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Introduction: Cultivated meat, produced by in vitro cell culture in bioreactors,
offers a sustainable alternative to traditional meat sources. A significant challenge
in its production is the high cost of mitogenic growth factors, which are essential
supplements in serum-free media for cultivating meat cells. One strategy to
reduce cost involves minimizing purification cost by using a food-grade host to
secrete growth factors. In this study, we investigate the production of
recombinant FGF2 (Fibroblast Growth Factor 2) through secretion in
Lactococcus lactis, a Generally Recognized As Safe (GRAS) organism.

Method: To enhance the secretion in L. lactis, we employed the USP45 secretory
peptide and secretion propeptide (PP1) in the design of our recombinant FGF2-
G3. Optimization was performed on various culture parameters that influence
protein expression, including media formulation, nisin concentration, induction
timing, temperature, and culture duration. Secreted FGF2-G3 produced under
optimized conditions was purified and tested for bioactivity on Anguilla japonica
pre-adipocytic cells, Aj1C-2x.

Results and Discussion: We have generated a recombinant L. lactis strain and an
optimal expression strategy to enable the production of secreted bioactive
growth factors. Our results demonstrate that this system can produce FGF2
which were able to promote the proliferation of fish Anguilla japonica pre-
adipocytic cells. Despite minimal purification beyond affinity purification and
buffer exchange, we were able to obtain comparable specific activity to
commercial FGF2. The final yields can be derived at 1.97 mg/L and through
simple protein purification and buffer exchange. Finally, this study highlights the
potential use of L. lactis secretion as an endotoxin-free alternative, compared to
E. coli, for production of growth factors for use in cultivated meat production.
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Introduction

Cultivated meat, also known as cultured meat, has gained
significant interest in recent years due to global movement
towards achieving sustainability development goals. It provides a
prospective alternative meat source to support demand from
increasing population, reduce environmental impact from animal
agriculture and avoids animal-borne diseases (Campbell et al., 2017;
Godfray et al., 2018; Lynch and Pierrehumbert, 2019; Stephens et al.,
2018). Cultivated meat is produced through in vitro culturing of
animal cells in cell culture media. However, foetal bovine serum
(FBS), a typical ingredient found in culture media, is derived from
extracting blood serum of bovine foetuses from animal slaughter
houses (Jochems et al., 2002; Kadim et al., 2015; Lee et al., 2022; Post
et al., 2020; Reiss et al., 2021). This conflicts with the concept of
producing meat via an animal-free approach. Thus, serum-free
media formulations that are capable of sustaining cell culture
were developed (Badenes et al., 2016; Das et al., 2009; Messmer
et al, 2022; Skrivergaard et al, 2023; Stout et al, 2022).
Subsequently,
fibroblast growth factors or insulin-like growth factors, into

supplementation of growth factors, such as

serum-free media formulations are essential to mimic
proliferative and developmental effects of FBS (Park et al., 2013;
Santos et al., 2023; Venkatesan et al., 2022; Yu et al., 2023).

One such growth factor of interest is the basic fibroblast growth
factor, also known as fibroblast growth factor 2 (FGF2), which is a
member of the cytokine family. It acts by binding to cell surface
receptors (FGFR), activating mitogenic pathways such as PI3k/Akt
pathway, MAPK/ERK pathway and JNK pathway. Activation of
these pathways regulates cellular responses such as growth,
proliferation, migration, maintenance and differentiation (Ahmad
et al.,, 2023; Bikfalvi et al., 1997; Yun et al.,, 2010). Production of
recombinant growth factors, including FGF2, for supplementation
into serum-free media are most frequently done in prokaryotic
expression system using Escherichia coli. However, the recombinant
proteins are produced intracellularly and has high tendency for
inclusion bodies formation, which subsequently involve expensive
and tedious downstream protein refolding and purification
processes. Furthermore, host-cell derived impurities, in particular
endotoxins, poses health risks to humans (Baneyx and Mujacic,
2004; Kaur et al., 2018; Petsch and Anspach, 2000; Sahdev et al.,
2008; Thomas and Baneyx, 1996). This calls for an alternative
endotoxin free expression system that is also economical for
production of recombinant proteins.

