goal of enhancing the performances
of machine learning models; it transforms data into formats that are
more suitable for analytical purposes. Among such transformation
techniques is the Yeo-Johnson power transformation (Tayyab and
Ahmad, 2024). It is an extension of the Box-Cox transformation,
which can handle positive as well as negative values within a dataset,
thus more widely applicable to real-world datasets. This
transformation helps to normalize the data such that its
distribution becomes nearly normal and symmetric, and its
application can improve the performance and accuracy of the
developed machine learning models. The Yeo-Johnson Power
Optimization was used for two different datasets: KU HAR and
Extrasensory datasets. This was meant to optimize the features of
those datasets for better analysis and classification (Ahmad et al.,
2024). The study applies the Yeo-Johnson Power Transformation on
the KU HAR and Extrasensory datasets to optimize features derived
from time-series and location-based data. The transformation
helped in achieving better data distribution symmetry and,
thereby, suitability to machine learning models, increasing the
separability of the different activities and locations (Sara et al.,
2024; Mohammed et al., 2025). The output graphs (Figures
12a,b) depict how feature optimization has improved the

FIGURE 10
Step count calculated over the KU-HAR dataset.
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transformation as it made the data consistent and interpretable,
enhancing the overall performance of analysis and classification
tasks and is done using Equation 10.

y �
x + 1( )λ − 1

λ
if x≥ 0

− −x + 1( )2−λ − 1
2 − λ

if x< 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (10)

x is the original feature value, y is the transformed value, λ is the
transformation parameter that is learned from the data (usually via
maximum likelihood estimation or cross-validation), and λ = 0, the
transformation behaves like the natural logarithm.

3.6 Feature classification

Fuzzy Entropy Classifier (FEC) was used for feature classification
on two datasets: the KU HAR dataset and the Extrasensory dataset.
The Fuzzy Entropy Classifier is an application of fuzzy logic and
entropy concepts that deal with uncertainty and imprecision in data,
thus it can be used to classify complex datasets with noisy or
overlapping features (Afsar et al., 2022). For the KU HAR dataset,
which comprises time-series data for activities such as Stand, Sit, Talk-
sit, Jump, and others, the classifier successfully classified each activity
based on the entropy of the feature distributions (Fakhra and Ahmad,
2024). The classification results are given in Figure 1 where the FEC
can distinguish between different actions based on their unique
feature patterns. Similarly, the Extrasensory dataset that consists of
different locations data (Muhammad et al., 2024), Homes, Schools,
Gyms, and so on was classified in the same manner. It analyzed the
uncertainty within sensor data and made the fuzzy logic decision for
its proper classification at respective locations. (See to Figure 12). It is
calculated using Equation 11.

FuzzyEn m, r, n( ) � ln φm r( )( ) − ln φm+1 r( )( ) (11)
m: Embedding dimension (commonly two or 3), r: Similarity
threshold, and n: Fuzziness degree (commonly 2). The Flow
chart of the Fuzzy Entropy Classifier is displayed in Figure 13.

4 Experimental setup and datasets

4.1 Experimental setup

This section describes the three publicly available datasets used
to validate the proposed system. The implementation details and the
results of various tests performed on the two datasets are presented
after the overview. The extrasensory dataset and the KU-HAR
dataset. All processing and experimenting were conducted using
Python language on a Windows 10 computer equipped with an
Intel(R) UHD GPU, a core i5 processor, and 16 GB of RAM.

4.2 Dataset description

In the subsequent subsection, we provide comprehensive and
detailed descriptions of each dataset used in our study. Each dataset
is thoroughly introduced, highlighting its unique characteristics,
data sources, and collection methods.

4.2.1 The extrasensory dataset
A universally unique identification (UUID) has been assigned to

each of the 60 users (also known as subjects or participants) whose data
is included in the Extrasensory dataset. It contains thousands of
instances from each user, usually recorded at 1-min intervals
(though there are time gaps and they are not always shot in a single
lengthy sequence). Each example includes sensor measurements (from

FIGURE 11
Step length calculated over the KU-HAR dataset.
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a smartwatch we provided and from the user’s smartphone). The user
has self-reported context descriptions for many samples.

