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The estimation of joint torque based on wearable sensors is an important content
in human–robot interaction research. Despite existing joint torque estimation
models providing high accuracy, their application in robotic control is limited due
to the number of sensors and real-time output requirements. To address this
issue, this paper establishes a knee joint torque estimation model driven by four
electromyography (EMG) sensors and proposes a novel method for simplifying
musculoskeletal models based on sensitivity analysis. To achieve this, this paper
combines multiple advanced Hill-type muscle model components to establish a
knee-joint musculoskeletal model that includes four major muscles and employs
the genetic algorithm (GA) to identify the model parameters. Then, Sobol’s global
sensitivity analysis theory is used to analyze the influence of parameter variations
on model outputs, and a sensitivity-based model simplification method is
proposed. In addition, a lower-limb physical and biological signal collection
experiment without ground reaction force is designed for parameter
identification and sensitivity analysis. Finally, based on experimental data from
several test subjects, the parameters of each individual’s musculoskeletal model
are identified and evaluated, and the sensitivity index of each parameter is
calculated to determine the influence of the number of model parameters on
the identification performance. The results indicate that the proposed
musculoskeletal model can provide individuals with comparable normalized
root mean square error (NRMSE) through parameter identification, and the
sensitivity-based model simplification method is effective.
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1 Introduction

In robotic systems involving human–machine interaction, the evaluation or prediction
of joint motion or torque is an active area of research (Sitole and Sup, 2023), which is
particularly important for rehabilitation, nursing robots, and medical diagnostic devices.
Currently, such studies are mainly used to improve the control effects and efficiency of
robots (Erden and Tomiyama, 2010). Therefore, balancing accuracy and real-time
performance is key to enhancing the actual experience of human–robot systems.

The perception or prediction of human joint torque requires the collection of biological
and physical signals during motion, followed by establishing a mapping relationship
between sensor signals and joint torque (Hou et al., 2016). With the development of
sensor technology, the acquisition and processing technologies for human biological and

OPEN ACCESS

EDITED BY

Veronica Cimolin,
Polytechnic University of Milan, Italy

REVIEWED BY

Sentong Wang,
The University of Electro-Communications,
Japan
Song Zhang,
Anhui Normal University, China
Lucia Donno,
Polytechnic University of Milan, Italy
Muhammad Hassaan Ahmed,
University of California, Merced, United States

*CORRESPONDENCE

Keyi Wang,
wangkeyi@hrbeu.edu.cn

RECEIVED 24 January 2025
ACCEPTED 20 March 2025
PUBLISHED 14 April 2025

CITATION

Li J, Wang K, Yuan Y, Deng Z and Lui Y (2025)
Parameter identification and sensitivity analysis
of a lower-limb musculoskeletal model.
Front. Bioeng. Biotechnol. 13:1566381.
doi: 10.3389/fbioe.2025.1566381

COPYRIGHT

© 2025 Li, Wang, Yuan, Deng and Lui. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 14 April 2025
DOI 10.3389/fbioe.2025.1566381

https://www.frontiersin.org/articles/10.3389/fbioe.2025.1566381/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1566381/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1566381/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2025.1566381&domain=pdf&date_stamp=2025-04-14
mailto:wangkeyi@hrbeu.edu.cn
mailto:wangkeyi@hrbeu.edu.cn
https://doi.org/10.3389/fbioe.2025.1566381
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2025.1566381


physical signals have become increasingly mature. Surface
electromyography (sEMG) and motion capture system (MoCap)
are commonly used to obtain these signals (Bütepage et al., 2018;
Downey et al., 2017). sEMG and MoCap are convenient to wear and
are non-invasive sensors, which can greatly avoid the impact caused
by discomfort. Their fast signal acquisition and transmission make
them not only suitable for research on humanmotion prediction but
also can be directly applicable to robot control systems (Ao
et al., 2017).