Lactococcus lactis, a Gram-positive lactic acid bacterium that is
widely used in food and therapeutic applications (Bahey-El-Din
et al., 2010; Kumari et al., 2011; Song et al., 2017), presents a good
alternative host for recombinant protein expression. The key feature
of using Lactococcus lactis expression system is its ability to secrete
recombinant proteins into culture medium, minimising the need for
cell lysis, complex protein purification and refolding. Moreover, L.
lactis does not produce lipopolysaccharides and has few extracellular

Abbreviations: EGF, Epidermal Growth Factor; FBS, Foetal Bovine Serum;
FGF2, Fibroblast Growth Factor 2; GRAS, Generally Recognized As Safe; IGF,
Insulin-like Growth Factor; NICE, Nisin Controlled Gene Expression System;
TGF-B1, Transforming Growth Factor f1.
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proteases, that causes endotoxin toxicity and proteolytic degradation
respectively (Frelet-Barrand, 2022; Garcia-Fruitos, 2012; Morello
et al,, 2008). As L. lactis are microaerophilic, they only require a
simple static fermentation process without aeration, this makes
possible for a simple and direct scale-up to industrial scale.
Among the various L. lactis expression systems developed, the
most widely used is the nisin-controlled gene expression (NICE)
system, consisting of a nisRK regulatory gene integrated into
bacterial host chromosome and an expression vector with nisA
promoter to tightly regulate gene expression (de Ruyter et al., 1996;
Mierau and Kleerebezem, 2005; Mierau et al., 2005a; Zhou et al.,
2006). L. lactis expression system has been applied for production of
several growth factor proteins (Cao et al., 2020; Gao et al., 2012;
Huynh and Li, 2015; Zhou et al., 2021). In our lab, we have recently
reported on valorisation of mammalian spent culture media waste to
support intracellular FGF2 production in bioreactors (Rizal et al.,
2024). However, comprehensive research regarding the production
and secretion of functional FGF2 from L. lactis is not available.
Hence, we set forth herein to investigate the possibility of employing
L. lactis NICE expression system to produce and secrete biologically
active FGF2. To enhance the secretion efficiency, we fused
USP45 secretory peptide and secretion propeptide 1 (PP1) (Lim
etal., 2017) to a thermostable FGF2 variant, FGF2-G3 (Dvorak et al.,
2018). Together with optimisation of media formulation and culture
conditions, we were able to obtain ~2 mg/L of secreted FGF2-G3.
Furthermore, FGF2-G3 purified from the medium was able to
stimulate proliferation of the Japanese eel Anguilla japonica pre-
adipocytic cells, comparable to commercial FGF2. Together, these
results signal the potential application of L. lactis protein secretion
system as an alternative strategy for recombinant FGF2 and
potentially other growth factor production to circumvent issues
faced with E. coli for cultured meat development.

Materials and methods

Bacterial strain, plasmid and cloning of
FGF2-G3 gene

L. lactis NZ9000 and pNZ8148 plasmid (BoCa Scientific,
United States) were used for cloning and expression studies.
Sequence of the thermostable human FGF2-G3 was obtained
from Dvorak et al. (2018). To enhance expression and secretion
into medium, USP45 secretion peptide (Accession ABY84357) and
propeptide 1 (PP1) (Lim et al., 2017) were fused at the N-terminus of
FGF2-G3 sequence. For ease of purification with Ni-NTA affinity
chromatography and Western blot detection, we have also included
Hiss sequence at the N-terminus. The nucleotide sequences
corresponding to the amino acids were codon optimized and
synthesized by IDT (Singapore) for expression in L. lactis. The
coding sequence was cloned into the multiple cloning site (MCS) of
PNZ8148 vector using NeBuilder HiFi Assembly (New England
Biolabs, United States) (Fusion protein sequence available in
Supplementary Figure S1), transformed into L. lactis NZ9000 and
plated onto M17 agar plate containing 0.5% (w/v) glucose and 10 ug/
mL chloramphenicol to screen for positive recombinant clones. The
positive recombinant clones were further sequenced to ensure no
mutations prior to protein expression with L. lactis NZ9000.
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Culture optimization for FGF2-G3
expression and secretion in L. lactis