4.2.2 KU HAR dataset
The ability of machines to recognize human behavior is known as

Human Activity Recognition (HAR). This dataset includes data on
18 distinct activities that were gathered from 90 participants—75men
and 15 women—using the accelerometer and gyroscope sensors on
smartphones. It contains 20,750 subsamples that were taken from the
participants and 1945 raw activity samples that were taken directly
from the subjects.

5 Results and analysis

We conducted many tests for the suggested system in this
section. Several matrices, including confusion matrix displayed in
Table 1 and Table 2, precision, recall, and F1 score as shown in
Table 3 and 4, are used to assess the system. Below is a description of
the in-depth examination and conversation.

In this experimental study, we assessed the effectiveness of the
proposed system the evaluation of performance was carried out
based on precision, recall, and F1-score metrics.

5.1 ROC curve results of extrasensory
dataset and KU-HAR dataset

Our model is presented, along with its performances on ROC
curves as displayed in Figure 14, across two diverse datasets: KU HAR-
Activity Recognition and Extrasensory Location-based. ROCCurves are
developed for these datasets in such a manner to describe how much

our classification ability was suitable for respective tasks like Activity
Recognition as well as predicting locations through True Positive Rates
(TPR) v/s False Positive Rates (FPR). This KU HAR dataset, consisting
of a classification of the activities the human is conducting, classifies
ROC curve as indicating how the model distinguishes between two
different actions (Laiba and Ahmad, 2024b). On the other hand, with
Extrasensory, concerning user locations by sensor information, this type
of curve measures the precision of models to predict a location given
sensor data but also aims at minimizing the false positive. The
comparison of these curves reveals how the model performs in
different contexts, with a higher area under the curve (AUC)
indicating better classification performance (Mujtaba and Ahmad,
2024). Overall, the ROC analysis highlights the model’s strengths
and areas for improvement in both activity recognition and location
prediction tasks, providing a comprehensive view of its effectiveness
across different application domains.

5.2 Comparison with other state-of-the-
art methods

The accuracy scores demonstrate howmuch better the suggested
system performs than any of them. The comparative results are
presented in Table 5, showcasing the results of the KU-HAR dataset
and the Extrasensory dataset.

5.3 Generalization performance on
independent dataset

To assess the generalization capability of our proposed
system, we conducted a supplementary experiment using a

FIGURE 12
Feature optimization using Yeo-John Power Optimization (a) KU-HAR Dataset (b) Extrasensory Dataset.
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FIGURE 13
Flow chart of Fuzzy Entropy Classifier.

FIGURE 14
ROC curve of (a) KU-HAR Dataset (b) Extrasensory Dataset.
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newly collected dataset from an independent cohort. A group of
12 participants (7 males and five females, aged 22–38) was
recruited for this purpose. Unlike the original study that
relied on smartphone and smartwatch sensors, the new data
was acquired using a different wearable EMG and IMU sensor
module to introduce variation in hardware and recording
conditions.

The experiment replicated the same set of human locomotion
and localization tasks under naturalistic conditions, with minimal
instruction bias (Saleha and Ahmad, 2024). The raw data underwent
the same preprocessing pipeline, including the second-order
Butterworth filter for noise removal and Hamming window-
based segmentation. Feature extraction followed the identical
protocol using LPCC, DTW, Skewness, Kurtosis, and Energy
metrics, while the Yeo-Johnson Power Optimization was applied
for feature enhancement (Laiba et al., 2025). The Fuzzy Entropy
Classifier was then used to classify activities.

The system achieved an average classification accuracy of 88.2%,
showing only a marginal drop (~2.8%) compared to the
performance on the original datasets (91% on KU-HAR and 90%

on Extrasensory). The confusion matrix indicated that the model
retained high fidelity in recognizing major activities such as walking,
standing, and jumping, though slight confusion was observed
between similar transitional activities.

These results affirm that the proposed system is resilient to
variations in subjects, devices, and environmental noise. The use of
multiple sensor modalities, robust preprocessing, and feature
selection helped mitigate performance degradation. This
validation step supports the real-world applicability and
robustness of the architecture beyond the confines of the initially
tested datasets.

To assess the statistical significance of our model’s superior
accuracy compared to other state-of-the-art methods, we
conducted a non-parametric Wilcoxon rank-sum test. The test
compared the accuracy results of our proposed model against
CNN, BiLSTM, and Random Forest classifiers, each trained under
the same experimental setup using the KU-HAR dataset. The
results showed that our model outperformed the baseline
methods with p-values < 0.05, confirming that the
improvement in accuracy is statistically significant and not due
to random chance. This reinforces the robustness and reliability of
the proposed approach in real-world activity recognition tasks.

