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Introduction: Electromyographic (EMG) activity monitoring constitutes the core
of foundational research for the application of EMG signals in medical
diagnostics, sports science, and human-machine interaction. However, the
current research trend predominantly focuses on the recognition
technologies of EMG signals, while the techniques for accurately detecting
the onset and offset points of muscle activity—the change-point detection of
EMG signals—have not received the necessary attention and thorough
investigation.

Methods: A novel method for EMG signal activity detection based on a variant
version of the Teager-Kaiser energy operator (TKEO), namely the multi-
resolution energy operator (MTEO), is proposed. Two strategies for
constructing EMG activity monitors using MTEO are presented. One is a
threshold-based detector (MEOTD) relying on signal baseline segment
information, and the other is a detector mimicking the structure of a
convolutional neural network (MEONND) without requiring prior knowledge of
the signal. A semi-subjective evaluation model based on the Analytic Hierarchy
Process (AHP) is used to evaluate the performance of the monitors on real
EMG data.

Results and discussion: The results show that the MTEO has stronger
preprocessing ability for EMG signals, and that the MTEO-based monitors are
more reliable and accurate. In particular, the MEONND can achieve both
computational efficiency and accuracy simultaneously. The proposed method
for EMG signal activity detection improves both detection quality and efficiency
without increasing algorithm complexity. This method can be applied to various
fields that involve EMG signal analysis, such as ergonomics, human-machine
interaction, and biomedical engineering.
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1 Introduction

Electromyography (EMG) signals contain abundant human motion information and
are commonly used as a source of information for various applications, such as human-
computer interaction (Chen et al., 2021; Chopra, 2021), rehabilitation robots (Yang et al.,
2017), mechanical exoskeletons (Vigotsky et al., 2018; Wang et al., 2019), sports training
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(Abe et al., 2009), rehabilitation assessment (Zhao et al., 2018),
medical diagnosis (Badani et al., 2017), etc. There are two main
research directions for EMG signals: localization and recognition.
Localization is the extraction of valid motion temporal information
by pinpointing the onset and offset times of muscular activity.
Recognition is the classification of specific movements to obtain
human movement gestures. However, these two research directions
are not mutually exclusive. For example, a combination of multiple
location-based On-Off control detectors can also be used for action
recognition (Tamura et al., 2010; Yamashita et al., 2012);
alternatively, the EMG signal could be segmented into activity
segments first and then perform classification only on the activity
segments in order to enhance the accuracy of the classification
algorithm and reduce the consumption of computational resources
(Di Nardo et al., 2022). In this paper, we focus on the localization
techniques for EMG signal activity detection.

The EMG signal model can be generally simplified as the
superposition of noisy signal (baseline segment) and EMG signal
(activity segment), so the EMG signal activity detection can be
viewed as a source separation problem. Before deep learning was
applied to source separation, the Time-Frequency Domain method
based on Short-time Fourier Transform (STFT) was the main
approach. However, STFT requires a longer window length to
ensure a certain frequency domain resolution, which
compromises its real-time performance. Deep learning detectors
based on the time domain can address the real-time issue well, but
they face the challenges of too many parameters and insufficient
training data in the training stage. Especially, human bio-signals are
very private and unique, and it is harder to obtain such labeled data.
Therefore, even though the pattern recognition method represented
by deep learning has good detection performance in experimental
scenarios, such as recurrent neural networks (RNN) (Akef
Khowailed and Abotabl, 2019) and long short-term memory
(LSTM) (Ghislieri et al., 2021), it is still not ready for practical
application until the robustness of Few-shot learning is solved.
Recently published statistical methods–CUSUM (Jeske et al.,
2009), Profile Likelihood Maximization (PLM) (Selvan et al.,
2018), Sample Entropy (SE) (Zhang and Zhou, 2012), and
Bayesian changepoint analysis methodology (Tenan et al., 2017) -
are appealing alternatives. However, the performance of the monitor
depends heavily on the prior knowledge of distribution assumption,
probability density function selection, and parameter estimation.
Therefore, statistical-based monitors may fail when dealing with
different types of EMG signals (e.g., fast, slow, or maximum
voluntary contraction) if a wrong prior assumption is chosen
(Selvan et al., 2018).

Another common type of EMG activity monitor is the time-
domain-based thresholding method, especially the double-threshold
method. The threshold method does not require a large number of
learning samples and only needs a certain length of baseline
information for change-point detection of the signal. Because of
its computational simplicity and real-time performance, it is
preferred by relevant applications. However, it is also the single
model structure that makes the threshold methods less robust to
noise-containing signals and more sensitive to noise. Moreover, the
fixed threshold factor worsens this drawback, so that threshold-
based monitors are considered less reliable than those based on
statistics or pattern recognition.

It has been shown that a simple but well-configured detector can
match or even outperform many complex models in time-series
tasks such as change-point detection, outlier detection, or anomaly
detection (Elsayed et al., 2021). A prerequisite for a simple detector
to work well is to pre-process the signal to obtain more distinctive
signal features. Previous studies have shown that the Teager-Kaiser
energy operator (TKEO) can effectively enhance the performance of
EMG activity monitors, either by using the TKEO as a detector
(Xiaoyan and Aruin, 2005; Li et al., 2007; Crotty et al., 2021) or as a
signal conditioning technique (Solnik et al., 2008; 2010; Tenan et al.,
2017; Kaur et al., 2018; Selvan et al., 2018; Bengacemi et al., 2020;
Crotty et al., 2021). A key feature of the TKEO is that it can extract
the time-frequency information of signals through an extremely
narrow window containing only three samples (Chopra, 2021). Due
to the simplicity of the TKEO operation, threshold detectors with
the same low computational resource consumption properties are
usually combined to ensure high real-time performance of the
algorithms. However, the narrow ‘sight’ when processing the
signal makes the TKEO very susceptible to noise (Agarwal and
Gotman, 1999; Sa et al., 2002; Palmu et al., 2010; Wang et al., 2021;
Hamilton and Chitrapu, 1995), and the use of threshold detectors
aggravates this problem.

Actually, as a technique derived from speech signal processing,
the TKEO has developed several variants to address the noise-
sensitive problem. The aim of these variants is to reduce the false
alarm probability and detection bias of energy operator methods by
decreasing their sensitivity to noise, but this requires more
computational resources. Agarwal and Gotman (Agarwal and
Gotman, 1999) proposed an asymmetric variant of the TKEO
that segments electroencephalogram signals into piece-wise
stationary sections, based on Plotkin and Swamy‘s study (Plotkin
and Swamy, 1992). Kamath (Kamath, 2012) constructed a nonlinear
scatter plot for the TKEO of R-R interval series to detect congestive
heart failure. Benalcazar-Parra et al. (Benalcazar-Parra et al., 2019)
did not modify the TKEO, but they proposed a new TKEO-based
model for intrauterine pressure (IUP) estimation that optimizes the
clinical characteristics of IUP such as continuous pressure,
maximum pressure and tension by surface electronic
hysterogram (EHG), thus enabling non-invasive labor
monitoring. Among these variant versions of the TKEO, the
multi-resolution Teager-Kaiser energy operator (MTEO) has
demonstrated good performance in applications such as glottal
closure instants detection (Wu et al., 2017) and bearing fault
detection (Wang et al., 2021; Xu et al., 2021). However, few
studies have explored the use of MTEO for EMG activity
detection (Wang et al., 2022).

