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Indroduction: This study aims to develop a automated method for tooth
segmentation and root canal measurement based on cone beam computed
tomography (CBCT) images, providing objective, efficient, and accurate
measurement results to guide and assist clinicians in root canal diagnosis
grading, instrument selection, and preoperative planning.

Methods: We utilizes Attention U-Net to recognize tooth descriptors, crops
regions of interest (ROIs) based on the center of mass of these descriptors, and
applies an integrated deep learning method for segmentation. The segmentation
results are mapped back to the original coordinates and position-corrected,
followed by automatic measurement and visualization of root canal lengths
and angles.

Results: Quantitative evaluation demonstrated a segmentation Dice coefficient
of 96.33%, Jaccard coefficient of 92.94%, Hausdorff distance of 2.04 mm, and
Average surface distance of 0.24 mm - all surpassing existing methods. The
relative error of root canal length measurement was 3.42% (less than 5%), and the
effect of auto-correction was recognized by clinicians.

Discussion: The proposed segmentation method demonstrates favorable
performance, with a relatively low relative error between automated and
manual measurements, providing valuable reference for clinical applications.
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1 Introduction

Endodontics and periapical diseases are common dental conditions, and root canal
therapy is the most effective treatment. Determining the working length of the root canal is
crucial for improving the success rate of the procedure. cone-beam computed tomography
(CBCT), with its high spatial resolution, is ideal for 3D imaging (Cui et al., 2022). Dental
models reconstructed by CBCT accurately present the patient’s 3D anatomical structure
and dental morphology, which helps to design efficient and precise treatment plans (Wang
et al., 2024), and are widely used in oral surgery and digital dentistry. Several studies
(Abulhamael et al., 2024; Kumari et al., 2024; Izadi et al., 2024) have demonstrated that
CBCT-based measurements of root canal length are both accurate and reliable when
compared to the gold standard. Therefore, the segmentation of a single tooth from a CBCT
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image and its automatic measurement is crucial for endodontic
treatment and digital dentistry.

Segmenting individual teeth from CBCT scans presents
significant challenges due to factors such as tooth occlusion,
similarities in the densities of teeth and alveolar bone, and the
propensity for neighboring teeth to be misidentified (Zhang et al.,
2024; Jang et al., 2022; Zhang et al., 2021). Traditional tooth
segmentation techniques (Al-sherif et al., 2012; Hiew et al., 2010;
Keustermans et al., 2012; Evain et al., 2017; Zichun et al., 2020; Jiang
et al., 2022; Gan et al., 2018; Jiang et al., 2024; Wang et al., 2019)—
including thresholding, graph-cutting, and level-set methods—are
typically semi-automatic and exhibit limited robustness. These
methods often encounter issues of under-segmentation or over-
segmentation and are sensitive to noise artifacts.

Deep learning has been widely applied in teeth image
segmentation, with its ability to detect subtle anatomical features
and complex textures, have significantly improved the accuracy of
CBCT dental image segmentation. Cui et al. (2019) employed a deep

supervised model utilizing the proposed 3D region proposal
network (RPN) for the segmentation of single teeth. Chung et al.
(2020) achieved single tooth segmentation through pose regression
and convolutional neural networks; however, they did not address
the issue of overlapping voxels between neighboring teeth. Chen
et al. (2020) introduced a method that combines a 3D full
convolutional network with watershed transform to segment
individual teeth, yet this approach encounters challenges when
segmenting neighboring teeth with indistinct boundaries. Several
studies (Shaheen et al., 2021; Wang et al., 2023; Gong et al., 2024;
Tan et al., 2024; Wu et al., 2020; Cui et al., 2021) have successfully
realized single tooth segmentation using multi-stage network
segmentation methods.

Manual measurement is characterized by instability,
dependence on the operator’s experience, and time consumption.
In contrast, automatic measurement provides objective, convenient,
and effective quantitative results. Currently, research on automatic
tooth measurement is limited (Piasecki et al., 2018; Mourao et al.,

FIGURE 1
Overall flowchart of tooth segmentation and working length angle measurement.
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2025), with the majority of studies relying on manual or semi-
automatic methods that often focus on 2D measurements, which do
not fully leverage 3D spatial information.

