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Detecting small biological molecules is challenging due to their tiny size,
vulnerability, and low concentrations in samples. Bead-based biosensors are
frequently used as probes but require tedious processing or expensive
instruments. By combining magnetic Janus particles (MJPs) and an
electromagnetic device, we successfully built an active diagnostic tool for the
rapid sensing of small extracellular vesicles (sEVs). We observed that the system
can be altered according to particle size, distance between MJPs and the
electromagnet, fluid viscosity, and magnetic field strength. By modulating the
driving frequency from low (3 Hz) to high (22 Hz), the MJPs gradually lose their
synchrony with the external magnetic field after exceeding a certain threshold
termed cutoff frequency. The novel sEVs sensing MJP system was characterized
through both theoretical and experimental methods, showing reliable
performance in identifying the cancer cell OECM-1-derived sEVs using the
CD63 surface marker. A decent sEV concentration of 2.9 × 109 particles mL−1

was reached and a high specificity was also observed. This approach opens a door
for the realization of disease screening, such as cancer, using intact exosomes
from body fluids without sophisticated processing. These findings provide insight
into the future use of MJPs as point-of-care testing tools for liquid biopsy.
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1 Introduction

Small biological molecules, such as cytokines, miRNAs, and extracellular vesicles (EVs),
have been widely reported as potential biomarkers for various diseases, such as cancer
(Mathew et al., 2020; Kartikasari et al., 2021; Metcalf, 2024) and neurological disorders
(Espíndola et al., 2021; Raghav et al., 2022; Musso et al., 2023). Exosomes, also known as
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small EVs (sEVs), have attracted considerable interest because of
their high homology with host cells (Zhang et al., 2019; Qiao et al.,
2020). They are EVs originating from the cell’s endosomal system. In
the biogenesis of exosomes, specific proteins, lipids, and nucleic
acids are first packaged in multivesicular bodies (MVBs). After the
MVBs fuse with the plasma membrane of a cell, the contents
encapsulated in multiple small vesicles are released into the
extracellular space and then become sEVs. Typical sEVs range in
size from 30 to 150 nm and carry specific membrane markers, such
as CD63, CD81, and CD9 (Lu et al., 2021; Fan et al., 2023). Many
sEVs exist in body fluids, including serum, urine, saliva, and tears,
which make them easy to collect and analyze. These characteristics
make sEVs ideal targets for diagnosis or treatments. The common
practices of current exosome diagnosis are based on tedious
processing, which requires lysing sEVs to release their loads and
isolating target contents through multiple washing and filtration
steps. Various diagnostic tools, such as liquid
chromatography–mass spectrometry (Schey et al., 2015), flow
cytometry (Morales-Kastresana and Jones, 2017), enzyme-linked
immunosorbent assay (Lee J. et al., 2020; Logozzi et al., 2020), next-
generation sequencing (Yagi et al., 2017; Elkommos-Zakhary et al.,
2022), and qPCR (Bellingham et al., 2017; Lee H. et al., 2020), are
commonly used in identifying potential sEVs for disease diagnoses.
However, existing approaches are time-consuming, labor intensive,
costly, and incapable of point-of-care testing (POCT). Alternatively,
emerging techniques capable of detecting small biological molecules
have been proposed to improve exosome-based disease diagnosis.
Doldán et al. (2016) developed an electrochemical sandwich
immunosensor for determining breast cancer cell–derived
exosomes; in their electrochemical biosensor, exosomes were
sandwiched by two types of CD9 antibodies: one that
immobilized the exosomes on electrodes and the other that
served as a secondary antibody conjugate with horseradish
peroxidase (HRP); amperometric signals were measured on the
basis of the redox reaction of TMB catalyzed by HRP as a
reporter; with this approach, they achieved a limit of detection
(LoD) of 2 × 102 exosomes mL−1 in a sample volume of as low as
1.5 μL and a dynamic measurement range spanning four orders of
magnitude; their work provides a potential aid for the determination
of EVs in clinical samples and potentially offsets the need for
expensive equipment and laborious purification. Zhang et al.
(2021) demonstrated electrochemical micro-aptasensors for
EpCAM exosome detection based on hybridization chain reaction
amplification. A wide range of exosome concentrations from 2.5 ×
103 to 1 × 107 exosomes mL−1 with an LoD of approximately 5 × 102

exosomes/mL was eventually achieved; this approach successfully
detected early- and late-stage lung cancer by using exosomes in
serum samples. Kwizera et al. (2018) used surface-enhanced Raman
scattering gold nanorods (SERS-AuNRs) to detect breast
cancer–derived exosomes; the device was composed of a gold-
coated glass slide and plastic array templates, where exosomes
were captured in wells with anti-CD63; the SERS-AuNRs were
attached to exosomal lipid membranes to enhance signals; their
findings showed that EpCAM, CD44, and HER2 are biomarkers for
distinguishing breast cancer exosomes from normal cell-derived
ones; an LoD of 2 × 106 exosomes mL−1 and analysis of over
80 samples on a single device within 2 h were achieved. Zhang
et al. (2023) presented a label- and antibody-free impedimetric