This paper presents two strategies for constructing EMG activity
monitors based on the MTEO–the traditional threshold detector
(MEOTD) that heavily relies on baseline segment information, and
the more robust and fast neural network-like detector (MEONND)
that does not require any prior knowledge about the signal. In
addition, a parameter tuning and performance evaluation model is
constructed by the Analytic Hierarchy Process (AHP) to address the
problem of overly subjective parameter selection. Compared to the
state-of-the-art monitors, the effectiveness of the MEOTD and
MEONND is highlighted.

The remainder of this paper is structured as follows. Section 2
provides a brief description of the background of the TKEO and
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MTEO. The details of the proposed monitors and the performance
assessment method are described in Section 3, while we also present
a model for parameter tuning. Section 4 verifies the improvement in
signal conditioning performance of the MTEO compared to the
TKEO and compares it with the state-of-the-art statistical-based and
pattern recognition monitors to highlight the effectiveness of the
MEOTD. Furthermore, by analyzing how the monitor performance
varies with the parameters, we attempt to explain the reasons for the
performance improvement. Finally, Section 5 draws some
conclusions.

2 Background of the TKEO and MTEO

In general, signal processing (e.g., speech signals, physiological
signals) is often simplified into a linear filter system, but EMG is
actually a non-linear signal. Teager revealed that the generation of a
speech signal is a non-linear process (Teager and Teager, 1990).
Following Teager’s work, Kaiser proposed a simple operator to
calculate the instantaneous “energy” of the signal and at the same
time, the nonlinearity of the signal is taken into account (Kaiser, 1990).

According to Simple Harmonic Motion (SHM), the total energy
of the system can be expressed as the sum of kinetic energy and
potential energy (Equation 1):

E � 1
2
kx2 + 1

2
mx2 (1)

where k represents the spring constant andm represents the motion
of a mass. According to the law of conservation of mechanical
energy, we can obtain Equation 2:

E � 1
2
kA2 (2)

The symbol A comes from the general solution of the simple
harmonic motion given by x(t) � Acos(ωt + ϕ) where A is the
amplitude, ϕ is the phase angle and ω is the angular frequency. For a
given spring oscillator, the angular frequency is only related to its
spring constant and mass, and the formula is as Equation 3:

ω �
��
k
m

√
0k � ω2m (3)

substituting for k and solving, we obtain:

E � 1
2
ω2mA2 (4)

Therefore, as shown in Formula 4, the energy E is proportional
to ω2 and A2, which can be expressed as Equation 5:

E∝ω2A2 (5)
Thus the energy of a signal is proportional not only to the square

of the amplitude but also to the square of the frequency (Kaiser,
1990). Subsequently, Kaiser gave the relationship between energy
and discrete sampling points (Equation 6):

En � x2n − xn+1xn−1 � A2 sin 2 ω( ) ≈ ω2A2 (6)

Where En is the output of the algorithm and represents the
energy of the n th sample point, and xn is the value of the current

sample point. Note that a more general representation of En is
Ψ[x(n)], that is, Ψ[x(n)] � x2

n − xn+1xn−1 is the most common
formula for the TKEO in the discrete domain. Kaiser explained
the relationship shown in Equation 6 by measuring the ‘energy’ of
the signal by the square of the frequency and the square of the
amplitude. Furthermore, some researchers have also interpreted
ω2A2 as a frequency-weighted energy (FWE) (Agarwal et al.,
1998; O’Toole et al., 2014). From this point of view, the signal
‘energy’ obtained by the TKEO is not only low weighted for low
frequency, but also high weighted for high frequency. This makes the
TKEO an ideal method of signal conditioning, as it reduces the
background noise while strengthening active segment signals, which
facilitates a more accurate determination of EMG change-point. In
fact, due to the above-mentioned properties, the noise present in the
baseline segment is also amplified, making the TKEO very sensitive
to noise (Agarwal and Gotman, 1999; Sa et al., 2002; Palmu et al.,
2010; Wang et al., 2021). Currently, several modified versions of the
TKEO have been proposed to address the noise sensitivity problem.
Actually, the TKEO ontology can be viewed as a special case in a
more general framework of energy operators. This provides a
theoretical basis for the improvement of the TKEO.

Kumaresan et al. generalized the TKEO into a matrix framework
and interpreted this general framework through the determinant of
a Toplitz matrix containing the signal and its derivatives
(Kumaresan et al., 1992), and obtained the determinant of the
signal in the discrete domain of Equation 6 as Equation 7:

Ψd x n( )[ ] � x n[ ] x n − 1[ ]
x n + 1[ ] x n[ ]( ) (7)

The determinant is time-invariant for a signal with constant
frequency. If such matrix is generalized to an M × M Toeplitz
matrix by adding delayed x[n] up to x[n ± (M − 1)], the
determinant is also time-invariant but for signals with multi
frequency (Kumaresan et al., 1992; Boudraa and Salzenstein, 2018):

ΨM x n( )[ ] � x n[ ] x n − M − 1( )[ ]
x n + M − 1( )[ ] x n[ ]( ) (8)

As shown in Equation 8, it is a feasible improvement idea to
enhance the conditioning performance of the energy operator on the
signal by taking different values of M to strengthen different
frequency components of the signal and then fusing the
enhanced sub-signals by some method.

Based on the above theoretical basis, Choi (Choi and Kim, 2002;
Choi et al., 2006) et al. proposed a Multiresolution Teager energy
operator (MTEO). Firstly, MTEO obtains the k-TEO of the
corresponding sub-signals by taking multiple M values; then, a
maximum pooling technique is used to fuse the k-TEO of the sub-
signals, thus, improving the sensitivity of the algorithm to different
frequencies of the action potentials and maximizing the difference
between the baseline signals and the active segment signals. The
details are as follows:

Ψk x n( )[ ] � x2 n( ) − x n + k( )x n − k( ) (9)
p n( ) � max Ψ1 x n( )[ ],Ψ2 x n( )[ ], . . . ,Ψk x n( )[ ]( ). (10)

Specifically, Equation 9 is obtained by replacing M − 1 in
Equation 8 with k. Setting various scale factors k in Equation 9

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Wang et al. 10.3389/fbioe.2025.1565987

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1565987


can decompose multiple k-TEO corresponding to different
frequencies, and then all k-TEO are aggregated by Equation 10
to obtain the final ‘energy’ of the signal. In Equation 9, the scale
parameter k is a positive integer, measuring the time distance
between x(n ± k) and x(n). A larger k indicates a larger time
distance between the involved samples and the relevance between
the samples decreases. Equation 10 pools the sub-signals obtained
from Equation 9 through a pooling layer structure similar to the
common neural network algorithms, covering more local samples,
so theoretically, the MTEO can achieve stronger robustness and
adaptability.

In addition, according to previous studies (Palmu et al., 2010;
O’Toole et al., 2014; Wu et al., 2017) and the experimental
verification in this paper, full-wave rectification of the TKEO can
improve the detection performance of the monitor. The rectified
TKEO is defined as Equation 11:

Ψ| x n( )[ ] �| x2 n( ) − x n + 1( )x n − 1( )∣∣∣∣ ∣∣∣∣ (11)

But at present, and to the author’s knowledge, whether
rectification can improve the performance of the MTEO has not
been experimentally verified. Therefore, this paper will conduct
experimental verification on this issue. The rectified MTEO is
defined as Equation 12:

p
∣∣∣∣ n( ) � max| Ψ1 x n( )[ ] , . . . ,| Ψk x n( )[ ]| ||( ) (12)

For briefness, the rectified TKEO defined above is denoted as the
aTKEO and the rectified MTEO is denoted as aMTEO thereafter (a
is short for absolute). This paper will use the conditioning
performance of the TKEO on EMG signals as a reference to
quantitatively analyze the performance of the MTEO. At the
same time, the effectiveness of the proposed method is verified
by comparing the state-of-the-art methods.