In this paper, we proposed a multi-stage, automated method for
individual tooth segmentation and root canal measurement. The
segmentation results were effective and robust, and the
measurements were consistent with the physician’s estimates.
These measurements can guide and support clinicians in root
canal diagnosis grading, instrument selection, and preoperative
planning, thereby offering significant clinical value.

2 Methods

The overall workflow of the proposed automated method for
individual tooth segmentation and root canal measurement is
illustrated in Figure 1.

2.1 Tooth detection

Due to the tooth structure and natural occlusion, adhesion often
occurs between adjacent teeth and between upper and lower teeth in
CBCT images. Thus, in this study, the remaining tooth portion with
tooth boundaries removed is used as a descriptor for tooth
localization, and tooth descriptor segmentation is performed by
the Attention U-Net network. The Attention U-Net (Oktay et al.,
2018) with an attention mechanism for descriptor segmentation,
which allows the model to focus more on important regions of the
image and reduce computation on irrelevant areas. In the training
stage, the loss function used is Generalized Dice Focal Loss (GDFL),
which combines the Generalized Dice loss and Focal loss,
accounting for voxel overlap and the weighting of hard-to-
classify samples.

2.2 Tooth segmentation

We take the center of mass of the tooth descriptors as the center
of the tooth and crop out the tooth ROI of size (64,64,96). This ROI
is used for individual tooth segmentation.

This study employs an ensemble learning algorithm to segment
individual tooth, utilizing the integration of Attention U-Net and
V-Net (Milletari et al., 2016). V-Net is specifically designed for
processing three-dimensional volume data, thereby enhancing the
capture of three-dimensional structural information. By integrating
these two networks, we can leverage their respective advantages to
reduce the incidence of false positives and false negatives, ultimately
improving overall segmentation quality. Furthermore, the
combination of the two networks’ characteristics enhances the
model’s robustness against different image types and variations.

Initially, we train Attention U-Net (STAU) and V-Net (STV)
separately using the same training set. Subsequently, we jointly train
Attention U-Net (JTAU) and V-Net (JTV) with the same training
set. The loss functions of both U-Net and V-Net are incorporated as
a new loss function to guide the joint training of the models. Given
the inherent randomness associated with training individual
networks, we conduct ten training times for each network

(i.e., training Attention U-Net alone ten times, training V-Net
alone ten times, and jointly training the two networks ten times).

GDFL is employed as the loss function during the individual
training phase of the network. In the joint training phase, the loss
function is defined as follows (Equation 1):

Lossjoint � LossAUNGDFL + LossVNGDFL (1)

Where LossAUNGDFL represents the GDFL of Attention U-Net
prediction results, and LossVNGDFL denotes the GDFL of V-Net
prediction results.

In this study, we propose a new composite metric that integrates
Dice coefficients, Hausdorff Distance (HD) coefficients, and Average
Surface Distance (ASD) coefficients. Given that the Dice coefficient and
the Jaccard coefficient are interchangeable, we have excluded the
Jaccard coefficient from the calculation of the composite metric. The
composite metric CMetric is expressed as fallows (Equation 2):

CMetric � Dice + 1
HD

+ 0.1
ASD

(2)

The network segmentation effect is directly proportional to theDice
coefficient and inversely proportional to the HD coefficient and ASD
coefficient. Consequently, our composite indicator CMetric is directly
proportional to the segmentation effect. The value of HD typically
ranges from a few millimeters, while the value of ASD generally falls
within a few tenths of a millimeter. To mitigate the excessive influence
of the ASD value on CMetric, we employ a coefficient of 0.1.

During the network testing phase, for a given test data set (i.e., a
single tooth ROI), we obtain the training results from ten STAU
instances and compute the CMetric for these ten results. We then
select the network result with the largest CMetric as the STAU result,
denoted as predSTAU. Similarly, we derive the results for STV
(predSTV), for JTAU(predJTAU), and for JTV(predJTV).