biosensor based on molecularly imprinting technology for
detecting exosomes derived from non-small-cell lung cancer cells
(A549); a selective adsorption membrane for A549 exosomes was
created using anchored template exosomes on a glassy carbon
electrode (GCE); the concentration of captured exosomes was
monitored according to the impedance change of the GCE; their
approach eventually achieved an LoD of 2.03 × 103 exosomes mL−1,
excellent accuracy and precision, recovery ratio of 100.76%, and
relative standard deviation of 1.86%. By combining spiky-shaped
aptamer-magnetic beads (Au@Fe3O4/Apt) with an electrochemical
platform, Pan et al. (2022) developed a novel biosensor for the
detection of cancer-derived exosomes. The spiky nanobeads
facilitated exosome enrichment and signal amplification, thereby
significantly enhancing the sensitivity of the biosensor. The optimal
LoD eventually reached 8 × 104 exosomes mL−1. Another exosome
detection method based on aptamer-modified magnetic
nanoparticles was reported by Yu et al. (2019). Initially, a
Cy3 label was hybridized with the aptamer to express
fluorescence. However, the Cy3 dye would be shed in the
presence of exosomes due to the high affinity between the
aptamer and the transmembrane protein CD63. As a result, an
LOD of 1 × 108 exosomes mL−1 was achieved. Despite these
impressive results, most of these technologies are still under
development and need to be validated with clinical trials.

Alternatively, we present an active magnetic Janus particle
(MJP) system manipulated by an external electromagnet to detect
potential disease biomarkers. Our prior work based on plain Janus-
particle biosensors showcased the feasibility of detecting different
biological targets, such as bacteria (Chung et al., 2016, 2017; Wang
et al., 2018; Yang et al., 2020), proteins (Chuang et al., 2018; Cheng
and Chuang, 2019), and nucleic acids (Wang et al., 2020; Das et al.,
2022a; Das et al., 2022b; Das et al., 2024) on the basis of Brownian
motion. With active control, MJPs can function in broad
environments and have improved signal-to-noise ratios. Current
MJPs are fabricated by coating three thin films, namely, silver
(5 nm), nickel (15 nm), and gold (5 nm), on the half of a
substrate containing 1-μm polystyrene (PS) fluorescent particles.
The nickel layer enables MJPs to respond to any magnetic stimulus.
When MJPs rotate, partially covered fluorescent particles exhibit a
blinking effect that can be quantified in terms of frequency.
Functionalized antibodies, such as anti-CD63 IgG, on the gold
surfaces of MJPs allow for the capture of target sEVs through
corresponding membrane markers, including CD63. sEVs
attached to MJPs increase the effective volume of particles,
inhibiting their capability to follow an external magnetic field.
Kopelman and his colleagues previously proposed a similar
concept, termed asynchronous magnetic bead rotation (AMBR),
to investigate small changes in viscosity after DNA amplification (Li
et al., 2014) and bacterial growth (Sinn et al., 2011). Their findings
showed that a magnetic bead’s critical slipping rate is proportional to
fluid viscosity and bead volume but inversely proportional to
magnetic field strength, indicating that AMBRs can be used in
measuring multiple physical properties. Our proposed setup can
be further miniaturized and simplified owing to the compact
magnetic device after the rotating magnet is replaced with a
nonmoving electromagnet. When magnetic polarity is changed (S
and N poles), MJPs rotate back and forth in alignment with the
magnetic field. However, MJPs tend to deviate from the field at a
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high driving frequency, dubbed cutoff frequency, which is a function
of fluid viscosity, volume of the bead, and magnetic field strength. By
controlling any two parameters, a third unknown parameter can be
easily obtained. Theoretical predictions and experimental
measurements related to these three parameters have been
investigated, and optimal conditions have been determined.
Theoretical predictions and experimental measurements showed
similar trends. A minimum detected concentration of 2.9 × 109

particles mL−1 was reached for sEVs. The promising MJP system
offers insight into revolutionized POCT as a novel approach
targeting sEVs that can be performed at any time as a preventive
measure. Realization of this approach is quite flexible since only
MJPs and an electromagnet need to be deployed. Combined with
standard check-ups, such as imaging tests (X-ray, ultrasound, CT,
MRI scans), the MJP system, when modified with appropriate
disease markers, can provide deeper insights for high-risk
patients, enhancing early intervention and personalized care.