Joint torque prediction based on biological and physical signals
is typically achieved through two methods: model-based method
and model-free method. The model-based method uses dynamic
and biomechanical models to describe the transformation
relationship between EMG and joint torque from a mechanistic
perspective, while the model-free method treats biological and
physical signals as independent or control variables, with joint
torque considered an output variable, and uses machine learning
techniques to train models (Sitole and Sup, 2023). Both methods
have their advantages and disadvantages, and the appropriate
method should be selected according to the research objective.
Model-free methods use standardized mapping functions to
construct black-box models, which require relatively large
datasets for sufficient training of the model. In addition, it is
necessary to ensure that individuals in the data samples are
widely representative to guarantee the generalization ability of
the model (Loi et al., 2023). If insufficient data or a lack of
individual diversity exists, this may limit the applicability of the
trained model, making it difficult to effectively generalize to unseen
individuals (Sartori et al., 2016).

Model-based methods usually identify parameters of
musculoskeletal or neuromusculoskeletal models and then
calculate muscle forces/torques from the activation level obtained
from EMG signals. Among these models, Hill’s models or improved
Hill’s models are the most versatile and authoritative. For example,
Falisse et al. estimated Hill’s model parameters of the individual’s
muscle that drives the knee joint by optimizing the formulation of
the control problem and determined functional movement sets
capable of identifying these parameters (Falisse et al., 2017).
Zhao et al. combined Hill’s model and limb dynamics to identify
musculoskeletal models driven by EMGs and then estimated wrist
joint torques to compute continuous joint angles (Zhao et al., 2020).
W.Wang et al. identified sEMG-torque models using particle swarm
optimization and coupled gradient methods and corrected errors in
real-time using adaptive learning methods (Wang W. et al., 2021).
Zhang et al. used the NMS model and LSTM network to estimate
joint torques during daily activities based on EMG and kinematic
data and trained the model using the reference values obtained via
inverse dynamics (Zhang et al., 2023). Although the
abovementioned studies were based on Hill’s model, Hill’s model
consists of multiple units, each of which has different mathematical
descriptions. In order to reduce the dimensions of the model, some
studies use the units whose parameters have been fully or partially
identified to form Hill’s model, such as using elderly muscle
contraction unit parameters for muscle models of individuals of
different ages, resulting in loss of interpretability of the identified
model. Research that integrates musculoskeletal models with finite
element analysis, such as the finite element musculoskeletal (FEMS)
framework established by S. Wang et al., also exists, providing a

more realistic modeling approach (Wang et al., 2022). They
proposed driving the FEMS solely through IMU data, achieving
reliable mechanics and secondary kinematics of calculation on the
knee joint with low computational costs (Wang S. et al., 2021).
Beyond model identification methods, it is also possible to establish
a loss function model with the goal of optimizing muscle endurance
and then allocate joint torques to each relevant muscle. J. Wen et al.
improved the accuracy of this method by conducting secondary
optimization on the discrepancies between muscle forces derived
from the loss function and those estimated by the musculoskeletal
model (Wen et al., 2018). The loss function method typically relies
on muscle selection and data quality. To address this issue, Hassaan
et al. introduced simplified cost functions based on the Hill model
(Ahmed et al., 2024). However, the loss function model needs to
solve the optimization problem every time muscle strength is
calculated, which is not conducive to applications demanding
real-time performance.

When the parameters of a musculoskeletal model are increased,
its prediction effect on joint torque is better. However, this will
consume excessive computational power to identify the model and
may lead to overfitting (Buchanan et al., 2004). In practical
applications, musculoskeletal models are often used in robot
control, making it unreasonable to identify a large number of
parameters online or in real time. Therefore, simplification of the
model based on application requirements is necessary to improve its
real-time performance. One way to simplify the model is by
establishing relationships between parameters and certain
information. For example, Saul et al. developed an upper limb
model that represents the relationship between joint angles and
both normalized muscle fiber lengths and muscle moment arms in
the upper limb (Saul et al., 2015). Additionally, there are studies that
have employed polynomial functions to model the relationship
between tendon lengths and joint angles (Ramsay et al., 2009).
Another method is to identify certain parameters in advance which
could reduce the number of model parameters. J. Han et al. set the
muscle force–velocity relationship in Hill’s model as a constant,
establishing a three-parameter muscle model (Han et al., 2015). Pau
et al. simplified the force–velocity unit into a polynomial determined
solely by muscle contraction speed (Pau et al., 2012). However, the
applicability of these methods may not be uniform for different
individuals, and balancing the degree of simplification with the
universality of a model constitutes a significant challenge. Currently,
there are few studies analyzing the parameter sensitivity of
musculoskeletal models, i.e., quantifying the impact of parameter
perturbations onmodel outputs. Carol Y. et al. studied and evaluated
the sensitivity of 14 parameter changes in Hill’s model in forward
dynamics simulation during running and walking (Scovil and
Ronsky, 2006). Zhao et al. (2020) also briefly analyzed the
parameter sensitivity of wrist joint angle prediction models.
However, these studies calculated the parameter sensitivity
without simplifying the model based on the sensitivity
analysis results.