We employ the ensemble learning method to derive the final
output result. This result is calculated as the weighted sum of the
outputs from each network, where the weights are determined by
their respective CMetric values (Equation 3):

pred � CSTAU
Metric

Csum
Metric

predSTAU + CSTV
Metric

Csum
Metric

predSTV + CJTAU
Metric

Csum
Metric

predJTAU

+ CJTV
Metric

Csum
Metric

predJTV (3)

Where. Csum
Metric � CSTAU

Metric + CSTV
Metric + CJTAU

Metric + CJTV
Metric

2.3 Re-labeling and tooth position
correction

The internationally recognized Fédération dentaire internationale
(FDI) tooth position representation was utilized to label the teeth in this
study. After obtaining the segmentation results for the ROIs, these
results were mapped back to the original coordinates, followed by a
correction of the tooth labels based on their relative positions.

Due to the curved arrangement of teeth in natural occlusion and
the influence of the imaging angle, the crown surfaces of the teeth do
not align with the slice plane. To address this discrepancy, tooth
positional correction was implemented to minimize alignment-
related measurement biases. Given the irregular morphology,
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variable positioning, and occasional absence of third molars
(wisdom teeth), they were excluded from both positional
correction and root canal measurement analyses.

For each tooth, the crown portion is intercepted, and correction
reference points are selected based on the projected shape
characteristics of the crowns of different types of teeth, and the
teeth are corrected sequentially along the XYZ direction. The
specific order of correction is as follows: Step 1: Correct the
tooth position along the Z-axis twice. Step 2: Correct the tooth
position along the X-axis. Step 3: Correct the tooth position along
the Y-axis. Step 4: Arrange the corrected teeth in sequence.

In this study, three methods were developed to select the correction
reference point. Method one involves calculating the hull points in
projected coordinates, designating the projected center point as the
origin, and dividing the hull points into four quadrants. The correction
reference points is then identified as the point farthest from the center
point in each quadrant. The second method also divides the hull points
into quadrants, similar to the first method. For each quadrant, the
maximumdistances (DX andDY) of the hull points from the center are
calculated in two directions. The correction reference point is
determined as the point that meets |xi − x0|> 0.5 pDX and |yi −
y0|> 0.5 pDY and is closest to the edge of the quadrant. Where
(x0, y0) represents the center point, (xi, yi) denotes a specific
convex hull point. The third method establishes the correction
reference point by calculating the minimum bounding rectangle of
the projected coordinates. Based on the type and position of the teeth,
different methods are employed to obtain correction angle reference
points at each step.

2.4 Measurement of tooth working length
and root canal curvature

Tooth working length refers to the distance from the crown
reference point to the point where root canal preparation and filling
should terminate (Sharma and Arora, 2010). The tooth is divided into
two parts: the crown and the root. In single-canal teeth, a fixed-length
portion is designated as the crown, while inmultiple-canal teeth, the root
is determined using Connected Component Analysis. The automatic
measurement method quantifies the direct distance from the crown to
the root apex, and directly calculates the straight-line distance from the
center point of the crown to the center point of the root apex.

Schneider’s method is the most widely utilized technique for
measuring the angle of root canal curvature. This angle is defined as
the angle between the vector originating from the starting point of
the root canal to the starting point of root canal curvature, and the
vector from the starting point of root canal curvature to the endpoint
of the root canal. In this study, we refer to the Schneider method to
calculate the root canal curvature, and the key is to find the starting
point of root canal curvature. The coordinates of the center point of
the second layer to the penultimate layer center point are
sequentially taken as candidate points, referred to as point j. The
center point of the previous slice layer of the candidate point is
denoted as point i, while the center point of the next slice layer of the
candidate point is designated as point k. The angle between the
vector from point i to point j and the vector from point j to point k is
calculated, with the candidate point exhibiting the largest angle
identified as the center point of the root canal curvature layer.