2 Materials and methods

2.1 Fabrication and characterizations
of MJPs

MJPs were fabricated by following our previously developed
protocol (Chen and Chuang, 2020). To synthesize these MJPs, half
of each 1-μm fluorescent PS particles (F13083, ThermoFisher, MA,
United States) was coated with metallic layers. This asymmetric
coating caused the MJPs to exhibit blinking fluorescence when
suspended in a medium. In contrast to our prior plain Janus
particles, nickel was incorporated into the metallic coating to
enable responsiveness to external magnetic fields. The metallic
layers were sequentially deposited on the PS particles in the
following order (innermost to outermost): 5-nm silver, 15-nm
nickel, and 5-nm gold. The innermost silver coating served as an
adhesion between the particle surface and the above metals. The
middle nickel coating functioned as a magnetic source in response to
an external magnetic field. The outermost gold coating was used to
facilitate subsequent functionalization.

For the coating of the fluorescent particles, 1-μm fluorescent PS
particles were first suspended in a 95% ethanol solution and then air-
dried on a hydrophobic glass slide, which was coated with 1% Cytop
(CTL-109AE, AGC Chemicals, Japan; diluted in solvent CT-
SOLV100E). A monolayer of the PS particles was evenly spread
over the surface of the glass slide after rapid evaporation. The glass
slide was then sent to an evaporator for sequential coatings with
silver (5 nm), nickel (15 nm), and gold (5 nm). The inner silver
coating served as an adhesion layer, the middle nickel coating was
used for magnetic attraction, and the outer gold coating was used to
facilitate antibody conjugation. Subsequently, the coated glass slide
was immersed in a Petri dish filled with phosphate buffered saline
(PBS) buffer (IB3011, OmicsBio, Taiwan). MJPs were collected by
placing the whole Petri dish in a water bath, sonicated for 3 h, and
transferred to a water solution containing 1% (v/v) Tween 20
(P5927, Sigma-Aldrich, MO, United States). For purification,
two-step filtration was conducted using membranes with 5 and
3 μm pores. After intensive purification, most gold debris and
impurities were effectively removed (Supplementary Figure S1).

The final suspension was stored at 4°C for later surface
modifications.

Purified MJPs were examined with SEM (Helios G4,
ThermoFisher Scientific, MA, United States). In the SEM images
of secondary electrons (Supplementary Figure S2A) and
backscattered electrons (Supplementary Figure S2B), the MJPs
were half coated as intended. Element analysis was performed on
the MJPs with an energy dispersive X-ray spectrometer
(Supplementary Figures S2C,D). The composition of the coatings,
including silver, nickel, and gold, were basically consistent with our
design. The results confirmed that the MJPs can serve as biosensors
for detecting small molecules.

2.2 Preparation of isolated sEVs

The oral cancer cell line OECM-1 was provided by Professor
Wen-Tai Chiu at the Department of Biomedical Engineering of
National Cheng Kung University, Taiwan. The cells were cultured in
15 cm cell culture dishes with RPMI 1640 medium (Simply
Biologics, GeneDireX Inc., United States) supplemented with 10%
fetal bovine serum (FBS; 16000044, ThermoFisher, MA,
United States). Once the cells reached approximately 80%
confluence, they were washed thrice with 1× PBS. The culture
was then continued in fresh RPMI 1640 medium without FBS for
at least 24 h. Then, the conditioned medium was collected for
subsequent exosome isolation through ultracentrifugation
(Supplementary Figure S3).

One hundred mL of the collected conditioned medium
mentioned above was preprocessed by centrifugation at 500 × g
for 10 min to remove cells and large cell debris. Then, filtration with
a 0.22 µm filter (Simply Biologics, GeneDireX Inc., United States)
was performed. The filtrate was transferred to sterilized
polycarbonate ultracentrifuge tubes and set to spin in the
precooled rotor of an ultracentrifuge (Beckman Optima XPN-90)
at 100,000 × g for 4 h at 4°C. The initial sEV pellet was washed and
resuspended in 30 mL of ice-cold sterile 1 × PBS before the second
round of centrifugation at 100,000 × g for 2 h at 4°C. Final sEV
isolates were harvested into a 1.5 mL microcentrifuge tube and kept
in −80°C for preservation. The size distribution and concentration of
the sEVs were assessed in triplicate using nanoparticle tracking
analysis (NTA; NanoSight LM10-HS, Malvern Instruments,
United Kingdom).

2.3 Functionalization of MJP
immunocomplexes

The CD63 antibody (GTX41878, Genetex, Taiwan) was
functionalized on the gold-coated half of the 1-μm MJP with a
gold conjugation kit (40 nm, 20 OD, Abcam, United Kingdom).
Stock MJPs were dispersed evenly by ultrasonication for 20 s and
thoroughly vortex before the experiment. First, 2.4 μL of stock
antibody (0.5 μg mL−1) was diluted to 0.1 μg mL−1 with 9.6 μL of
gold antibody diluent to yield a total volume of 12 μL. Next, 42 μL of
a gold reaction buffer was added, and 45 μL of the mixture was
subsequently incubated with 20 μL of MJPs on a shaker at 800 rpm
and room temperature for 15 min. To stop the reaction, 5 μL of a
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gold quencher buffer was gently mixed with the anti-CD63-
functionalized MJP solution. After overnight storage at 4°C, the
unbound antibodies were washed away thrice with 1 × PBS and
centrifuged for 6 min at 13,500 rpm and room temperature.