Productivity of FGF2-G3 production in L. lactis was assessed with
varying M17 media and glucose concentration. They were expressed in
either MI17 (supplemented with 0.5% (w/v) glucose), 2xMI17
(supplemented with 0.5% (w/v) glucose) or 2xM17 (supplemented
with 2% (w/v) glucose). All cultures were also supplemented with 10 pg/
mL chloramphenicol for selection and maintenance of cells containing
PNZ8148-FGF2-G3 plasmids. To increase production and secretion
level, FGF2-G3 expression was further optimized with different nisin
inducer concentrations (10, 25, 50 ng/mL), induction time points
(ODgponm 0.5, 1.0, 2.0), incubation temperatures (20, 25, 30, 35°C)
and expression duration (4, 20 h post-induction). These parameters
were investigated individually in 10 mL culture volume. The cultures
were harvested by centrifugation at 3,845 g, 4°C for 20 min with Sorvall
ST 40 centrifuge (Thermo Fisher Scientific, United States). The media
fraction was aspirated and concentrated with a 10 kDa MWCO
centrifugal filter (Merck Millipore, Ireland) to obtain secreted
protein fraction, while the cell pellet was resuspended in PBS,
incubated at 37°C for 1 h with 1 mg/mL lysozyme and 0.05 U/puL
mutanolysin and then lysed via sonication. The cell lysate was
centrifuged, supernatant collected as intracellular soluble fraction,
and the lysed cell pellet resuspended in 6M urea to obtain
intracellular insoluble fraction. All 3 fractions (secreted, soluble,
insoluble) were analysed on SDS-PAGE to determine productivity level.

Optimized production of secreted FGF2-G3

A larger production volume of FGF2-G3 was performed under
optimized conditions. 250 mL of 2xM17 (supplemented with 2% (w/
v) glucose and chloramphenicol 10 pg/mL) was inoculated with pre-
culture and incubated at 30°C until it reaches ODgponm 1.0. Nisin was
then added to final concentration of 25 ng/mL to induce expression
of FGF2-G3, and induction was done at 35°C for 20 h. The culture
was centrifuged and the media fraction containing secreted FGF2-
G3 was collected and purified via affinity chromatography.

Purification of FGF2-G3

Media fraction containing secreted FGF2-G3 was concentrated,
and buffer exchanged to buffer A (50 mM NaH2PO4, 300 mM NaCl,
10 mM Imidazole, pH 8) using crossflow filtration system. The
concentrated sample was loaded onto Ni-NTA Agarose (Qiagen,
United States) column and incubated for 60 min. The column was
first washed with 10 mM imidazole, next with 20 mM imidazole, and
finally eluted with 250 mM imidazole. The eluted fraction was buffer
exchanged to PBS for protein evaluation with SDS-PAGE and
bioactivity assay. The purified FGF2-G3 was quantified using
Bradford method, with BSA as standard.

Western blot and SDS-PAGE

An equal amount of protein from each fraction were run on
NuPage 4%-12% Bis-Tris SDS-PAGE gel (Thermo Fisher Scientific,
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United States) and transferred onto nitrocellulose membrane using a
Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell (Bio-Rad,
United States). The membrane was subsequently probed with His-
Tag Antibody HRP Conjugate (Merck Millipore, United States) and
detected with Clarity Western ECL Blotting Substrate (Bio-Rad,
United States). Expression level of FGF2-G3 was determined by
densitometric analysis of digital images using Image] software
(National Institute of Health, United States).

To analyse purity of the large-scale purified media fraction
eluted from Ni-NTA agarose column, 2 ug of protein was run on
NuPage 4%-12% Bis-Tris SDS-PAGE gel (Thermo Fisher Scientific,
United States) and stained with InstantBlue Coomassie Protein
stain (Abcam, UK).