3 Experiments and results

3.1 Dataset

This study collected 39 CBCT images from West China Hospital of
Stomatology, Sichuan University. All images were obtained from patients
in natural or closed occlusion. The scanning parameterswere: tube voltage
85.0 kV, current 4.0mA, exposure time 17.5 s, pixel spacing 0.25mm, and
slice thickness 1.00 mm. The CBCT images had a width and height of
565 pixels, with 101 slices. The field of view measured 141.25 × 141.25 ×
101 mm3;. The images in this study were manually labeled by specialized
physicians utilizing the ITK-SNAP platform. Model training was
performed based on Torch 2.4, using an NVIDIA RTX 3060 GPU.

The data were divided into training, validation, and test sets,
with the training and validation sets referred to as training data. In
the tooth detection stage, 27 cases were randomly selected for the
training set, 3 cases for the validation set, and 9 cases for the test set.
In the tooth segmentation stage, 30 training cases yielded 871 single-
tooth ROIs, from which 800 ROIs were randomly selected for the
training set, 71 ROIs for the validation set, and 275 ROIs were
obtained from nine test cases for the test set.

Preprocessing: The images were normalized to an isotropic
resolution of 0.4 × 0.4 × 0.4 mm3; and cropped to 256 × 256 ×
256 while preserving complete tooth information.

Tooth ROI Cropping: The images were cropped to a size of 64 ×
64 × 96, using the centroid of the tooth descriptor obtained in the
tooth detection stage as the cropping center (for the training and
validation sets, the cropping center was the tooth centroid).

Adding perturbation: The centroids of the tooth descriptors
predicted in tooth detection stage may deviate from the true tooth
centroids. Inspired by Ref. 26, we introduced perturbations to the
centroids in the training and validation sets to better approximate the
real situation and improve model robustness. The centroids of the
training data were perturbed with a 50% probability, with a random
offset of −8 to eight voxels applied along each axis. The new centroid
was then used as the ROI cropping center, while non-perturbed
centroids retained their original positions as the cropping center.

3.2 Evaluation metrics

This study assessed the detection of tooth descriptors by utilizing
the ASD, HD, and the voxel distance between the predicted and
actual tooth centroid, referred to as Centroid Distance (CD). This
study employs the Dice coefficient, Jaccard coefficient, ASD, andHD
to assess the results of tooth segmentation.

The voxel distance between the predicted tooth descriptor
centroid and true tooth centroid is (Equation 4):

CDi �
�����������������������������
x1 − x2( )2 + y1 − y2( )2 + z1 − z2( )2

√
i∈L

(4)

where L is the set of teeth, (x1, y1, z1) is the predicted tooth
descriptor centroid, and (x2, y2, z2) is the true tooth centroid.

3.3 Tooth detection

The objective of the tooth detection stage is to obtain tooth
descriptors that accurately localize individual teeth, avoiding
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both one-to-many and many-to-one mappings, as well as
preventing the detection of non-tooth regions as tooth
descriptors. The Attention U-Net employed in this study
effectively accomplishes this goal.

Table 1 presents a quantitative comparison between Attention
U-Net and other networks. As shown, Attention U-Net outperforms
CTDC-Net and U-Net in terms of HD and ASD metrics. The
average CD between the centroids of the tooth descriptors and
the true centroids, obtained from the results of Attention U-Net, is
reported as 2.63±1.26 voxels, with the mean and standard deviation
within the perturbation range. Figure 2 compares the actual
detection results of the networks. It can be observed that only
the Attention U-Net, which focuses on the region of interest
more, avoids predicting non-tooth regions as teeth, while U-Net
even faces the possibility of missing teeth.

3.4 Tooth segmentation

3.4.1 Comparison
We compare the proposed ensemble learningmethod (AU-V-Net

EL) with several popular deep learning models, and the comparison

results presented in Table 2. Where “P-free” denotes training with
centroid-perturbed-free data and “P” indicates training with centroid-
perturbed data. Where “Time” is the average time to segment a tooth
(a ROI). For V-Net andAttentionU-Net, training with perturbed data
yields better performance on the test set. Therefore, the AU-V-Net EL
was trained only with centroid-perturbed data. As illustrated in
Table 2, AU-V-Net EL surpasses all other models across all
metrics and exhibits superior robustness, albeit with a significantly
longer inference time. In this paper, we argue that SWIN-UNetR’s
lower performance than V-Net and Attention U-Net may be because
SWIN-UNetR’s windowed attentionmechanism relies on larger input
sizes to model long-range dependencies. However, the clipped ROI
narrows down the contextual scope, which limits its advantages.