For the detection of sEVs, stock sEV isolates were prepared
using the method described in Section 2.2. Ultimately, three
concentrations of sEV isolates were prepared with 1 × PBS:
undiluted (original concentration), tenfold dilution, and 100-fold
dilution. PBS and 0.1% bovine serum albumin (BSA; A7030, Sigma-
Aldrich, MO, United States) served as the control references for
validation and specificity of binding, respectively. To form
immunocomplexes between functionalized MJPs and sEVs, 20 μL
of the conjugated MJP solution was added to 10 μL of each sample.
The mixture was incubated on a shaker (800 rpm, RT) for 1 h.
Finally, a washing step with 1 × PBS was repeated thrice to eliminate
uncaptured vesicles.

To verify the presence of the MJP-sEV immunocomplex
formation, a mock colocalization of 1-μm MJP-sEV-200-nm
green fluorescent PS bead immunocomplex was employed. To
this end, anti-CD81 IgG (GTX31381, Genetex, Taiwan) was first
conjugated to the 200-nm fluorescent PS beads (FluoSpheres
carboxylate-modified microspheres, F8811, ThermoFisher, MA,
United States) using EDC/NHS chemistry. Subsequently, 20 μL
of the anti-CD81 IgG-conjugated green PS particle solution was
added to 10 μL of the MJP-sEV mixture. Incubation and washing
steps identical to those used in the previous MJP-sEV processing
were then performed to form the final MJP-sEV-fluorescent PS bead
immunocomplex.

2.4Mechanism and operating strategy of the
MJP biosensing system

The mechanism of MJP manipulation is illustrated in
Figure 1A. The magnetic polarity switching of the
electromagnet was implemented using an electrical current
with a square waveform and 50% duty cycle. The major
advantages of a nonmoving magnetic field over their prior
counterparts (Sinn et al., 2011; Li et al., 2014) are reduced
mechanical vibration and capability to manipulate MJPs at
high driving frequencies (Figure 1B). The maximum
rotational angle of MJPs in a cycle can be expressed as follows
(Sinn et al., 2011):

Δθmax � χ″VmB2

κηf VHμ0
, Δθmax ≤ π( ), (1)

Where χ″ is the imaginary part of magnetic susceptibility (which
is magnetic content dependent), Vm is the volume of the bead’s
magnetic content (which is proportional to the surface area of
the bead), B is the magnetic field strength, μ0 is the permeability
of free space, η is the fluid viscosity, f is the driving frequency, VH

is the hydrodynamic volume of the MJP, and κ is the shape factor
of the bead (κ = 6 for a sphere). The maximum rotational angle
Δθmax with respect to the driving frequency decreases as the fluid
viscosity or the effective volume of the MJP escalates. Increase in
drag compromises MJPs’ capability to follow the external
magnetic field. Notably, the MJPs’ effective volume increased

by captured sEVs slows down the MJPs. However, the MJPs’
effective volume increased by the growth of core PS particles
intensifies the magnetic effect, enhancing tracking capability.
Thus, the cutoff frequency, that is, the critical driving frequency
that MJPs stop to follow the external magnetic field, can be a
good indicator of angular change in beads. The blinking signal
measured from each rotating MJP is expressed in terms of
fluorescent intensity. The time-dependent intensity is
formulated as follows:

I � A
d2
mag

4
Δθmax sin 2πft +∅( ) + 1[ ], (2)

Where dmag is the core particle diameter, ∅ is the initial phase,
and A is a constant of the amplitude. The intensity progressively
decreased with the value of Δθmax, which is a function of the
particle’s magnetic moment, magnetic field strength, fluid
viscosity, driving frequency, and effective volume of MJPs.
For instance, I decreases rapidly at a driving frequency f scan
as fluid viscosity increases. Notably, the magnetic content is
subject to dmag. dp, which is here defined as the overall particle
diameter, is equivalent to dmag when no external objects attach to
the MJPs (Figure 1A). To quantify the blinking signal, the
wavelet algorithm was employed. The wavelet algorithm
transformed a time-dependent signal waveform into a
frequency spectrum plot. Subsequently, a relationship between
spectrum intensity and driving frequency was obtained from the
frequency spectrum. Signal intensity (SI) is defined as a ratio of
the maximum intensity at the driving frequency to the lowest
background noise level in a frequency spectrum plot. The final
cutoff frequency is determined when the signal becomes
undetectable. The ideal SI threshold is theoretically set to 1,
but in practice, background noise and resolution limits typically
elevate the actual SI threshold. According to Equation 2, the
cutoff frequency is strongly associated with the particle’s
magnetic moment, magnetic field strength, fluid viscosity,
driving frequency, and effective volume of the MJP. The
subtle particle or fluid conditions can be quantitatively
obtained by judging the cutoff frequency of MJPs with the
proposed electromagnet system.