Bioactivity assay of FGF2-G3

Biological activity of the purified FGF2-G3 was assessed using
Anguilla japonica (Japanese eel) pre-adipocytic cells, Ajl1C-2x
(Sugii et al., 2011). The cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM)/F12 media (Thermo Fisher Scientific,
United States) supplemented with reduced fetal bovine serum
(2.5%) and 10 ng/mL of FGF2 at 27°C with 5% CO, in a
humidified incubator. Cell density
determined wusing Vi-CELL XR Cell
(Beckman Coulter, United States), according to manufacturer’s

and viability were
Viability Analyzer

instructions. Each well contains fresh DMEM/F12 medium
supplemented with 2.5% FBS and varying concentrations of
purified recombinant FGF2-G3 or positive control.
Commercial heat stable FGF2 (PHGO0368, Thermo Fisher
Scientific) was used as positive control. Ajl1C-2x cells were
seeded into 96-well plates at seeding density of 2 x 10* cells/
well. After culturing for 3 days, cell viability was determined with
CyQuant XTT cell viability assay (X12223, Thermo Fischer
The
absorbance reading of the media control was subtracted from

Scientific), according to manufacturer’s instructions.

the absorbance reading of each sample to determine the specific
absorbance reading for each sample. Subsequently, the specific
absorbance reading of each sample were normalized against the
specific absorbance reading of the cells cultivated in basal media
with 2.5% FBS (0 ng/mL FGF2) for Aj1C-2x cells to calculate
relative absorbance fold changes. Cellular health was examined
through inverted microscope under x4 magnification (Nikon
eclipse Ti with NIS-Elements AR 4.30.02 software, Nikon).
Biological activity of the purified FGF2-G3 was also further
evaluated in a 6-well plate format. Aj1C-2x cells were seeded at a
seeding density of 3 x 10° cells/well in a 6-well plate using DMEM/
(Thermo  Fisher United States)
supplemented with 2.5% FBS and varying concentrations of
purified recombinant FGF2-G3 or commercial heat-stable FGF2
(PHGO0368, Thermo Fisher Scientific). After 4 days of culture,
cellular health was examined through inverted microscope
(Nikon eclipse Ti with NIS-Elements AR 4.30.02 software,
Nikon). Subsequently, cells were dissociated using TrypLE™

F12 medium Scientific,

Express Enzyme (Thermo Fisher Scientific, United States) and
viable cell density were measured using a Vi-CELL XR Cell
Viability Analyzer (Beckman Coulter, United States), following
the manufacturer’s protocol.
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FIGURE 1

Expression vector constructs. (A) Schematic representation of expression vectors. FGF2-G3 with N-terminal fusion of signalling-secretion peptides
(USP45 with and without PP1) and Hisg-tag in pNZ8148 vector. Protein sequence and insertion site available in Supplementary Figure S1 (B) Western blot
of FGF2-G3 expression and secretion with and without propeptide (PP1) sequence in fusion plasmid.
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FIGURE 2

Expression of FGF2-G3 under different culture parameters. (A) Western blot of secreted, soluble and insoluble fraction of cell lysate. Cells were
grown and induced in different media concentrations (A: M17 + 0.5% (w/v) glucose, (B) 2xM17 + 0.5% (w/v) glucose, (C) 2xM17 + 2% (w/v) glucose); (B)
Growth curve of un-induced cells grown in different media formulations (A-: M17 + 0.5% (w/v) glucose, B-: 2xM17 + 0.5% (w/v) glucose, C-: 2xM17 + 2%
(w/v) glucose) (C) Densitometry analysis of protein secretion yield under different induction OD (ODggonm 0.5, 1.0, 2.0) and nisin concentration (10,

25 or 50 ng/mL); (D) Western blot of secreted protein with post-induction temperature and expression duration at 20, 25, 30 or 35°C and 4 or 20 h,
respectively.

Frontiers in Bioengineering and Biotechnology 04 frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1560426

Ho et al.