3 Materials and methods

3.1 EMG acquisition

To obtain real EMG signals with labels, similar to the method
implemented by Chopra et al. (Chopra, 2021), this paper uses a
high-precision gaming steering wheel to locate the change-points of
EMG signals. Specifically, the experimental acquisition device was a
smart wearable recorder, ErgoLAB (ErgoLAB, 2025), with a
sampling frequency of 1,024 Hz, and it was enabled with only
50 Hz IDF filtering. The A/D converter chip of the gaming steering
wheel provided 16-bit resolution analog quantities, which could
acquire values between 0 and ±32,767, with positive and negative
values representing the quantization of the steering wheel’s positive
and negative motion amplitudes, respectively. Following approval
by the local university research ethics committee, twenty healthy
right-handed participants (10 males and 10 females, aged 26.5 ± 3.6)
participated in the experiment, completing one signal acquisition
per day from August 6 to 12, 2019, for a total duration of 6 days.
During each signal acquisition, electrodes were attached to the
extensor carpi radialis longus (ECRL) and flexor carpi radialis
(FCR) of the participants’ right forearms after skin treatment
(positive and negative electrode pairs were placed 1 cm apart at

the center of the muscle belly, and the reference electrode was placed
on the processus spinosus with a 1.8 cm diameter electrode sheet).
Participants operated the gaming steering wheel to the left and right
30 times in the most natural state, respectively, without limiting
speed or force, but they were asked to avoid additional movements.
The control signals collected by the gaming steering wheel can be
considered as human motion data, and the motion data were
synchronized with EMG data by time stamping to obtain
relatively accurate Onset and Offset labels. The raw data and the
acquisition device are shown in Figure 1.

It should be noted that, due to the antagonistic characteristics
of the muscles, the active muscles (spontaneous muscles) of the
right forearm are different when the steering wheel is operated to
the left or right, which results in half of the data acquired not
being accurately detected at the change-points of the active
segments and needing to be discarded. Therefore, a total of
7,200 active segments with onset and offset labels that could
be used for change-point detection were obtained in the
experiment.

3.2 Data processing

As a powerful pre-conditioning technology, the energy operator
can replace many computationally complex and time-consuming
conventional pre-processing methods (e.g., Butterworth filters,
Baseline detrending, etc.). However, the energy operator is very
sensitive to signal noise. This is because, as proposed by Vakman
et al. (Vakman, 1996), when extracting the amplitude and frequency
components of the signal with the energy operator, the amplitude
a(t) and frequency ω(t) represented by the energy operator are
related to the signal as follows:

a t( ) � Ψ u( )������
Ψ u′( )√ (13)

ω t( ) �
������
Ψ u′( )
Ψ u( )

√
(14)

where u is the signal. In view of (Equations 13, 14), ifΨ(u′) → 0 and
Ψ(u) → 1, then a condition occurs where the amplitude tends to
infinite while the frequency tends to zero. This phenomenon leads to
spikes in the signal processed by the energy operator that are difficult
to eliminate and affect the performance of the detector, which is
hardly expectable. Due to the large amplitude of the pulse spike, the
traditional sliding average filtering method cannot eliminate the
influence. In this paper, order statistics is used to solve this issue
(Bengacemi et al., 2020). Specifically, a median filter is used instead
of the traditional mean filter. The energy value Ej of the j th frame of
the median filter is expressed as Equation 15:

Ej � median {|Ψ n( )∣∣∣∣, j − 1( )L + 1≤ n≤ Lj}( ) (15)

The parameter L here represents the window length for
executing the order statistic. A detailed analysis of this parameter
is presented in Section 3.5. The above signal processing techniques
can effectively improve the robustness of the energy operator for
EMG activity monitoring. Figure 2 illustrates the construction
strategy of the EMG activity monitor in this paper.
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3.3 Detector

In general, detectors combined with the TKEO are threshold
methods. An important reason is the simple structure and low
complexity of the threshold-based detectors, which benefit them from
low detection latency (Yang et al., 2017). Since the effectiveness of the
MTEO for EMG activity monitoring has not been deeply developed, this
paper follows this idea of structural simplicity and low complexity, and
explores the traditional threshold-based detector (MEOTD), as well as
an alternative modified version (MEONND).

3.3.1 Double threshold detector
The effective operation of the threshold method is based on the

assumption that the noise variance (i.e., the signal baseline) is a priori
known. Therefore, before change-points detection, it is necessary to
ensure that the initial signal recording represents only noise (no
activity) so that it can be used for the noise level estimation, which is a
prerequisite for the standard threshold method. Signal feature
extraction is performed in the baseline segment through a sliding
window. The details are as follows: the selected baseline segment Lb is
divided into frames with Ls window length and s step size, then, the
mean value Mth

s and standard deviation Stdths of each frame are
calculated. Finally, the mean of allMth

s and Stdths is used to obtain the
final baseline segment information. Thus, the first threshold in this
paper can be formulated as Equation 16:

Th1 � 1

�Win num� ∑�Win num�

th�0
Mth

s + j *
1

�Win num� ∑�Win num�

th�0
Stdth

s

(16)
The parameter j here represents the threshold scaling factor

which allows us to control the tradeoff between false alarms and
detection probabilities. j is an important parameter and a detailed
analysis is presented in Section 4.Win num refers to the number of
sampling windows, each of which represents a certain number of
samples in the EMG signal.

A prominent advantage of the double-threshold method in
EMG activity monitoring is that the threshold parameters can be
set according to the physiological characteristics of the muscle
activity, thus avoiding secondary threshold estimates that
generate more parameter settings. There are two characteristics
of muscle contraction: firstly, there is a minimum contraction
duration from activation to rest (typically, ≥100 m); secondly,
there is a minimum contraction switching time after muscle rest
to the next muscle activation (typically, 25–30 m) (Yang et al., 2015;
Ghislieri et al., 2021). Therefore, a threshold Ton can be set for onset
point determination based on the first feature of the muscle
contraction; and a threshold Toff for offset point according to
the second. For each new analysis sampling point, apply Ton and
Toff to decide on the activity status of the considered sampling
point according to Equation 17:

FIGURE 1
The signal acquisition method and the raw EMG data with labels.

FIGURE 2
The construction strategy of the EMG activity monitor.
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FIGURE 3
The framework of MEOTD. The round angle rectangles represent the algorithm parameters, where the parameters marked with an asterisk need to
be tuned.
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If En: En+Ton[ ]〉Th1, En presents an EMGactivity
If Em: Em+Tof f[ ]<Th1 af ter En, Em presents no EMGactivity
else: No events detected

⎧⎪⎨⎪⎩
(17)

where En and Em represent the onset and offset of the active segment
identified by the EMG activity monitor, respectively, and [x: y]
denotes a continuous sampling segment from x to y. By
appropriately setting Ton and Toff, the false samples can be
effectively eliminated (Rashid et al., 2019). The framework of
MEOTD is shown in Figure 3.

3.3.2 Neural network-like detector
First, it is important to state that convolutional neural network

(CNN) models have powerful feature extraction and generalization
capabilities, which are the core advantages of neural network
algorithms. The feature extraction and generalization capabilities
of CNNmodels mainly stem from the key steps such as the design of
convolutional kernels, the training of hyperparameters, and the
application of regularization techniques (Zhang et al., 2017). The
method proposed in this paper fixes the neuron parameters, making
the model lose the adaptive learning ability for signal features.
Whether the fixed-parameter neural network algorithm still falls
into the category of neural networks is controversial, but it still
simulates information processing based on neurons and weighted
connections, and can also express the complex properties of
nonlinear functions. Therefore, this paper refers to it as a neural

network-like algorithm. The proposed neural network-like
algorithm transformed by the MTEO method is named
MEONND (Multi-resolution Energy Operator with Neural
Network Architecture Detector), and its mapping relationship
with the convolutional neural network algorithm framework is
shown in Figure 4.