For measurement (Figure 1C), functionalized MJPs were first
mixed with a sample solution to be detected. Next, 2 μL of MJP
suspension was pipetted to a glass slide, and then a cover glass was
placed on top of the glass slide. The cover glass and glass slide were
separated by a spacer composed of three layers of 3 M tapes stacked
up to 165 μm. An electromagnet (ZYE1-P20/15, Keyes, China) was
positioned above the suspension with a fixed distance to impose a
decent magnetic field over the MJPs. The electromagnet was driven
by a periodic function generator (GFG-3015, GW INSTEK, Taiwan)
amplified by a power amplifier (Model 234, TEGAM, OH,
United States), and the driving frequency was sequentially
modulated from 3 Hz to 22 Hz. The glass substrate was placed
on an inverted epifluorescent microscope (IX73, Olympus, Japan),
and the MJPs were visualized with a 20× objective (0.45 NA,
Olympus, Japan) and a fluorescent filter cube (Ex:530-550/DM:
570/EM:575; U-FF, Olympus, Japan). Subsequently, particle images
were recorded for 10 s with a fast digital camera (BFS-U3-23S3C-C,
FLIR, Canada) at a frame rate of 80 fps.
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FIGURE 1
(A) The mechanism of MJP manipulation with an electromagnet. The rotation of MJP is modulated by an electromagnet with its periodically
switching polarity. Periodic blinking signal is thenmeasured from the rotating MJP. (B) Serial images exhibit four major phases of an MJP under one cycle
of a periodic signal. The four phases correspond to the sinusoidal signal shown in (A). (C) Schematic of an MJP platform’s experimental setup. The top
exploded diagrams exhibit the sample loading and deployment of sandwiched glass slides and electromagnet.

FIGURE 2
Theoretical predictions with simulated images. (A) An example of wavelet transform scalogram (top row) and frequency spectrum (bottom row)
derived from the simulated signal waveforms (middle row) from 3 Hz to 22 Hz with 80 fps. (B) Scanned signal intensities (SIs) at three different fluid
viscosity (η = 1, 2, and 3 cP) and their cutoff frequencies (threshold = 50). (C) Scanned SIs of threemagnetic field strength (B = 0.01, 0.015, and 0.03 T) and
their cutoff frequencies (threshold = 50). (D) Scanned SIs of three different core particle diameters (dmag= 1, 2, and 3 μm) and their cutoff frequencies
(threshold = 50). Noted that the overall particle diameter dp is identical to dmag in this case. (E) Scanned SIs of three different overall particle diameters
(dp = 1, 1.3, and 1.5 μm) with their PS core fixed at dmag = 1 μm and their cutoff frequencies (threshold = 50).
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3 Results and discussion

3.1 Fluid viscosity, magnetic field strength,
and particle diameter changes predicted
with simulated images

The performance of the theoretical behavior of the MJPs was
investigated. Changes in magnetic field strength, fluid viscosity, and
effective volume of theMJPs after the capturing of sEVs or growth of
core PS particles were individually investigated using the algorithms
expressed in Equations 1, 2. Notably, someMJPs may not respond to
an external magnetic field because of microfabrication defects.
Therefore, a driving frequency of 1 Hz was used before each
measurement for the screening of responsive MJPs. The MJPs
without a 1 Hz frequency signature were discarded. This

screening step can save processing time and increase accuracy.
Moreover, a synthetic waveform composed of a low frequency
fixed at 1 Hz and a high frequency varying from 3 Hz to 22 Hz
was employed under simulation and experimental conditions. In
the theoretical evaluation, a series of synthetic waveforms
(middle row, Figure 2A) were generated according to
Equation 2 using MATLAB for simulating an anticipated
condition (Vm, χ″, B, η, VH). For each driving frequency, the
waveform consists of a 1-Hz sinusoidal wave and a high-
frequency sinusoidal wave identical to the driving frequency.
Each sinusoidal wave lasts for 5 s, resulting in a total duration of
10 s for the synthetic waveform. Two-dimensional (2D) wavelet
transform scalograms were therefore derived from the
abovementioned synthetic waveforms after being analyzed
with the wavelet algorithm (top row, Figure 2A). Two bars