Results and discussion

An enhancer propeptide to
enhance secretion

To determine whether FGF-2 can be expressed and secreted out
of L. lactis, we constructed an expression plasmid containing FGF2-
G3, a modified and stable version that has nine amino acid
mutations (Dvorak et al, 2018), with N-terminal fused to
USP45 signal peptide. Our initial attempts to express the fusion
protein resulted in low intracellular soluble yield and no protein was
secreted. In previous study conducted by Lim et al. (2017), it was
reported that addition of a short secretion propeptide 1 (PP1) to a
USP45 fusion protein could significantly enhance protein secretion
efficiency. Hence, we added PP1 between USP45 and FGF2-G3 as
shown in Figure 1A.

L. lactis cells containing the two different recombinant plasmids
(with and without PP1) were cultured in M17 media, supplemented
with 0.5% glucose, and expression was induced at ODgppnm 0.5 with
nisin at final concentration of 10 ng/mL. FGF2-G3 was allowed to be
expressed for 4 h at 30°C. The expression and secretion were assessed
by Western blot. Appearance of bands corresponding to two
different fusion FGF2-G3 constructs (with and without PP1)
were observed. It was noted that addition of PP1 not only
facilitates secretion of the fusion protein, but also increases the
soluble yield (Figure 1B).

Optimisation of cultivation parameters

Next, optimization of culture and expression conditions were
examined to increase protein secretion yield. Optimization of
culture conditions began with expressing FGF2-G3 in varying
M17 and glucose concentrations (M17 + 0.5% (w/v) glucose,
2xM17 + 0.5% (w/v) glucose, 2xM17 + 2% (w/v) glucose).
2xM17 + 2% (w/v) glucose medium proved to be the best for
secretion of FGF2-G3 (Figure 2A).

Doubling the amount of M17 increased the soluble protein
fractions. Looking at the growth curve of cells grown in different
medias (Figure 2B), we hypothesize that doubling M17 not only
provides additional nitrogen-based nutrients to support cell
metabolism for a higher cell density culture, but also increases
the buffering capacity against lactic acid produced during
of Disodium-f-
glycerophosphate, a buffering agent found in M17 medium

fermentation, due to increased amount
composition (Hayek et al., 2019; Terzaghi and Sandine, 1975;
Zhang et al., 2009). These then worked in concert with increased
glucose concentration, permitting L. lactis to extend its growth phase
for higher FGF2-G3 production and, in particular, secretion titer.
Further culture optimizations were performed using 2xM17 + 2%
(w/v) glucose medium.

FGF2-G3 production also improved when the culture was
induced at a higher cell density of ODggonm 1.0 (Figure 2C). This
is anticipated since higher cell density would also mean more
plasmids available for induction, which in-turn raises protein
expression titer. With the increase in cell density, more nisin
may be needed for complete induction and thus we proceeded to
determine new optimal nisin concentration. Culture induction was
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performed when cells reached ODggonm 1.0 with nisin at final
concentrations of 10, 25 or 50 ng/mL. The expression level of
FGF2-G3 increased when nisin concentration was up from 10 to
25 ng/mL (Figure 2C), indicating correlation between cell density
and nisin concentration needed for maximal induction. There was
no further increase in expression level with 50 ng/mL nisin.
Induction was also tested at ODgppnm 2.0, but it did not lead to
higher FGF2-G3 yield.

As the FGF2-G3 used in this study has been engineered for
stability, we predicted that translation and folding within L. lactis is
not limiting, rather the rate of translation/transcription can be
further improved via fermentation optimisation. Temperature
and expression duration are two important post-induction
conditions for optimization as they balance between bacterial
growth, functional protein yield and protein degradation. It has
been suggested that lower temperature improves proper protein
folding and solubility (Mierau et al., 2005; Sahdev et al., 2008; Yu
et al,, 2021), and prolonged expression should also be avoided as it
leads to higher tendency for protein degradation caused by protein
instability, lactate accumulation that disrupts energy metabolism for
protein expression and/or triggering of cell stress response (Zhou
et al,, 2006). Interestingly, results for the present study showed an
increase in secreted protein yield along with increasing temperature
and expression duration, with 35°C and 20 h being the optimal
temperature and harvest time-point (Figure 2D).