In this paper, an EMG-driven musculoskeletal model and its
parameter identification are studied, and a novel model
simplification method based on sensitivity is proposed. Section 2
establishes a musculoskeletal model consisting of four major
muscles, which combines classical and novel mathematical
models in Hill’s model and employs the genetic algorithm (GA)
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to identify the parameters of the proposed model. Section 3
introduces Sobol’s global sensitivity analysis method to examine
the influence of model parameters and their interaction effects on
the musculoskeletal model output, with the objective of model
simplification. Section 4 explains the physical and biological
signal collection experimental process for parameter
identification. Section 5 identifies the parameters and sensitivity
index of each individual musculoskeletal model and summarizes the
impact of model parameter number on the identification process.
The overall flowchart of this study is shown in Figure 1.

2 Modeling and parameter
identification

The single degree-of-freedom knee joint is the research object of
this paper. The relationship between sEMG and active knee-joint
torque is established through a proposedmusculoskeletal model that
integrates the muscle activation model with muscle–tendon models.
Knee flexion and extension torques are mainly generated by the
hamstring and quadriceps muscle groups. However, a
musculoskeletal model involving all muscles within these groups
would be overly complex, while simultaneously collecting EMG
signals from each muscle is neither cost-effective nor conducive to
the experiment. Therefore, the following simplifications are made
for the proposed musculoskeletal model:

(1) The activation levels of the hamstrings and quadriceps are
reflected by four major thigh muscles.

(2) For the hamstring group, the knee flexion torque is
approximated as being produced by the long head of the
biceps femoris (BF). Since BF has a large muscle volume and is
close to the skin surface, it results in a generally high-quality
EMG signal. In contrast, the other muscles in the hamstring
group are either small or located deep under the skin.

(3) For the quadriceps group, the vastus intermedius (VI) is
excluded from the quadriceps, and the knee extension
moment is supported by the rectus femoris (RF), vastus
lateralis (VL), and vastus medialis (VM). Since VI is
located deep beneath the RF and is entirely covered by RF,
acquiring its EMG signal is challenging, and its activity is
highly synergistic with RF.

Subsequently, the joint torques derived from the dynamics of the
lower limb are considered the reference output for the proposed
musculoskeletal model, while the collected EMG signals serve as the
input to the model. Then, an optimization method is employed to
calibrate the individual model parameters.

2.1 Musculoskeletal modeling

Hill’s model is a commonly used and widely accepted
mathematical model for calculating muscle–tendon force Fmt

i in
neuromuscular research. It simplifies the muscle fiber as a
series–parallel system of the elastic component (PE) and
contraction component (CE), and the basic configuration is
shown in Figure 2.

In Figure 2, lmt
i , lmi , and lti are the muscle–tendon length, muscle

fiber length, and tendon length, respectively. The pennation angle ϕi
is the angle between the muscle fiber and the tendon, and the
feathering angle of any muscle can be expressed as shown in
Equation 1:

ϕi � sin−1 lmo,i sinϕo,i

lmi
( ), (1)

where lmo,i and ϕo,i are the optimal fiber length and optimal pennation
angle, respectively. It is assumed that tendons on both sides of the
muscle move only along a single direction, and the change in tendon
length is ignored. The muscle fiber length at any time can be
expressed as shown in Equation 2:

FIGURE 1
Overall flowchart of this study.