Figure 3 presents a comparison of typical segmentation results
across various models. As illustrated in the figure, AU-V-Net EL
effectively segments the teeth and successfully captures details that
other models either fail to segment or confuse.

3.4.2 Ablation experiment
The ablation experiment primarily analyzes the impact of joint

training and varying levels of ensemble training on segmentation
performance. Table 3 presents the quantitative results for Dice,
Jaccard, HD, ASD, and the proposed composite metric CMetric,
which is positively correlated with segmentation performance and
is calculated from Dice, HD, and ASD. In Table 3, ‘V-Net’ and
‘Attention U-Net’ refer to once individual random training, while
‘Joint V-Net’ and ‘Joint AttentionU-Net’ refer to once joint training of
V-Net and Attention U-Net, respectively. ‘STV’ and ‘STAU’ represent
ensembles of 10 times individual trainings of V-Net and Attention
U-Net, respectively, while ‘JTV’ and ‘JTAU’ represent ensembles of
10 times joint trainings. ‘AU-V-Net EL’ is the Ensemble of STV,

TABLE 1 Comparison the results of tooth detection.

Methods HD (mm) ASD (mm) CD (voxel)

CTDC-Net Gong et al. (2024) 137.71±15.35 4.28±2.76 —

U-Net 83.72±52.11 1.06±0.77 —

Attention U-Net 10.46±2.38 0.51±0.03 2.63±1.26

FIGURE 2
Typical results using different models in tooth detection. (a) Ground Truth, (b) CTDC-Net, (c) U-Net, (d) Attention U-Net.
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STAU, JTV, and JTAU. All ensemble results are obtained based on
the CMetric.

From Table 3, we observe that: (i) Training with centroid-
perturbed data outperforms training with centroid-perturbed-free
data, regardless of whether single or joint training is employed; (ii)
In single training, Attention U-Net performs worse than V-Net, but
in the ensemble of 10 times trainings, Attention U-Net surpasses
V-Net, underscoring the significance of ensemble learning for
enhancing robustness; (iii) The results achieved through
ensemble learning are markedly superior to those obtained from

single training; (iv) AU-V-Net EL outperforms all other methods
across all evaluated metrics.

3.5 Tooth position correction

Figure 4 illustrates the correction process for three distinct types
of teeth: the lateral incisor, the second premolar, and the second M.
The small purple images indicate the selected projections and
reference points for correction angles obtained through different

TABLE 2 Comparison of tooth segmentation results.

Methods Dataset Dice (%) Jaccard (%) HD (mm) ASD (mm) Time (s)

U-Net P-free 94.54±1.90 89.69±3.09 3.71±2.43 0.39±0.41 0.28

P 94.41±1.95 89.63±3.16 3.73±2.61 0.411±0.34 0.27

U-NetR P-free 94.22±3.17 89.22±4.86 5.44±3.20 0.49±0.42 0.29

P 93.63±4.56 88.29±6.29 5.81±3.47 0.57±0.64 0.29

Swin-UNetR P-free 95.29±2.00 91.07±3.32 3.87±2.48 0.34±0.28 0.31

P 94.86±3.14 90.36±4.59 3.88±2.97 0.38±0.60 0.28

V-Net P-free 95.29±1.39 91.04±2.50 3.41±1.88 0.31±0.11 0.29

P 95.64±1.13 91.66±2.04 2.89±1.76 0.29±0.10 0.27

Attention U-Net P-free 94.30±4.15 89.48±6.77 4.98±4.61 0.60±0.78 0.33

P 95.46±2.38 91.41±3.94 3.59±3.29 0.40±0.57 0.27

AU-V-NetEL (Ours) P 96.33±0.89 92.94±1.64 2.04±0.87 0.24±0.06 4.72

FIGURE 3
Typical results using differentmodels in tooth segmentation. (a)Ground Truth, (b)U-Net, (c)U-NetR, (d) Swin-UNetR, (e) V-Net, (f) Attention U-Net,
(g) AU-V-Net EL (ours).
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methods, where points A and B serving as the references for the
correction angle.