Figure 4 shows the model layout and component functions. The
design concept of MEONND is based on the assumption that a
trained neural network is capable of performing the change-point
monitoring tasks. Therefore, by replacing the components that need
to be trained in a reasonable manner and keeping the components
that do not need to be updated, a detector similar to the trained neural
network can be constructed in theory. Since the parameters are set in
advance and the neural network model is no longer a black-box, the
fixed-parameter neural network offers simplicity and interpretability
over the traditional neural network, and the parameters are tuned
quickly and do not depend on the amount of training data, which
enables more robust algorithm design for small data sets.

As shown in Figure 4, MEONND follows the same architecture
of the basic CNN algorithm, and the replaced components are also
functionally very similar to the components before being replaced.
Specifically, the convolutional layer and the activation layer
controlling the output of the convolutional layer in the CNN are
substituted with multiple TEOs, each with different k and an order
statistics component. Since the traditional TKEO can be expressed
by the following neuronal relational (Equation 18) (Akef Khowailed
and Abotabl, 2019):

FIGURE 4
Mapping relationship ofmodel layout betweenCNN andMEONND. The blue blocks represent the names of the functional components and the gray
blocks introduce the functions of the corresponding components.
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C n( ) � W1 w11x n + 1( )( )2 +W2 w22x n( )( )2 +W3 w33x n − 1( )( )2
+W4 w14x n + 1( ) + w34x n − 1( )( )2

(18)
If TKEO is updated to MTEO, Equation 18 can be rewritten as:

C k( ) � W1 w11x n + k( )( )2 +W2 w22x n( )( )2 +W3 w33x n − k( )( )2
+W4 w14x n + k( ) + w34x n − k( )( )2

(19)
Iff(x) � x2 is used as the activation function of the convolution

layer instead of the commonly used ReLu function, then the neuron
connection expression for the energy operator method that outputs
the signal “energy” can be obtained as shown in Figure 5. According
to Equation 8 and Equation 19, an equivalent formula between the
energy operator and the neuron can be established, and based on this
relationship, a reasonable neuron parameter configuration scheme
can be determined (Equation 20):

C k( ) � W1 w11x n + k( )( )2 +W2 w22x n( )( )2 +W3 w33x n − k( )( )2
+W4 w14x n + k( ) + w34x n − k( )( )2

� x2 n( ) − x n + k( )x n − k( ) � Ψk x n( )[ ].
(20)

Then, the neuron parameters can be obtained:
W1 � W2 � W3 � 1, W4 � −1, w11 � w14 � 2, w22 � 1 and
w33 � w34 � 1

4. By using neurons and weighted connections, the
energy operator can process information in parallel with multiple
inputs and outputs, as these connections and neurons can be
computed concurrently. This exploits the natural advantage of
parallel computing inherent in the structure and computation
method of the neural network, which enhances the running
speed of MEONND. Therefore, by varying k, the convolutional
layer with fixed parameters generates multiple TEO sub-sequences
that capture the “energy” feature of the EMG signal and apply a
high-pass filter to it (Kvedalen, 2003; Wu et al., 2017; Boudraa and

Salzenstein, 2018). Subsequently, order statistics can filter out noise
interference (Bengacemi et al., 2020) and the pooling layer fuses the
features output from the convolutional layer without updating and
hyperparameters. The sampling layer replaces the fully connected
layer with the most hyperparameters, and normalizes the output of
the pooling layer to the [0:1] interval (Equation 21):

yi �
xi − min

i−2k( )< i
xi( )

max
i−2k( )< i

xi( ) − min
i−2k( )< i

xi( ) (21)

where i denotes the current sampling point and, the extreme values
are obtained on signal segments in the range [i − 2k, i]. The output
of the sampling layer is classified by the activation function, sigmoid,
given by Equation 22:

f x( ) � 1
1 + e−x

(22)

The sigmoid activation function has two advantages as a classifier:
(1) It makes the detector nonlinear; (2) It does not need any prior
knowledge about the signal. However, the sigmoid function still has a
threshold parameter that needs to be tuned manually, even though it
minimizes the number of parameters. In this paper, a hard limiter is
used instead of the normal sigmoid function to restrict the output. The
hard limiter sets the output value to one when the output of sigmoid
exceeds T, indicating muscle activation, and to 0 otherwise, indicating
muscle inactivation. Thus,MEONND can return a binary output, 0 or
1, for each sampling point.

The output of MEONND was post-processed to eliminate the
false transitions caused by the stochastic nature of the EMG signal
(Ghislieri et al., 2021). The post-processing technique used the
intrinsic physiological properties of muscle activity, similar to the
threshold method mentioned above. Based on the assumption that
the minimum interval between muscle contractions is typically
25–30 m (Yang et al., 2017), any muscle activation shorter than
30 m was discarded (Rashid et al., 2019). The signal changes caused
by each module in the MEONND algorithm are shown in Figure 6.

FIGURE 5
The neural network computational model of energy operators.
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Figure 6 shows the processing of the EMG signal by each
functional module of MEONND when detecting change-points.
Figure 6a is the raw EMG signal received by the input layer, and
the green and red vertical lines are the standard labels of onset and
offset points. Figures 6b,c are the results of the processing of the EMG
signal by each component of MEONND, and Figure 6f is the result of
detecting change-points of the EMG signal by MEONND. The raw
EMG signal has obvious noise interference, which is suppressed by the
transformation of MEONND, and the classification result is relatively
accurate, indicating that the MEONND method has good anti-noise
ability and detection accuracy.

3.4 Statistical analysis method

An accurate and comprehensive statistical analysis method is
important not only for the comparison of algorithm performance

but also for the setting of algorithm parameters. The accurate
temporal analysis of muscle activation is performed by
identifying the burst onset and burst offset to obtain information
such as the duration of the activation interval.

The detection results are quantitatively compared against the
ground truth in terms of true positive rate (TPR), F1 Score, and
onset/offset bias (root mean square deviation, RMSD). More
specifically, the indexes are defined as Equations 23, 24, 25:

TPR � Ndetected

Ntrue
(23)

F1 Score � 2 × TP
2 × TP + FN + FP

× 100 (24)

Bias �
������������∑n

t�1 ŷt − yt( )2
n

√
(25)

whereNdetected represents the number of change-points detected by
the algorithms, Ntrue is the correct number of change-points

FIGURE 6
Schematic diagram of the signal changes caused by each functional module whenMEONNDperforms change-point detection on electromyogram
(EMG) signals. (a) shows the raw EMG signals that have not been processed; (b–e) illustrate the effects of the EMG signals after being processed by each
layer of MEONND; and (f) presents the final result of the change-point detection.
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collected by motion data; ŷt represents the ground truth of the
onset/offset time points and yt is the estimate of the onset/offset
time points. The parameters of F1 Score are listed below:

─ TP: prediction result is P, label is P.
─ TN: prediction result is N, label is N.
─ FP: prediction result is P, label Is N.
─ FN: prediction result is N, label is P.

It should be noted that in previous studies, the elements of
F1 Score were calculated by treating the active segment as a complete
object, or by dividing EMG signals into fixed-length segments
(Jubany and Angulo-Barroso, 2016; Rashid et al., 2019; Chopra,
2021). In contrast, this paper investigates the detection performance
of onset an offset indiscriminately and therefore requires a redesign
of the calculation method for the parameters of F1 Score.