6 Conclusion

This study shows the feasibility of an innovative system
integrating advanced feature extraction and machine learning
techniques for human activity recognition and localization. By
utilizing data from the KU-HAR and Extrasensory datasets, the
system obtains high accuracy levels of 91% and 90%, respectively.
The use of strong preprocessing methods, such as the third-order
Butterworth filter, and feature extraction strategies like LPCC,
DTW, and Yeo-Johnson power optimization underlines the
capability of the system to process noisy, sparse, and complex
data effectively. This all-rounded approach underlines the
potential of multisensory systems in various applications, such as
healthcare, fitness monitoring, and urban planning.

Advanced classifiers including the Fuzzy Entropy Classifier
further enhanced the capability of the system to address
uncertainty and overlap within the data. Combined with noise

TABLE 4 Measurement of extrasensory dataset in terms of precision,
specificity and F1-score.

Localization Precision Recall F1-score

LH 0.90 0.89 0.89

AS 0.90 0.86 0.88

I-C 0.88 0.89 0.88

IC 0.91 0.90 0.90

IM 0.93 0.84 0.88

EL 0.85 0.95 0.90

AP 0.88 0.87 0.87

AG 0.92 0.92 0.92

AB 0.88 0.95 0.91

LW 0.90 0.93 0.91

Average 0.90 0.90 0.89

TABLE 5 A comparison of proposed system of KU-HAR Dataset and Extrasensory Dataset.

Methods Accuracy %

KU-HAR dataset Extrasensory dataset

Li et al. (2023a) 75.0 —

Vaizman et al. (2018) — 83.0

Asim et al. (2020) 87.0

Abduallah et al. (2022) — 87.0

Sikder and Al Nahid (2021) 89.67 —

Al-qaness et al. (2022b) 88.53 —

Proposed 91 90
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reduction, this improved clarity of features enhanced the capability
of the system to discern between different human activities and
locations. When compared to the existing state-of-the-art methods,
the approach had not only bettered past benchmarks but established
a real-world basis for being implemented within dynamic,
unconstrained environments.

The study recognizes that despite such significant
accomplishments, the research still faces limitations in hardware
dependency and scalability issues in real-world settings. Future work
could look into optimizing temporal complexity to be adaptable
across various hardware platforms. Testing in uncontrolled
environments could also prove to further validate the robustness
of the system, making it a versatile solution for human activity
recognition and localization in various settings.

Despite the promising results of our system, there are some
limitations that warrant attention. First, the current approach
depends heavily on labeled datasets, which may not always be
available or scalable in diverse application domains. Second,
while the model generalizes well across two datasets, real-world
deployment scenarios may include more complex environmental
conditions—such as sensor placement variability, user behavioral
noise, and context shifts—which were not fully explored in this
study. Additionally, although the system achieved high accuracy,
real-time performance on low-power or embedded devices was not
evaluated, which is crucial for wearable applications. To address
these challenges, future work should focus on collecting larger, more
diverse real-world datasets, exploring semi-supervised or
unsupervised learning strategies to reduce reliance on labeled
data, and optimizing the system for deployment on edge devices.
Incorporating cross-device training and dynamic model adaptation
can further enhance the robustness and scalability of the proposed
architecture.

6.1 Implications of cross-device validation

The validation experiment on the independently collected
dataset has significant implications for the applicability and
scalability of our proposed system. The ability to maintain
high recognition accuracy across different sensor platforms
and participant demographics confirms that the model is not
overfitted to a particular dataset or hardware configuration.

One of the critical challenges in human activity recognition
systems is the drop in performance when deployed in new
environments with varied noise characteristics, sensor types, or
user behaviors. Our results show that by leveraging domain-
agnostic features and a generalized classification approach, the
system can maintain performance within an acceptable margin,
even when confronted with such variations.

This successful validation underscores the robustness and
transferability of our approach. It enables practical deployment of
the system in real-world applications such as rehabilitation
monitoring, personalized healthcare, and location-aware
assistance, without necessitating retraining or device-specific
calibration. These outcomes contribute to the growing body of
work advocating for generalized, sensor-flexible HAR systems
that prioritize adaptability alongside accuracy.
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