The highest expression and secretion of FGF2-G3 was achieved
when cells were cultured in 2xM17 medium supplemented with 2%
(w/v) glucose and induced at ODgpppm 1.0 with 25 ng/mL nisin for
20 h at 35°C. The culture was scaled up from 10 mL to 250 mL for
subsequent purification and bioactivity testing. The secreted fraction
of the overexpressed FGF2-G3 was purified using immobilized metal
affinity chromatography, which utilized Ni-NTA resin matrix, and
the identity and purity were determined with Western blot and
Coomassie staining (Figures 3A,B). The purified yield achieved
herein is about 1.97 mg for 1 L of fermentation media, which is
comparable to previous study by Rizal et al. (2024) where 2.6 mg/L
FGF2-G3  was
fermentation. Based on an estimated requirement of 50 ng/mL
recombinant FGF2-G3
growth factors produced from 1 L fermentation provides enough

of intracellular produced from bioreactor

in cultivated meat culture, secreted
growth factors for 39.4 L of cultivated meat culture. Secretion titers
could be further raised with i) plasmid modifications, such as
replacing promoters, ii) increasing membrane porosity by
addition of chemicals, such as peptides and detergents, into
culture media and iii) using bioreactor fermentation with

controlled environment.

Biological activity assessment of the
purified FGF2

To assess the biological activity of the purified FGF2-G3, growth
stimulation on Anguilla japonica (Japanese eel) pre-adipocytic cells,
Aj1C-2x, was measured using XTT assay and compared against a
commercial heat stable FGF2 (positive control). As shown in
Figure 3C, an increase in metabolic activity was detected when
cells were cultured with the purified FGF2-G3, indicating its ability
to promote cell proliferation and exhibited comparable bioactivity
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Purification and Effect of FGF2-G3 on proliferation of Anguilla japonica cells, AjLC-2x. (A) Western blot analysis of purified FGF2-G3; (B) Coomassie

stain of purified FGF2-G3; (C) XTT assay to determine cell proliferation effect of varying concentrations of commercial FGF2 and purified recombinant
FGF2-G3 on Aj1C-2x cells. Absorbance readings were normalized to cells grown in medium without FGF2. Data plotted as average absorbance with error
bars representing SD calculated for biological and technical triplicates. T-test analysis indicates no significant differences between commercial and

recombinant FGF2 (P > 0.05); (D) Representative images of Anguilla japonica cells, AjLC-2x, observed under x4 magnification, grown in fresh DMEM/
F12 medium supplemented with 2.5% FBS with varying concentrations of purified recombinant FGF2-G3; (E) Total cell number measured after 4 days of
culture using Vi-CELL XR Cell Viability Analyzer. Data are presented as total cell counts, with error bars representing the standard deviation from biological

duplicates.

profile to the commercial FGF2. This is further supported by an
increase in cell density observed through microscopy and cell count
using a cell viability analyzer (Figures 3D,E). The positive result
suggests that our secreted FGF2-G3 can be used to stimulate fish
stem cells for cultivated fish meat and cultivating adipocytes (fats)
for enhancement of meat texture and flavour. Future bioactivity
testing can be performed on mammalian cell lines, such as bovine,
porcine and chicken muscle cells, to widen its application range in
cultivated meat.

Frontiers in Bioengineering and Biotechnology

Conclusion

In summary, this study demonstrated that functional FGF2 can be
expressed and secreted using the L. lactis expression system. We
employed a multi-modal optimization strategy that included a
secretion-enhancing propeptide and further cultivation optimizations.
Specifically, we utilized a nutrient-rich 2xM17 medium containing 2%
(w/v) glucose. The ability of the L. lactis-produced FGF2-G3 to stimulate
growth of Japanese eel cells suggests that L. lactis could be used as a safer
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alternative for production of growth factors for cultured meat
development. The secretion of recombinant proteins into culture
medium by L. lactis simplifies the production process and presents
opportunities to lower production cost for cultured meat. Future efforts
could be directed at expressing other growth factors, such as EGF, IGF
and TGFpl, in L. lactis and scaling-up in bioreactors for precision
fermentation of recombinant growth factors.
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