Since the yt detected by the algorithm and the “standard” ŷt will
hardly be equal, a time region for determining the validity of the
detection results needs to be divided according to the location of the
ŷt. In this paper, the reasonable epsilon interval times are set
according to the electrical-mechanical delay of the muscle and the
perceivable delay duration of the control system. More specifically,
due to the electrical-mechanical delay in voluntary muscle contraction
(Vint et al., 2001; Georgoulis et al., 2005), the EMG signal activity can
be detected as early as 260 m before the actual movement (Li et al.,
2007; Wentink et al., 2013; Yang et al., 2017), and given the latency of
the equipment used in this paper, a detection within 300 m before the
“standard” change-point is considered valid; furthermore, in practice,
the device delay should be less than 200 m to avoid the apparently
perceptible system delay (Englehart and Hudgins, 2003). Therefore,
this experiment took the motion data as the standard, and the time
segments within the range of 300m before and 200m after the change
point where the motion data was collected were set as the valid
detection interval. The valid detection interval divides the EMG signal
into four regions: Baseline segment, Onset segment, Activity segment,
and Offset segment.

Figure 7a illustrates the four regions of the EMG signal divided
by the valid detection intervals and the different classifications of
“events” that occur in each region, and Figure 7b simulates all
possible “events”, Figure 7c shows the classification of the “events”
detected in Figure 7b.:

─ Baseline segment: No events detected count as TN, e.g., No.10;
Onset/Offset detected as FP, e.g., No.4 and 5.

─ Activity segment: No events detected count as TN, e.g.,
No.2 and 13; Onset/Offset detected as FP, e.g., No.7 and 8.

─ Onset segment: Only one Onset detected counts as TP, e.g.,
No.1 and 11; in other cases, no events detected count as FN,
e.g., No.6, multiple events detected or Offset detected count as
FP, e.g., No.12.

─ Offset segment: Only one Offset detected counts as TP, e.g.,
No.3 and 15; in other cases, no events detected count as FN,
e.g., No.9, multiple events detected or Onset detected count as
FP, e.g., No.14.

The calculation method of F1 Score ensures a balanced sample
size and makes the statistical results more reliable. In addition, the
statistics are equal for Onset and Offset points.

3.5 The parameter tuning model based on
the AHP

Currently, the parameters of detectors whether for speech
signals (Wu et al., 2017) or biosignals (Rashid et al., 2019;
Bengacemi et al., 2020) are usually chosen empirically. However,
this paper performs an undifferentiated statistic for onset and offset
points, which makes the comprehensive comparison of the five
statistical metrics (namely, Onset TPR, Offset TPR, Onset bias,
Offset bias and F1 Score) relatively complicated. In addition, the
relationship between statistical metrics is not equal, as slightly biased
but more robust algorithms are more acceptable for EMG activity

FIGURE 7
Revised confusion matrix. (a) illustrates the four regions of the EMG signal divided by the valid detection intervals and the different classifications of
“events” that occur in each region, and (b) simulates all possible “events”, (c) shows the classification of the “events” detected in (b).
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monitoring tasks (Tenan et al., 2017). Hence, more important
metrics should be given higher weights. This paper introduces
the Analytic Hierarchy Process (AHP) to comprehensively
consider these five metrics.

The AHP is a combination of qualitative and quantitative
analysis that allows for a systematic analysis of the impact of the
parameters and the internal relationship between them to achieve
a comprehensive consideration of statistical metrics (Ho, 2008).
To apply the AHP, a hierarchical model must first be developed
based on the purpose of the experiment. The hierarchical model
designed in this paper is shown in Figure 8. The AHP process
visualizes the decision-making process through the hierarchical
model. As a bottom-up evaluation model, higher levels of the
hierarchy are influenced by lower levels (Forman and Gass, 2001).
Therefore, to achieve the target layer, a comparison of the
complex relationships between the factors in the criterion
layer and the index layer needs to be addressed. AHP realizes
pairwise comparison among the factors by establishing a
judgment matrix and weight division to decompose a complex
problem step by step. Firstly, this paper takes the 1–5 scaling
method to construct the judgment matrix. The consistency test
(CI = 0.0033, RI = 1.11, CR = 0.003 < 0.1) proves that the weights
assigned to each factor are reasonable. Subsequently, the
maximum eigenvalue and eigenvector are calculated. Finally,
the weight vector of the single hierarchical order representing
the influence degree of the underlying factors for the upper is
calculated. The detailed parameter settings and calculation
results are shown in Table 1.

It should be noted that the creation of a judgment matrix
generally requires material support (e.g., questionnaires). Due to
the specificity of the experiments in this paper, the judgment matrix
can only be set subjectively by experts. Therefore, The AHP process
can only achieve semi-subjective parameter tuning. As mentioned
above, a slightly biased but highly reliable algorithm is more
acceptable for EMG activity monitoring tasks (Tenan et al.,
2017). With that bias in mind, the Onset/Offset TPR and
F1 Score have a higher priority compared to the Onset/Offset
bias. In addition, in the comparison of Onset/Offset TPR and
F1 Score, the strategy of removing as many negative samples as
possible while ensuring positive samples is more reasonable and
acceptable. Therefore, Onset/Offset TPR should be assigned more
weights than F1 Score. The judgment matrix shown in Table 1,
which was constructed based on the above view, was consistent with
the subjective judgment of the experts.

3.6 The reasonable parameter traversal
intervals

The MEOTD and MEONND monitors have three parameters
that need to be manually optimized: the scale factor k for MTEO; the
window length L required for the order statistics; and the scale factor
j/T for the threshold. The prerequisite for parameter optimization
by the AHP model is to give a reasonable traversal interval for the
parameters to be tuned, respectively. It should be particularly noted
that the MEONND model designed in this paper draws on the

FIGURE 8
The hierarchical model. The index layer traverses the relationships of all parameters by dint of an exhaustive search.
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organizational structure of the convolutional neural network.
However, in contrast to the convolutional neural network, the
“neuron” parameters of the MEONND model are preset
according to the calculation rules of the energy operator.
Essentially, this model is driven by mathematical rules rather
than data. Therefore, the method for updating the model
parameters in this study is completely different from the method
for updating the internal parameters of traditional neural networks.
Considering that the remaining three adjustable parameters of the
MEONND are similar to the hyperparameters in traditional neural
network algorithms, they can be matched and set according to the
recommended range.

In general, the values of k used in the MTEO are in the range 1 to
20, which covers the sampling frequencies of 10–40 kHz in practical
neural signal recording systems (Choi and Kim, 2002). The linear
envelopes of a random EMG active segment are obtained for MTEO
and aMTEO by a second-order Butterworth filter with zero lag for
visualization. Figure 9 clearly demonstrates the envelope variation of

the MTEO and aMTEO processed signals, starting from k = 1
(i.e., the conventional TKEO) to 41, with an interval of 5. According
to Figure 9, two assumptions can be raised: (1). After the resolution
factor k exceeds 25, the effect on the detector performance will reach
saturation; (2). The effect of full-wave rectification on MTEO is
negligible.