3.6 Root canal working length and angle
measurement

3.6.1 Root canal working length measurement
There is no gold standard for validation of root canal work length

and angle measurements because all data in this study were collected
fromCBCTdata of living human beings. Therefore, we used themanual
measurements of six professional medical students as a reference
standard. This study make a comparison of manual and automatic
measurement results across nine test cases, encompassing a total of
275 teeth and 350 root canals. Table 4 presents several
measurement results.

Statistical findings based on these measurements indicate that the
average standard deviation of manual measurements by different
medical students for the same root canal is 0.406 mm, highlighting
the inherent variability in manual measurement. The average difference
between the mean values of automatic and manual measurements is
0.615mm, with a Relative Error of 3.42% (< 5%), indicating high
accuracy and reliability of the automatic measurements.

According to clinicians, the commonly used root canal
instruments are available in four lengths: 21 mm, 25 mm,
28 mm, and 31 mm. Therefore, the error in our automatic
measurements does not affect instrument selection, can provide
valuable clinical guidance. Besides, the manual measurement
process is time-consuming, with automated measurements of a
tooth averaging only 1.73 s, compared to 27.48 s for manual
measurements.

3.6.2 Curvature angle measurement
To address the insufficient spatial resolution of the original

dataset for comprehensive pulp chamber visualization, we

supplemented the study with high-resolution CBCT scans
(0.125 × 0.125 × 0.125 mm3) obtained from hospital. The five
CBCT cases comprised partial dentition scans, encompassing
17 teeth and 21 root canals. The results were measured manually
by a specialized physician, serving as the standard for evaluation.

Root canal curvature angles were categorized into three
treatment difficulty grades per established criteria: Grade 1
(0°–10°), Grade 2 (10°–25°), and Grade 3 (>25°). The automated
measurements showed a mean angular discrepancy of 2.85°

compared to manual references, with two grading
misclassifications among 21 root canals (agreement rate: 90.48%).

3.6.3 Length-angle visualization
In this study, after measuring the working length of the root

canal, the corresponding voxels for the root in the image are
assigned a value calculated as the root canal length multiplied by
100 (for instance, a measurement of 16.95 mm would be
represented as 1,695). A circular point is marked at the root
apex to denote the root canal curvature angle (for example, a
curvature angle of 25° would be displayed as 25). To visualize and
facilitate accurate correspondence between root canals and
measurements. Furthermore, this study automatically
generates an Excel file to document the length and angle of
each root canal, highlighting those with a working length
greater than 25 mm or less than 15 mm.

4 Discussion

This study aims to automatically segment a single tooth from
CBCT images and to measure the root canal working length and
angle, thereby assisting dentists in preoperative planning. The
research is organized into four stages: 1) tooth detection, 2) tooth
segmentation, 3) tooth position correction, and 4) measurement of
root canal working length and angle.

TABLE 3 Comparison of Ablation experiment.