FIGURE 3
(A) Wavelet transform scalograms, signal waveforms, and frequency spectra of representative MJPs. Particles I–IV refer to unresponsive MJPs and
particles V–VI refer to responsive MJPs. (B-I) Driving frequency scans of screened MJPs (V–VI) in blue color and unscreened MJPs (I–VI) in black color
from 3Hz to 22Hz. With increased randombackground noise, the unscreenedMJPs show higher background levels and less significant frequency peaks.
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corresponding to the two driving frequencies can be clearly
observed in all the wavelet diagrams. When the low-frequency
bar was fixed at 1 Hz, the high-frequency bar increased as the
driving frequency increased from 3 Hz to 22 Hz. The total time
required for the operation was approximately 90 s. By summing
up the wavelet transform scalograms over time, a 2D plot
showing the frequency spectrum with respect to the driving
frequency was obtained (bottom row, Figure 2A). The SI
decreased with driving frequency, as predicted by Equation 1.
In addition, the SI declination rate tended to vary with
environmental conditions, such as the magnetic moment of
the MJPs, magnetic field strength, fluid viscosity, and effective
volume of the MJPs, as stated in Equation 2. For validation,
800 simulated images with a frame rate of 80 fps according to
Equation 1 were generated for each condition. The cutoff SI was
empirically set at 50 (i.e., the bar at the higher driving frequency
became unrecognizable in the wavelet diagram).

Evaluation was performed at viscosity (η) of 3, 2, and 1 cP,
which correspond to cutoff frequencies of 12.2, 14.3, and 16.8 Hz,
respectively (Figure 2B). The increased viscosity appeared to
impede the MJPs from following the magnetic field with high

drag. A high magnetic field strength or a high particle magnetic
moment enabled the MJPs to follow the magnetic field,
increasing the cutoff frequency. As a result, at tested magnetic
field strength (B) of 0.01, 0.02, and 0.03 T, the cutoff frequencies
were 16.8, 17.8, and 18.7 Hz, respectively (Figure 2C). On
particle diameter factor, two circumstances were investigated.
The first case was MJP diameter change due to the growth core PS
particles, and the second case was MJP diameter change due to
the attachment of targets to the beads’ surfaces. In the first case,
the magnetic content (Ni) increased with the growth of the core
PS particles. As a result, Vm and χ″ increased with nickel coating
area (∝d2mag). Therefore, the cutoff frequency increased because
the SI increased with MJP size (Figure 2D). By contrast, in the
second case, the magnetic content remained the same even
though the overall volume of the MJP increased (Figure 2E).
The increased MJP diameter mainly originated from the attached
targets. As a result, the cutoff frequency decreased considerably
because the mobility of the MJPs was impeded by drag. The
results indicated that the MJPs can be used as biosensors for the
dose-dependent monitoring of different environmental
conditions.

FIGURE 4
Effect of MJPs controlled under a driving frequency of 0 Hz. (A–C) Wavelet transform scalogram, signal waveform, and frequency spectrum of a
representative MJP are exhibited. (D) Ensemble frequency spectra (n = 42 particles). No signal peak except the low-frequency pedestal is observed in the
plot. (E) Effects of free-suspending MJPs measured from two independent groups. Wavelet transform scalograms (1st row), signal waveforms (2nd row),
and frequency spectra (3rd row) of two groups of representative MJPs are exhibited. Ensemble frequency spectra over 65 MJPs per group are
depicted. Significant peaks (left: 1.42 Hz; right: 1.63 Hz in the 4th row) are explicitly observed.
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3.2 Effects of screened and unscreened MJP
blinking signals

The MJPs were carefully sorted by size before they were used
for biosensing applications. The procedure is detailed in the
Methods and Materials section. However, some defective MJPs,
such as those unresponsive to the external magnetic field, may
have remained in the suspension. The likely causes were coating
failure, insufficient or excessive metal coverage, and presence of
trimers or dimers. To prevent interferences from defective MJPs,
a signature of 1 Hz driving frequency was incorporated during
manipulation for the sorting of responsive MJPs out from the
total particle population. The performance of the screened and
unscreened MJP blinking signals was evaluated using the images
of 1-μm MJPs obtained at an input voltage of 10 Vpp and an
electromagnet, which was 3.6 cm away from the glass slide, at
80 Hz for 10 s under a 20× objective. A total of 127 particles were
tracked and analyzed. Some representative images at a driving
frequency of 10 Hz, including their wavelet transform
scalograms, signal waveforms, and frequency spectra, are
depicted in Figure 3A. Images I–IV represent unresponsive
MJPs, whereas images V–VI stand for responsive MJPs. The
signal may be unrecognizable without screening (i.e., images
I–VI) because it is often mixed with noise. Conversely, a signal
peak corresponding to the driving frequency can be easily
identified in screened cases (i.e., images V–VI). Based on the
principle, driving frequency scanning was conducted from 3Hz to
22 Hz. The frequency spectra of the screened and unscreened
signals indicated that screened MJPs can show more consistent
and stable spectra than the unscreened MJPs (Figures 3B–I). For
example, the peak at 10 Hz from the unscreened MJPs nearly
disappeared (Figure 3E). However, a peak obtained from the
screened MJPs was easily observed. Hence, the screening
procedure can effectively mitigate uncertainty in the results.