To verify the above assumptions, in this experiment, k is
considered to be an odd number within 1-41, which ensures that
the frequency range of the normal EMG signal is covered (Choi and
Kim, 2002; Wu et al., 2017; Boudraa and Salzenstein, 2018). Since
the relationship between L and k is L � 2k + 1 (e.g., when k � 15,
each calculation involves a symmetric time-window centered on the
sample point, for a total of 31 samples), it is reasonable that the
interval of L is set to an odd number within 3–83. In addition, the
threshold scale factor j for the MEOTD is set to 1–10, a range of
values that possess statistical significance and has been used in many
previous studies (Solnik et al., 2008; Wu et al., 2017). The threshold
parameter T of the MEONND is determined by the sample

TABLE 1 The judgment matrix, eigenvector and weight set.

Onset TPR Offset TPR F1 Score Onset bias Offset bias Feature vector Weight set

Onset TPR 1 1 2 3 3 1.7826 0.3134

Offset TPR 1 1 2 3 3 1.7826 0.3134

F1 Score 0.5 0.5 1 2 2 1 0.1758

Onset bias 0.3333 0.3333 0.5 1 1 0.561 0.0986

Offset bias 0.3333 0.3333 0.5 1 1 0.561 0.0986

Max-Eigen = 5.0133, CI = 0.0033, RI = 1.11, CR = 0.003 < 0.1.

FIGURE 9
Schematic diagram of the envelope lines of a randomEMG active segment with different resolution parameters k. The green and red vertical lines are
the “standard” onset point and offset point of the EMG activity, respectively. In the legend, the text before and after the underline identify the parameter
configuration of the algorithm. (a,b) represent the active segment and the resting segment respectively, while (c,d) represent the onset point and the
offset point respectively. For the sake of clear demonstration, the y-axis has been scaled to achieve the best presentation effect.
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distribution. In general, if the sample distribution is absolutely
average, the decision boundary of sigmoid is 0.5. However, bias
is inevitable in the experimental data, although the statistical method
used in this paper, as shown in Figure 7, has attempted to maintain
the average of the sample distribution as much as possible.
Therefore, the traversal range of the threshold T is set to [0.406:
0.514] around 0.5 with an interval of 0.02.

4 Results

The dataset of each participant was divided into a training set
(40%) and a test set (60%). Thus, a total of 2,880 training samples
and 4,320 test samples were available. First, the results supporting
that MTEO has better signal conditioning than TKEO are shown by
the AHP parameter tuning model; and, the effect of full-wave
rectification on the energy operator approaches. Second, the
effectiveness of the method in this paper is further verified by
comparing the state-of-the-art monitors.

4.1 Signal conditioning performance
comparison

Introducing the AHP model into the experiments in this paper
requires adjusting the computational rules. Since the Onset/Offset
bias is not uniform with the other three statistical metrics units and
has an inconsistent direction of influence on the algorithm (the
larger the deviation the lower the performance). Therefore, the
strategy of this paper is to control the impact of Onset/Offset
bias on the AHP model to three and 4 decimal places and take
negative values. The details are as Equation 26:

AHP � Onset TPR *w1 + Of f set TPR *w2 + F1 Score *w3

− Onset bias/100000 *w4 − Of f set bias/100000 *w5

(26)
where /100000 is to control the impact range of the Onset/Offset bias
metrics, and −Onset/Offset bias is to adjust the impact direction.

FIGURE 10
Values of (a) Onset TPR, (b) Offset TPR, (c) F1 Score and (d) Accuracy, averaged on the test set. Error bars represent the standard errors.
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Table 2 shows the best combination of parameters obtained by the
AHP model on the training set.

According to Table 2, three points can be drawn: (1). The MTEO
has better signal conditioning than the TKEO, which makes the
performance of the threshold detector more stable; (2). Full-wave
rectification contributes significantly to the performance
improvement of the TKEO, but the effect on the MTEO is
negligible; (3). The monitors detect onset points more accurately
than offset points. Based on the above findings, only MEOTD and
MEONND are required to be compared with other monitors to
highlight the performance of the algorithm in this paper under the
condition of optimal combination of parameters (MEOTDwith k � 15,
L � 15, j � 5, and MEONND with k � 15, L � 15, T � 0.506), while
the conventional aTEOTD is retained as a performance reference.

4.2 Performance comparison of EMG
activity monitors

To highlight the detection performance of the monitor
constructed in this paper, we compare it with the state-of-the-art
monitors and present the sources and parameter settings for all
monitors in Table 3.

Table 3 shows that the Profile Likelihood Maximization method
(Selvan et al., 2018) proposed by Selvan et al. requires the least
number of parameters. However, they have tested various
probability distributions and probability density functions before
drawing their conclusions, which is a significant amount of work.
Moreover, PLM-Log uses TKEO to pre-process the signal. The
Bayesian Changepoint Analysis method (Tenan et al., 2017)
tested by Tenan et al. does not require a moving window
function or a threshold factor, but it does require traversing the
posterior probability within [0.60, 0.95] with a fixed parameter. The
Sample Entropy (SE) algorithm (Zhang and Zhou, 2012) proposed
by Zhang et al. is similar to the threshold algorithm in that it requires
iteration to obtain a reliable threshold factor. Pattern recognition
algorithms based on neural networks are generally used for
myoelectric control, hand gesture or upper limb movement
recognition, and motion intent detection (Yousefi and Hamilton-
Wright, 2014; Shim et al., 2016; Phinyomark and Scheme, 2018).
Indeed, the neural network algorithm still performs well in one-
dimensional time-series tasks (Akef Khowailed and Abotabl, 2019;
Ghislieri et al., 2021). Nevertheless, the initialization settings of
parameters such as the number of hidden layers, number of hidden
units of each hidden layer, learning rate values, and drop period
values have a decisive impact on the algorithm performance.

TABLE 2 Parameter combinations for the maximum AHP obtained by the monitors and statistical results representing the performance of the monitors.

Detector k L j/T Onset TPR (%) Offset TPR (%) F1 Score (%) Onset bias (ms) Offset bias (ms) AHP

TEOTD ─ 47 9 85.17 ± 8.75 77.67 ± 13.24 82.53 ± 6.32 183 ± 78 295 ± 93 0.6550

aTEOTD ─ 31 7 90.23 ± 6.91 88.87 ± 9.33 88.29 ± 4.49 154 ± 66 255 ± 87 0.7161

MEOTD 15 15 5 95.15 ± 5.43 92.27 ± 7.74 91.67 ± 3.77 133 ± 58 239 ± 73 0.7482

aMEOTD 15 15 4 95.16 ± 5.59 92.83 ± 6.96 91.80 ± 3.68 117 ± 53 223 ± 72 0.7502

MEONND 15 15 0.506 97.31 ± 3.53 93.33 ± 6.11 93.48 ± 3.55 103 ± 21 209 ± 71 0.7615

aMEONND 15 15 0.506 97.31 ± 3.53 93.58 ± 6.00 93.72 ± 3.51 102 ± 19 204 ± 54 0.7627

TD, and NND, are used to distinguish detectors, while TEO, and MEO, are used to distinguish energy operators, and ‘a’ denotes full-wave rectification.

TABLE 3 Parameter configuration of the monitors used for comparison.

Monitor Rectification or filtering Windowing parameter Threshold factor Special parameters Notes

aTEOTD Yes 31 7 N/A

MEOTD No 15 7 k = 15

MEONND No 15 0.506 k = 15

Sample
Entropy (SE)

No L = 32, S = 4 0.6 m = 2
r = 0.25 × SD

Zhang and
Zhou (2012)

Bayesian
Changepoint

Analysis (BCA)

Yes N/A N/A ω = 0.2 p = 0.0
95% CI

Tenan et al.
(2017)

Profile Likelihood
Maximization-Log
normal (PLM-Log)

Yes N/A N/A N/A Selvan et al.
(2018)

Long short-term
memory recurrent
neural network

(LSTM)

Ghislieri et al.
(2021)
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Moreover, the neural network architecture design depends on the
training data set. All these issues complicate the use of neural
network algorithms for EMG activity monitoring. The Long
short-term memory recurrent neural network (LSTM) (Ghislieri
et al., 2021) proposed by Ghislieri et al. has two LSTM layers with
275 units in the first layer and 138 in the second; according to the
number of classes to be recognized, the fully connected layer is set to
two units; and the threshold of the activation function sigmoid is set
to 0.5. The algorithm structure is detailed in Table 3.