Methods Dataset Dice (%) Jaccard (%) HD (mm) ASD (mm) CMetric

V-Net P-free 95.29±1.39 91.04±2.50 3.41±1.88 0.31±0.11 1.67±0.25

P 95.64±1.13 91.66±2.04 2.89±1.76 0.29±0.10 1.75±0.24

Attention U-Net P-free 94.30±4.15 89.48±6.77 4.98±4.61 0.60±0.78 1.63±0.38

P 95.46±2.38 91.41±3.94 3.59±3.29 0.40±0.57 1.72±0.30

Joint V-Net P-free 95.13±1.51 90.75±2.68 3.33±1.83 0.33±0.12 1.66±0.24

P 95.68±1.13 91.74±2.06 2.99±1.37 0.29±0.08 1.73±0.23

Joint Attention U-Net P-free 94.53±3.69 89.84±6.14 4.66±4.37 0.54±0.68 1.66±0.38

P 95.55±1.78 91.53±3.00 3.23±2.48 0.32±0.34 1.73±0.25

STV P 95.87±0.96 92.09±1.76 2.13±0.86 0.27±0.06 1.88±0.24

STAU P 96.17±0.91 92.64±1.68 2.09±0.95 0.26±0.06 1.92±0.25

JTV P 96.03±0.92 92.37±1.69 2.13±0.94 0.27±0.06 1.90±0.26

JTAU P 96.16±0.96 92.63±1.76 2.08±0.89 0.25±0.06 1.93±0.26

AU-V-Net EL (Ours) P 96.33±0.89 92.94±1.64 2.04±0.87 0.24±0.06 1.96±0.26
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In the tooth detection stage, we locate the teeth by identifying
tooth descriptors. The size of the tooth descriptor is crucial; if too
large, neighboring upper and lower tooth descriptors may merge,
while if too small, some teeth may be missed. Therefore, future work
should consider selecting appropriate descriptor sizes based on
tooth type, e.g., larger descriptors for molars and smaller ones for
incisors. Although our current dataset does not occur cases of
misidentifying non-tooth areas as tooth descriptors, the sample
size is too small to ensure consistent performance of the
Attention U-Net across all data. Future research could consider
initially detecting the entire tooth region and subsequently cropping
out only the tooth portion for the next stage of tooth descriptor

identification. However, due to variations in individual maxillofacial
anatomy and CBCT imaging position, different images may require
cropping at different sizes.

In the tooth segmentation stage, our proposed ensemble deep
learning method outperforms popular medical image segmentation
approaches, demonstrating better performance on unseen test
datasets. This method combines the advantages of V-Net and
Attention U-Net, and the ensemble of multiple training results
mitigates the randomness of individual networks, offering
improved robustness. However, the requirement to load and
validate multiple models results in longer inference times and
increased computational costs, with an average segmentation

FIGURE 4
Typical example of positional correction.
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duration of 4.72 s per tooth. The extended inference time can
diminish the clinical application’s convenience and the model’s
practical usability. Thus, identifying a suitable model ensemble
ratio is crucial. Future research should focus on either retaining
only the top-performing models for ensemble learning or selecting
the number of models in ensemble learning based on specific
requirements. This approach aims to enhance segmentation
performance within the desired scope while minimizing inference
time to the greatest extent possible.

In this study, we obtained an external dataset of 20 dental CBCT
images Li (2024) to evaluate the performance of our tooth detection
model. After adjusting the resolution and dimensions of these
images, we applied our tooth detection model and found it failed
to accurately locate teeth due to significant dataset differences. The
identification result is presented in Figure 5. Subsequently, we added
Gaussian and stripe artifacts to the original images (see Figure 6) and
retested the model. Under mild artifacts, all nine cases were
accurately localized without false positives or negatives, showing
no significant difference from the original images. Under heavy

artifacts, one case had a non - tooth area misidentified. This
indicates the model has some robustness to artifacts, but also
highlights its limitations with external data. This underscores the
need for adequate training data to enhance the model’s
generalizability.

The dataset of this study is limited, comprising only 39 CBCT
cases obtained from a single hospital. This insufficient data increases
the risk of model overfitting and limits the generalizability of the
findings, thereby restricting the wide applicability of potential
clinical applications. Future work will focus on training and
validating the model on a larger and more diverse dataset to
enhance its robustness and generalization capability. This study’s
method shows good segmentation results on a small dataset. When
trained on larger and more diverse datasets in the future, the
advantages of deep learning will be more evident, leading to
better segmentation. However, this method requires training
multiple models, and cropping ROIs significantly increases data
volume, thus raising training time and hardware requirements. In
subsequent training of ROI models on larger datasets, we will retain
only a portion of the data for training. It aims to preserve data
diversity and segmentation performance while minimizing
training time.