FIGURE 2
Hill’s muscle model.
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lmi �
��������������������
lmt
i − lti( )2 + lmo,i sin ϕo,i( )2√

, (2)

where lt is the fixed tendon length.
Tendon force can be expressed as the sum of the active muscle

force FCE and passive force FPE, as shown in Equation 3:

Fmt � FCE + FPE( )cos ϕ (3)

The active muscle force FCE is generated by muscle contraction
(CE) and related to the muscle activation, as shown in Equation 4:

FCE,i � Fm
o,i fL

�l
m

i( )fV �vmi( )ai t( )( ), (4)

where Fm
o,i is the maximum voluntary muscle force; fL(�lmi ) and

fV(�vmi ) are the normalized active fiber force length and normalized
force–velocity relationships, respectively; and ai(t) is the muscle
activation at time t. �l

m
i and �vmi are normalized fiber length and

velocity of muscles, respectively, and calculated using Equation 5:

�l
m

i � lmi
lmo,i
; �vmi � vmi

vmo,i
, (5)

where lmo,i is the optimal muscle fiber length and vmi and vmo,i are the
muscle contraction velocity and optimal muscle contraction
velocity, respectively.

The raw EMG signal is normalized and then converted tomuscle
activation by the following formula given in Equation 6 (Günther
et al., 2007):

ai t( ) � eAui t( ) − 1
eA − 1

, (6)

where ui(t) is the normalized EMG signal at time t and A is a
nonlinear coefficient that represents the degree of nonlinearity in
this equation and ranges from highly nonlinear (−3) to linear (0.01).

The force–length relationship equation of muscle fibers fL(�lmi )
represents the relationship between length and muscle force during
active contraction. It can be expressed as follows (Rockenfeller and
Günther, 2017):

fL
�l
m

i( ) � exp −
�l
m

i − 1
ΔWasc

∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣vasc( ), �l
m

i ≤ 1

exp −
�l
m

i − 1
ΔWdec

∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣vdec( ), �l
m

i > 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ , (7)

where ΔWasc and vasc determine the function curve shape when muscle
length is less than lmo,i, whileΔWdes and vdec determine the function curve
shape when muscle length is greater than lmo,i. Equation 7 constructs
fL(�lmi ) using an ascending (asc) and a descending (des) standard bell
curve.ΔW controls the width of the curve with a range from 0 to 1, and v
represents its exponent power, generally taken between 2 and 4.

The relationship between muscle force and contraction velocity
is shown in Equation 8 (Schutte, 1993):

fV �vmi( ) �
�vmi � vmi

qvlmo,i

0.3 �vmi + 1( )
−�vmi + 0.3

, �vmi ≤ 0

2.34�vmi + 0.039
1.3�vmi + 0.039

, �vmi > 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (8)

where qv represents the relationship between vmo,i and lmo,i.
The passive force FPE generated by PE can be represented as

shown in Equation 9 (Thelen, 2003):

FPE,i �
0, �l

m

i ≤ 1

exp kPE �l
m

i − 1( )/ε0( ) − 1

exp kPE( ) − 1
, �l

m

i > 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ , (9)

where kPE is a curve-shaped parameter, which is selected as a
fixed value according to human age. Generally, young people
take kPE � 5 and older people take kPE � 6. ε0 represents the
maximum muscle tension strain of PE, with a general range
of 0.2–0.4.

Substituting Equations 4–9 into Equation 3, a
musculoskeletal model FCE,i(lmi , vmi , ui, λ) is proposed, in which
[lmi , vmi , ui] represents the input to the model, λ is the unidentified
parameter vector that can be divided into muscle–tendon
parameters and function parameters. The muscle–tendon
parameters include optimal fiber length lmo,i, optimal pennation
angle ϕo,i, maximum voluntary muscle force Fm

o,i, optimal muscle
contraction velocity parameter qvi , and tendon length lti , while the
function parameters include A, ΔWasc, vasc, ΔWdes, vdec, and ε0. To
simplify the number of unidentified parameters, it is assumed
that each muscle possesses distinct muscle–tendon parameters,
whereas the functional parameters are universal across
all muscles.