We present the results obtained from the test set for the seven
different approaches in Table 4 and Figure 10.

─ Onset TPR: The average Onset TPR on the test set was
92.74% ± 8.15%, 94.35% ± 6.51%, 96.15% ± 4.11%,
89.58% ± 9.59%, 95.25% ± 5.31%, 98.83% ± 8.31% and
88.73% ± 13.53% for the seven monitors, respectively. The
PLMmethod achieved the best performance in this metric, but
it was less stable than the method in this paper, as indicated by
the larger standard deviation.

─ Offset TPR: In contrast to the Onset TPR, all monitors
exhibited some degree of degradation in detection
performance for the Offset points. Only two monitors
exceeded 90%, namely, MEONND (92.87%) and
MEOTD (90.89%).

─ F1 Score: Due to the low Offset TPR metrics, the F1 Score
metrics of all monitors were generally low. The method
proposed in this paper achieved the highest F1 Score, where
MEONND was the best (93.67% ± 3.97%), followed by
MEOTD (91.29% ± 4.41%). F1 Score is a comprehensive
metric used in statistics to measure binary classification
models, which takes into account both the true detection
rate and the false detection rate. Thus, although showing
consistent performance trends with the TPR metrics, the
F1 Score metric can reveal some additional characteristics.
For example, the Onset TPR and Offset TPR of SE are both
much higher than the F1 Score, indicating that SE has a more
serious false detection problem.

─ Onset bias: The average Onset bias metric on the test set was
155 ± 73 m, 136 ± 61 m, 103 ± 24 m, 187 ± 83 m, 126 ± 51 m,
135 ± 71 m, and 152 ± 64 m for the tested muscle activity
detectors, respectively. MEONND had the smallest bias and
BCA was the second smallest.

─ Offset bias: The Offset bias metrics were larger than the Onset
bias metrics for all algorithms, which is consistent with the

experimental expectation based on the discharge
characteristics of MUAPs (Kang et al., 2020;Wang et al., 2022).

4.3 Comparison of running time

Running time is an important consideration for EMG activity
monitoring algorithms, especially in real-time applications. We
implemented all algorithms using Python 3.8.5 on a computer
with an Intel Core i5-3210M CPU (2.50 GHz) and 8.00 GB of
RAM. Table 5 shows the average running times for one data
acquisition from ten random participants.

As Table 5 shows, the total and average running times represent
the total time to detect 30 voluntary muscle contractions and the
average time to detect one voluntary contraction, respectively. The
adaptive Teager energy operator and double-threshold (aTEOTD)
method is the fastest performing method, because it consists of two
fast algorithms: the TKEO and the double-threshold method. The
sample entropy (SE) method is the slowest, so it is generally not
recommended to combine the energy operator algorithms with the SE
method because the advantages of the energy operator cannot be
exploited. Another advantage of the proposed method is that the
modified energy operator and nearest neighbor distance (MEONND)
method is significantly faster than the modified energy operator and
double-threshold (MEOTD) method and even close to the aTEOTD
method, indicating that the second monitor construction strategy
proposed in this paper is more advantageous in terms of execution
efficiency. Finally, comparing the long short-term memory (LSTM)
and MEONND methods, it can be demonstrated that the modified
Teager energy operator (MTEO) requires more computation than the
LSTM layers for processing signal sampling points.

5 Discussion

The experimental objectives of this paper can be summarized as
follows: (1) to verify whether this variant of the TKEO, MTEO, can
effectively perform the muscle activity detection tasks; (2) to determine
whether full-wave rectification is necessary; (3) to construct an effective
parameter tuning model; and (4) to verify whether the monitor
construction strategy proposed in this paper is reliable..

─ The superiority of the MTEO. Previous studies have shown that
preprocessing with various versions of energy operators, such

TABLE 4 Parameter combinations for the maximum AHP obtained by the monitors and statistical results representing the performance of the monitors.

Detector Onset TPR (%) Offset TPR (%) F1 Score (%) Onset bias (ms) Offset bias (ms)

aTEOTD 90. 74 ± 8.15 87.78 ± 10.33 86.63 ± 6.59 155 ± 73 258 ± 88

MEOTD 94.35 ± 6.51 90.89 ± 8.21 91.29 ± 4.41 136 ± 61 238 ± 81

MEONND 96.15 ± 4.11 92.87 ± 7.14 93.67 ± 3.97 103 ± 24 209 ± 53

SE 89.58 ± 9.59 84.17 ± 14.46 70.17 ± 9.68 187 ± 83 273 ± 92

BCA 95.25 ± 5.31 71.67 ± 18.25 84.00 ± 13.33 126 ± 51 370 ± 121

PLM-Log 98.83 ± 8.31 67.50 ± 24.58 85.69 ± 16.89 135 ± 71 386 ± 141

LSTM 88.73 ± 13.53 85.08 ± 16.11 85.72 ± 13.51 152 ± 64 330 ± 54
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as ETKEO (Tigrini et al., 2020), EGTKO (Jabloun, 2017), and
MTEO (Wang et al., 2022), can enhance the performance of
myoelectric signal change point detection algorithms,
compared to the conventional TKEO operator. The MTEO
has a stronger signal conditioning capability than multiple
TKEO variants (Wang et al., 2023), because it combines
multiple energy operator subsequences using pooling
techniques, which capture more signal frequencies than a
single energy operator sequence, thereby increasing the SNR
and reducing the noise variance (Choi and Kim, 2002; Tigrini
et al., 2020). Moreover, the pooling layer helps to aggregate
semantically similar features into one, and to make the
representations more invariant to variations in position and
appearance of the elements in the previous layer (LeCun et al.,
2015). Thus, the MTEO technique with a pooling layer has a
more robust signal conditioning capability. The experimental
results confirm that using the MTEO and TKEO in the
preprocessing step of the same threshold detector can reveal
the performance difference between them. As shown in
Table 4, the MEOTD outperforms the TEOTD in terms of
Onset TPR, Offset TPR, F1 Score, Onset bias and Offset bias by
3.98%, 3.54%, 5.38%, 12.26% and 7.75%, respectively.
Therefore, the MTEO is more effective for improving
detector performance.

─ The impact of full-wave rectification on the energy operators.
The full-wave rectification enhances the performance of the
conventional TKEO operator significantly, but has a negligible
effect on the MTEO. As shown in Table 2, for the five
performance metrics, the aTEOTD improved by 5.94%,
14.42%, 6.98%, 15.85% and 13.56%, respectively, compared
to the TEOTD. However, the performance difference between
the two monitors using MTEO was less than 0.6% for all
metrics. Therefore, the impact of full-wave rectification on the
MTEO can be considered negligible in practice. As explained
above, the MTEO employs pooling technique, and the pooling
layer makes the representations more invariant to changes in
the previous layer. Moreover, full-wave rectification may cause
signal distortion (Negro et al., 2015). Therefore, the MTEO
does not require full-wave rectification of the signal, which is
an advantage over the conventional TKEO.