In the root canal working length measurement stage, the relative
error between our automatic measurements and manual
measurements is 3.42% (< 5%), indicating a high level of
accuracy in the measurement results. This provides clinicians
with an objective and efficient measurement method that yields
results consistent with physician estimates, aiding in the root canal
diagnosis grading and the selection of instruments and materials in
the root treatment. The visualized results enable clinicians to
intuitively and accurately correlate the measurements with the
root canal, thereby reducing errors in root canal assessment.
Additionally, our position correction method minimizes the
impact of position errors on the measurements. Currently, there
is a lack of research on automatic root canal measurement, and our
study contributes to enriching this area of research.

TABLE 4 Root canal measurement results for diverse tooth types.

Tooth type Auto (mm) Mean (mm) M1 (mm) M2 (mm) M3 (mm) M4 (mm) M5 (mm) M6 (mm)

Incisors 20.84 20.79 20.56 20.94 21.1 20.62 20.65 20.89

19.76 19.87 19.92 19.94 19.84 19.67 19.87 19.99

17.6 17.66 17.85 17.94 17.83 17.42 17.32 17.58

Canines 24.44 24.52 24.19 24.74 24.69 24.65 24.43 24.39

22.27 22.56 22.63 22.69 22.98 22.68 22.16 22.19

24.32 24.52 24.59 24.7 24.74 24.54 24.07 24.48

Premolars 18.57 18.6 18.4 18.57 18.54 18.5 18.79 18.78

18.11 18.25 18.18 18.25 18.15 18.4 18.01 18.5

16.66 16.64 16.59 16.83 16.62 16.64 16.81 16.33

Molars 18.59 18.62 18.59 18.65 18.65 18.47 18.72 18.62

16.88 16.85 16.96 16.68 16.97 16.72 16.79 16.96

18.79 18.85 18.82 18.72 18.72 19.07 18.71 19.05

FIGURE 5
External dataset tooth detection validation results.
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In the root canal curvature angle measurement stage. A
significant challenge in this process is the automatic identification
of the curvature initiation point. In this study, we identified the root
canal curvature initiation point by analyzing the degree of positional
change in the center point of each sequential slice layer. The mean
difference between the manual and automatic measurement results
was 2.85°, with a treatment difficulty factor grading accuracy of
90.48%. However, due to the limited data, the statistical significance
was low. Therefore, more high-resolution CBCT images will be
acquired in the future to study root canal curvature angles. The
method proposed in this study extends the root canal curvature
measurement from 2D to 3D space and provides a new method for
automatic root canal curvature measurement.

In this study, all images were scanned from human bodies rather
than from extracted teeth. Consequently, we were unable to obtain
ground truth data through vernier caliper measurements and had to
rely on manual measurements conducted by medical professionals
as the reference standard, which may not be sufficiently accurate.
Future research could utilize extracted teeth as specimens to further
validate the effectiveness of the proposed measurement methods.

While our study successfully achieves automatic tooth
segmentation, correction, and root canal measurement, these
processes are currently performed in stages rather than being
fully automated. In the future, we aim to integrate these steps
into a unified system for end-to-end automation. Furthermore,
developing a network capable of single-stage, end-to-end
segmentation of individual teeth is another potential
research direction.

5 Conclusion

This study proposes a automated method for single-tooth
segmentation and root canal measurement, achieving
accurate results.

(1) An ensemble deep learning approach for tooth segmentation
is proposed, ensembling Attention U-Net and V-Net results
using the proposed composite metric, which enhances
robustness. The results outperform current methods, with

a Dice coefficient of 96.33%, Jaccard coefficient of 92.94%,
HD of 2.04mm, and ASD of 0.24 mm.

(2) A root canal automatic measurement method based on
connected component analysis is proposed. The relative
error for root canal working length measurement between
automatic measurement and manual measurement is 3.42%
(<5%), providing an objective and efficient measurement
method that yields results consistent with physician
estimates. The results derived from this method provide
valuable references for clinical applications in root canal
diagnosis grading, instrument selection, and
preoperative planning.

(3) An automatic tooth position correction method is developed
to improve measurement accuracy and facilitate observation
by clinicians. The effectiveness of this correction method was
validated by professional doctors.
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