2.2 Model parameter identification method

The mathematical model of a single muscle gives the mapping
relationship between muscle activation and single muscle force.
Then, the torque generated by a single muscle relative to the knee
joint can be expressed as shown in Equation 10:

Mi � Fmt
i ri, (10)

where ri is the muscle force arm relative to the knee joint.
Furthermore, the total torque of all muscles relative to the knee
joint is shown in Equation 11:

τ � ∑Mf −∑Me, (11)

where Mf represents flexion torque and Me represents
extension torque.

Substituting the established models of four muscles into
Equation 11, we obtain a total of 26 unidentified parameters,
comprising 20 muscle–tendon parameters and six function
parameters. The unidentified parameters are represented in
vector form, as shown in Equation 12:

λ � A,ΔWasc, vasc,ΔWdes, vdec, ε0, l
m
o,i, ϕo,i , F

m
o,i, q

v
i , l

t
i[ ]. (12)

Then, the identification of model parameters can be transformed
into an optimization problem, as shown in Equation 13:

λo � minFun λ( )s.t. λ ∈ λmin, λmax[ ], (13)
where λo is the optimal parameter vector, [λmin, λmax] is the range of
λ, and Fun(λ) is represented in Equation 14:
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Fun λ( ) �

�������������
1
N

∑N
n�1

τn − τ̂n( )2
√√

, (14)

where τn and τ̂n represent the estimated joint torque of the model
and the reference joint torque, respectively, and N is the number of
samples. The lower limbs are considered a two-link mechanism,
with its inertia matrix and center of mass position derived from an
individual musculoskeletal model established in OpenSim. Through
inverse dynamics, knee joint torque can be calculated based on the
lower limb motion information at each sampling moment, which
serves as the reference joint torque τ̂n.

The proposed model requires the identification of 26 parameters
and involves the coupling of multiple nonlinear models. Additionally, it
is necessary to account for potential noise contamination in the
experimental data (fluctuations in EMG signals) and the multimodal
optimization problem. Consequently, the GA is employed in this study
due to its robust global search capabilities, which are particularly
effective in addressing high-dimensional nonlinear optimization
problem. The GA’s independence from gradient-based or continuity
assumptions makes it well-suited for handling noisy experimental data.
Furthermore, the incorporation of crossover and mutation operators
within the GA framework mitigates the risk of converging to local
optima. λ is encoded as a chromosome in floating-point form,with each
parameter within λ acting as a gene. The muscle–tendon parameter
values of the individual musculoskeletal model in OpenSim are taken as
initial physiological values for λ, and Fm

o,i in λ takes a range within 50%
of the initial value, while the remaining parameters take a range within
20% of the initial value. The specific parameter ranges are shown
in Table 1.

The range of muscle–tendon parameters does not represent their
physiological ranges because the proposed musculoskeletal model is
a simplification of the physiological models. During the parameter
identification process, some unmodeled muscle functions are
represented through mathematical equivalences. The relationship
between the parameter values of the proposed model and their
physiological counterparts should be interpreted with caution.

3 Sensitivity analysis

Since the parameters of each individual’s muscle model are
generally different, in applications where real-time performance is
not critical or computational resources are sufficient, it is feasible to
identify model parameters for each individual to achieve a high-
precision model. However, in scenarios with stringent real-time

requirements, such as robot control systems or online identification
systems, a simplified model with low accuracy loss is needed. To
simplify the model and control the accuracy loss of the output, a
sensitivity analysis is conducted to assess the impact of each
parameter on the model’s output. This allows for the omission of
low-sensitivity parameters in the identification process for each
individual model, thereby reducing computational complexity
without significantly compromising performance. Therefore, this
part evaluates the influence of parameters on model output and
interaction effects between parameters by using Sobol’s global
sensitivity index.