─ The parameter tuning model based on the AHP. The parameter
tuning model based on the AHP. Although the strategies
proposed in this paper for building muscle activity monitors
based on MTEO have reduced the number of manually tuned
parameters, there are still two to three key parameters that
influence performance. The threshold detector-based approach
requires the combination of three parameters, while the neural
network architecture-based detector requires only two
parameters to balance the detection performance, as it does
not need the extraction of baseline segment prior knowledge.
However, even tuning only two parameters is a relatively

complex problem. Typically, after fixing one parameter
empirically, the optimal value for the other parameter is
searched by an exhaustive method. But this way of setting
one parameter based on experience is too subjective, and the
effect of each parameter on detector performance is not
synchronized, so how to balance multiple parameters is a
problem that needs to be solved. The AHP can objectively
calculate the optimal combination of parameters after
providing the weight of each parameter. The AHP method
is a semi-subjective approach, as it requires the prior
assignment of different weights based on the importance of
the input elements. Although the subjective part cannot be
avoided, the computational process that follows the subjective
part is completely objective and can distinguish subtle
performance differences and assist in the decision-making
process. Therefore, the parameter tuning model developed
in this paper can traverse the parameters in a relatively
dense manner to select a more accurate and optimal
combination of parameters.

─ The effectiveness of the monitor construction strategies. This
paper proposed two strategies for building muscle activity
monitors based on the MTEO. One is the common approach
based on a threshold detector, and the other is a strategy to
construct a detector by replacing part of the functional
components of the CNN. By comparing the two
construction strategies with the state-of-the-art monitors,
the effectiveness of the MTEO for muscle activity detection
was demonstrated on one hand, and the improvement of the
monitors developed in this paper was verified on the other
hand. The usual strategy for muscle activity monitors based on
the conventional energy operator (TKEO) is to incorporate a
threshold detector (Xiaoyan and Aruin, 2005; Li et al., 2007;
Solnik et al., 2008; 2010; Rashid et al., 2019; Bengacemi et al.,
2020; Tigrini et al., 2020). TKEO has been used in the pre-
processing phase of many change-point detection algorithms,
but this variant of TKEO, MTEO, has rarely been explored in
muscle activity detection tasks, although it has been shown to
have significant value in speech applications (Wu et al., 2017).
Table 4, 5 show the detection performance of the two monitors
proposed based on the MTEO. Although the first construction
strategy is relatively more conventional, it still has good
detection performance and running speed. The new
alternative construction strategy proposed in this paper
further improves the detection performance of the
algorithm, especially in terms of running speed which is
already comparable to the scheme combining the TKEO
and a threshold detector.

─ The reliability of the statistical method for representing the
algorithm performance. The main purpose of the change-point
detection algorithm for EMG signals is to extract temporal
information, such as the onset time point, duration and offset

TABLE 5 Running time comparisons.

aTEOTD MEOTD MEONND SE BCA PLM-log LSTM

Total (ms) 56.1 ± 4.31 139.2 ± 6.06 57.6 ± 4.87 2,762.3 ± 89.11 550.8 ± 13.28 619.5 ± 14.31 265.5 ± 10.95

Average (ms) 1.87 4.64 1.92 92.07 18.36 20.65 8.85
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time point of muscle activity. When EMG signals are used as
control signals or for clinical analysis, it is important to
accurately extract the complete temporal information.
Unlike previous studies that only examined the detection
performance of onset points (Tenan et al., 2017; Selvan
et al., 2018), this paper assigned the same weight to onset
point and offset point for evaluation. Considering that the
detection accuracy would not match the gold standard, four
valid detection intervals were defined to classify the detection
results, as shown in Figure 7. Depending on the valid detection
interval where the detected change-points were located, they
can be classified into three categories: false detections, missed
detections and correct detections. Figure 11 illustrates a
random segment of the detection results of all monitors
involved in the comparison. Taking Figure 11a as a
reference, the monitors show different degrees of bias in
detecting muscle activities. For example, Figure 11f shows
the detection results of the BCA monitor. Although the BCA

detected a part of the active fragment of the EMG signal, the
detection of the offset point was outside the valid detection
interval and therefore could not be considered as a valid
detection result. Similarly, as shown in Figure 11g, the
PLM_log monitor also resulted in lower performance
metrics because of this reason.

─ The generalization capability of the model. This study
conducted a thorough evaluation of the generalization
capability of the proposed monitor. It is particularly noted
that the assessment of the model was based solely on using
40% of each subject’s data as the training set and the
remaining 60% as the test set. While this analytical method
can assess the model’s adaptability to individual physiological
signals, it does not fully demonstrate its capacity to handle
new data. To more accurately evaluate the model’s
generalization ability, this study supplemented the
assessment with cross-validation results, randomly selecting
40% of the subjects’ data for training and the remaining 60%

FIGURE 11
Schematic diagram of random segments of sevenmonitors for change-point detection of EMG signals. (a) shows the raw EMG signal and the ground
truth values of the change points. (b–h) show the EMG signal processed by the monitor (featured by ‘energy’, ‘amplitude’ and ‘entropy’) and the change
points of the signal detected by the monitors.
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for testing, to more authentically reflect the monitor’s
response to unknown data. The experimental results, with
an average accuracy of 74.34% ± 8.06%, indicate that although
parameter adjustment through the Analytic Hierarchy
Process (AHP) achieves good performance on known data,
the model’s generalization capability on unseen data remains
limited. This limitation is mainly due to two factors: firstly, the
high randomness of human physiological data, for which
there is currently no effective solution; secondly, the proposed
strategy focuses on detection speed and personalized
application scenarios, and the research is still in its
preliminary stages. Although the test results for the
model’s generalization performance are not ideal,
considering the specificity of human physiological data and
the specialized nature of most application scenarios, the
method proposed in this paper still has practical
application value. In the future, to further enhance the
model’s generalization ability, research will be devoted to
introducing more advanced feature learning models to
improve and optimize the existing methods.

6 Conclusion

This paper tackles a long-standing and relatively straightforward
problem, namely, the detection of the change-points of EMG signal
activity. Based on a signal pre-processing technique, MTEO, which
has a good performance in the field of speech signal processing, this
paper proposes two strategies to effectively construct muscle activity
monitors. TheMEOTD is based on a thresholdmethod detector that
has been validated several times by the conventional TKEO (Li et al.,
2007; Solnik et al., 2010; Rashid et al., 2019; Bengacemi et al., 2020);
while the MEONND replaces the components that need to be
trained in the convolutional neural network architecture with
components that have been validated as effective for the same
role. The principle of both strategies is intuitive. The signal-to-
noise ratio (SNR) of the EMG signal is effectively improved by the
MTEO, and the ‘energy’ features of each sampling point are
acquired. When the energy of the sampling point exceeds the
pre-set threshold and accumulates to a certain amount, it is
determined as the onset point of muscle activity. A similar
process can obtain the offset point of muscle activity. This
strategy relies heavily on the signal features of the baseline
segment used to estimate the threshold. This paper provides an
alternative scheme to address the drawback that the threshold
detector requires prior knowledge about the signal baseline
segment. Not only does the nonlinear classifier in the CNN
architecture enhance the robustness of the algorithm, but also the
real-time performance of the neural network is fully utilized to
improve the efficiency of the muscle activity detection algorithm.
Compared with state-of-the-art monitors, the monitors constructed
in this paper are not only robust and accurate, but also have very
high detection efficiency.

Future research needs to explore the change-point analysis
performance of MEOTD and MEONND in more complex EMG
waveforms to determine their feasibility in more complex tasks.
Moreover, updating the semi-subjective parameter tuning model to
enhance the self-updating capability of the monitors.
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