Apart from MJP screening, responsive MJPs were evaluated for
their susceptibility to diffusion given that Brownian motion and
active magnetic manipulation likely have overlapping signals at low
frequencies (~1–2 Hz). For clarification, 1-μmMJPs were trapped in
a medium by an electromagnet at 0 Hz, and their blinking signals
were recorded for 15 s. No discernible frequency bands were
observed in the wavelet transform scalogram (Figure 4A),
implying the static state of the MJPs. Similarly, the
corresponding waveform of the blinking signals (Figure 4B) and
frequency spectrum (Figure 4C) showed insignificant and random
variations, compared with their counterparts at other driving
frequencies (Figure 3). The ensemble frequency spectrum of the
overall particle images showed no major peaks between 1 and 25 Hz
(Figure 4D). Conversely, the same MJPs appeared to have restored
Brownian motion right after the electromagnet was switched off.
Some representative wavelet transform scalograms, waveforms, and
frequency spectra are depicted in Figure 4E. The peak frequencies
measured from different MJPs ranged roughly between 1 and 2 Hz.
Ensemble frequency spectra from two separate groups were
estimated. The results showed that their individual peak
frequencies fell at 1.42 and 1.63 Hz, implying that the
electromagnet was necessary to the manipulation of MJPs and
prevented blinking signals from undergoing serious cross talks
with background Brownian motion.

3.3 Experimental evaluations of the cutoff
frequencies

The MJP-enabled biosensing capabilities predicted by the
abovementioned theory expressed in Equations 1, 2 were
investigated through proof-of-concept experiments on particle
diameter, input voltage, distance, and fluid viscosity. Regarding
particle diameter, the cutoff frequency increased with core PS

FIGURE 5
Cutoff frequencies in response to particle diameter, input voltage, distance, and fluid viscosity. (A,B) fcutoff = 7.7, 12.4, and 22.6 Hz corresponding to
the core particle diameters dp = dmag = 1, 2, and 3 μm, respectively. (C,D) fcutoff = 7.7 and 13.5 Hz corresponding to the input voltages Vinput = 10 and
20 Vpp, respectively with all their particle diameters fixed at dp =dmag= 1 μm. (E,F) fcutoff = 7.7 and 6.1 Hz corresponding to the distances H = 2.7, 3.6 cm,
respectively with all their particle diameters fixed at dp=dmag= 1 μm. (G,H) fcutoff= 12.4, 10.4, 8.6, and 7.3 Hz corresponding to the fluid viscosities η=
0.98, 1.52, 2.31, and 7.06 cP, respectively with all their particle diameters fixed at dp =dmag= 2 μm.
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particle diameter, consistent with the simulation results (Figures
5A,B; detailed data shown in Supplementary Figures S4, S5).
Notably, a large MJP contributed to high m and χ″ with

increased magnetic content. Therefore, the change in intensity
was proportional to particle diameter. Based on the relationship,
large MJPs led to a higher cutoff frequency. While the ideal SI

FIGURE 6
(A)NTA analysis for the size distribution of the isolated sEVs. (B) Schematic of the exosome detection. The 0.2 µm green fluorescent PS beads were
used to confirm the colocalization configuration. (C) Microscopic image of the successful colocalized MJP and PS beads. (D) The middle MJP was
reconfirmed by switching to a green filter cube (Ex:530-550/DM:570/EM:575). (E) Signal intensities scanned over a range of frequencies from 3Hz to
22 Hz for different medium conditions. (F) fcutoff= 7.7, 6.8, 6.0, 4.9, and 4.0 Hz corresponded to themedium conditions PBS, BSA, 100× dilution, 10×
dilution, and original isolated exosomes, respectively. The cutoff frequency decreases linearly for the last three exosome cases as their concentration
logarithmically increases.
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threshold is theoretically defined as 1, herein the SI threshold was
empirically determined to be 2.5 for all experimental measurements
due to background noise and resolution limits. Regarding voltage
and distance, both cases altered the magnetic field strength. Thus, a
high voltage (Figures 5C,D; detailed data shown in Supplementary
Figures S4, S6) or a short distance (Figures 5E,F; detailed data shown
in Supplementary Figures S4, S7) promoted the SI, resulting in a
high cutoff frequency and vice versa. According to Equation 1, the SI
decreases with the fluid viscosity. The fluid viscosity was adjusted by
mixing deionized (DI) water and glycerol. Four different ratios of
glycerol solutions from low to high were prepared to yield viscosity
of 0.98, 1.52, 2.31, and 7.06 cP, and the cutoff frequencies from low
to high reached 12.4, 10.4, 8.6, and 7.3 Hz, respectively. The
experimental data agreed well with the predicted trend
(Figure 2B), showing that a high viscosity can slow down cutoff
frequency because of high drag (Figures 5G,H; detailed data shown
in Supplementary Figures S4, S8). The cutoff frequency represents a
statistical result derived from the ensemble average of multiple MJPs
analyzed in the recorded particle image. The numbers of responsive
MJPs counted are detailed in Supplementary Figures S4–S8.
Repeatability was evaluated alongside other tests. Six independent
measurements of 2-µm plain MJPs suspended in DI water (η =
0.98 cP) yielded a cutoff frequency of 12.9 ± 0.5 Hz Supplementary
Figure S9, corresponding to a 3.87% variation.