Sobol’s sensitivity analysis requires model parameters as inputs
and produces a scalar output. However, the transfer function of the
musculoskeletal model is T: [li, vi, ui, ri] ⊆ Rm → τ. Its inputs are
biological and physical signals, and the output is the torque of
muscle relative to the joint. Furthermore, the influence of model
parameters on model outputs can vary significantly depending on
the nature of the biological and physical signals. Therefore, a
mathematical model that takes model parameters as inputs and
produces scalar outputs needs to be constructed. Referring to
Equation 14, when the sequence of biological and physical signals
collected experimentally is determined, Equation 15 can
be obtained:

Y � f λ( ) �

��������������������
1
N

∑N
n�1

τn λ( ) − τ n λ0( )( )2√√
, (15)

where τ n(λ0))2 is the joint torque obtained through optimal model
parameters, τn(λ) is the joint torque obtained through arbitrary
model parameters, and Y represents the output.

Y is defined as the disturbance caused to the output when
optimal model parameters are replaced with arbitrary model
parameters within a specific sequence of biological and physical
signals. When the global sensitivity index of a model parameter
with respect to Y is low, it indicates that changes in this parameter
have a minimal effect on Y, so this parameter has little disturbance
on the output of T and can be set as a constant without identification.
Conversely, this parameter will have a greater impact on the
output of T and needs to be identified individually for
different subjects.

Sobol’s global sensitivity index is calculated using the Monte
Carlo method and methods proposed by Sobol and Saltelli (Saltelli
et al., 2010; Jansen, 1999), which are based on approximating results
from large samples of inputs and outputs. This method not only
evaluates the impact of individual input parameters on the output
but also quantifies the influence of interactions between different
parameters on the output. Additionally, this method provides
accurate sensitivity indices, regardless of whether the relationship
between model inputs and outputs is linear or highly nonlinear.
However, it is important to note that the computational cost of
applying this method to high-dimensional models can be significant.
Therefore, it is essential to first validate the effectiveness of the
model before employing this method.

If Sobol’s method is used to analyze the sensitivity in Equation
15, the first-order sensitivity index can be expressed as Equation 16:

Sλi � Varλi Eλ~i Y|λi( )( )
Var Y( ) , (16)

TABLE 1 Range of unidentified parameters.

Parameter Range Parameter Range

A [-3, 0.01] lmo,i Initial± 50%

ΔWasc, ΔWdes [0.01, 1] ϕo,i Initial± 20%

vasc, vdec [2, 4] Fm
o,i Initial± 20%

ε0 [0.2, 0.6] qvi [8, 12]

lti Initial± 20%
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where λi represents the ith model parameter, λ~i represents the
sample matrix of all parameters, and λi. Varλi(·) and Eλi(·) represent
the variance and mean of (·), given a series of λi, respectively. The
first-order sensitivity index quantifies the impact of parameter λi on
the output Y but does not account for the effects of λi changing
simultaneously with other parameters on the output Y (the
interaction effect of parameters). Therefore, the global sensitivity
index and second-order sensitivity index are also required. The
global sensitivity index STλi can be expressed as Equation 17:

STλi � 1 − Varλ~i Eλi Y|λ~i( )( )
Var Y( ) . (17)

STλi includes the main effect of the parameter and all interaction
effects, which is the primary reference index for evaluating the
impact of λi on the output.

The second-order sensitivity index of λiand λj is shown in
Equation 18:

Sλij �
Varλij Eλ~ij Y|λi, λj( )( )

Var Y( ) − Sλi − Sλj, (18)

where λij represents the ith and jth model parameters, λ~ij
represents the sample matrix of all parameters, and λi and λj.
Sλij evaluate the impact of simultaneous changes in λi and λj on
the output, respectively.

The sensitivity index of each order in Sobol’s method can be
obtained analytically by integration methods. However, for high-
dimensional models, this method is very complex, and therefore,
Monte Carlo methods are often used to approximate the variance of

various terms based on a large amount of sample data. Here, Sobol’s
sequence was used to sample model parameters, generating two
independent sample matrices AP×26 and BP×26, where each row
vector represents a sample point of the model parameter and P
denotes the number of samples. If the ith columns of matrixes A and
B are swapped, then AB(i) and BA(i) can be obtained; if the ith and jth
columns are swapped, then AB(ij) and BA(ij) can be obtained. By
substituting each column from the above matrices into Equation 15,
output vectors such as f(A) and f(B) can be obtained.