3.4 Validation of the MJP system with the
sEV detection

After the establishment of the proposed MJP system, a proof-of-
concept validation was conducted to demonstrate practicability. Given
that the sEV size was similar to our MJP and effective in promoting
considerable volumetric change, the sEV isolates obtained from the cell
culture medium of the OECM-1 cell line were employed. The NTA
report showed that the major peak of the sEV size distribution was
169.5 ± 3.4 nm and the concentration was 2.9 × 1011 particles mL−1

(Figure 6A). The MJP-sEV immunocomplex was verified using a mock
immunocomplex configuredwith a 1-μmMJP, sEVs, and 200-nmgreen
fluorescent PS beads (Figure 6B). The successful formation of the
anticipated immunocomplex (Figure 6C) was visualized using the
green fluorescent PS particles. Under a green filter, the middle MJP
of the same immunocomplex in Figure 6Cwas reconfirmed (Figure 6D).
Notably, the fluorescent images did not reflect the physical size of the
particles because of optical diffraction. Dose-dependent effects of
OECM-1-secreted sEVs on the MJP system were investigated. Three
concentrations were prepared for the test after tenfold serial dilution
with the 1× PBS: undiluted (original concentration), tenfold dilution,
and 100-fold dilution. PBS served as a control, whereas 0.1% BSA was
used in determining non-specificity. The result showed that the cutoff
frequency decreased with the sEV concentration (Figures 6E, F). When
the sEV solutions were diluted one-, ten-, and 100-fold, the cutoff
frequencies were 4.0, 4.9, and 6.0Hz, respectively, which remained lower
than the cutoff frequency in the control (PBS buffer, fcutoff = 7.7 Hz). The
BSA group showed a lower cutoff frequency (fcutoff = 6.8 Hz) than the
control (fcutoff = 7.7 Hz) and thus likely had higher viscosity than PBS
buffer. Notably, the specificity between the BSA and all other sEV
groups was distinguishable. Considering the best detectable
concentration was observed in the 100-fold dilution group, the

minimal detected concentration for sEVs in the current study was
eventually determined to be 2.9 × 109 particles mL−1.

4 Conclusion

sEVs have emerged as potential cancer biomarkers in recent
years. However, their small physical size, vulnerability, and trace
amounts in small samples pose considerable barriers to POCT
diagnosis. To address the challenges, we developed an active MJP
system to detect the presence of cancer cell OECM-1-secreted sEVs,
which carry specific surface biomarkers. For characterization, the
newly developed MJP system was evaluated theoretically and
experimentally. To improve the signal-to-noise ratio, a 1 Hz
driving frequency was employed in the measurement, and
nonresponsive MJPs were excluded. The result showed that the
images acquired from sorted particles tended to provide consistent
data for analysis. Theoretically, the predicted cutoff frequency
increased with increasing magnetic moment, magnetic field
strength, and core particle size, and decreasing fluid viscosity.
Experimentally, the measured cutoff frequencies showed good
agreement with the theoretical predictions. Particle size may vary
in two ways. When the core PS particle grows, the cutoff frequency
increases owing to increase in magnetic content. However, when the
MJP diameter increases because of captured sEVs, the cutoff
frequency decreases even when the core PS particle remains. The
anticipated immunocomplex was successfully visualized with
fluorescent particles and colocalized sEVs. In addition, dose-
dependent detection and specificity were investigated. The
minimum detected concentration of sEVs reached 2.9 × 109

particles mL−1, and the specificity of the sEV markers, including
CD63, was acceptable. Based on this proof-of-concept evidence,
follow-up studies expanding on various sEVs surface biomarkers,
cancer cell lines, and human clinical samples will be conducted in
replicates to confirm the practical feasibility and identify the LoD of
the MJP system. The primary limitation of the current MJP
technique stems from its microfabrication challenges. While
smaller MJPs could enhance sensitivity, the current fabrication
process restricts MJP sizes to larger than 1 μm due to low yields
for sub-micron MJPs. Additionally, the hemispherical coating of
Au/Ni/Ag varies between MJPs, potentially causing non-uniformity
in the blinking signal. Addressing these two concerns could further
improve the reported minimum detected concentration in our
study, enhancing the method’s overall performance, efficiency,
and sensitivity. Overall, this study presents a promising
diagnostic tool that may be applied to future POCT applications.
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