Then, the first-order sensitivity index can be calculated using
Equation 19:

Varλi Eλ~i Y|λi( )( ) � 1
P
∑P
p�1

f B( )p f AB i( )( )p − f A( )p( ), (19)

where (·)p is the pth element of the output vector (·).
The variance term in the global sensitivity index is shown in

Equation 20:

Varλ~i Eλi Y|λ~i( )( ) � 1
P
∑P
p�1

f A( )p f A( )p − f AB i( )( )p( ) (20)

The variance term in the second-order sensitivity index is shown
in Equation 21:

Varλij Eλ~ij Y|λi, λj( )( ) � 1
P
∑P
p�1

f A( )pf BA ij( )( )
p
− f2

0, (21)

where f0 is the mean of the output vector. The mean and variance of
the output are shown in Equation 22:

FIGURE 3
Arrangement of sensors: 20 markers are attached on the subject’s lower limb, four EMG sensors are placed on major muscles of the knee joint for
this study, and two EMG sensors are used for other studies.
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f0 � 1
P
∑P
p�1

f A( )p

Var Y( ) � 1
P
∑P
p�1

f A( )p2 − f0
2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ . (22)

Calculations are required between each pair of vectors in the
individual model to obtain all second-order sensitivity indices. Since
there exist multiple individual models in this study, which will
greatly increase the computational load, we first consider the global
interaction index, as shown in Equation 23:

IN � 1 −∑26
i�1

Sλi. (23)

When IN is large, it indicates that there are significant interaction
effects between the model parameters. Then, the parameter
interaction index INi can be calculated using Equation 24:

INi � STλi − Sλi. (24)
If INi is above a specific threshold, the calculation of second-order
sensitivity index is considered.

Sobol’s method can calculate a higher-order sensitivity index but
is limited by the amount of computation. After calculating the
parameter sensitivity index for an individual musculoskeletal
model, when ranking the importance of parameters, the global
sensitivity coefficient STλi should be considered the primary
criterion. If STλi is very small, this indicates that the parameter
λi not only has aminimal impact on the output but also exhibits little
interaction effects with other parameters. Then, λi can be treated as a
fixed value for model simplification. If Sλij is large, it indicates that
different combinations of parameters λi and λj will have a greater
impact on the output, and both parameters need to be identified
simultaneously to ensure the accuracy of the model.

After parameters for multiple subjects’models are systematically
identified, sensitivity analysis can be performed on each individual’s
musculoskeletal model. The basic idea of the sensitivity-based model
simplification method is to start with the simplest model, in which
the unidentified parameters should include all high-sensitivity

parameters and those with significant interaction effects. By
gradually increasing the number of unidentified parameters in
the simplest model according to the descending order of the
sensitivity index, the changes in model performance during this
process can be examined to obtain an appropriate simplified model.
For the musculoskeletal model proposed in this paper, the specific
steps of the simplification method are as follows:

(1) For the first-order sensitivity index, calculate the mean of the
sensitivity index for each parameter across different
individual models. Set a threshold, and consider
parameters with a mean index higher than this threshold
as high-sensitivity parameters.

(2) For individual models with interaction effects, set a threshold,
and consider parameters with a second-order sensitivity index
higher than this threshold as high-interaction effect
parameters.

(3) Consider the high-sensitivity and high-interaction effect
parameters as unidentified parameters while treating the
remaining parameters as constants, thereby forming the
simplest model.

(4) Employ the GA to identify the parameter of the simplest
model, evaluate, and record its performance. Subsequently,
based on the mean first-order sensitivity index, gradually
increase the number of unidentified parameters in the
simplest model, identify the parameters, and record the
model’s performance accordingly.

(5) Based on the performance required for musculoskeletal
model applications, the final simplified model can be
determined.

These steps are primarily targeted at the model proposed in this
paper. When other models employ the sensitivity-based
simplification method, adjustments need to be made according to
the aforementioned basic idea. Additionally, the GA operators used
in the method differ from those utilized in Section 2.2. Considering
that the number of unidentified parameters in this process might be
too small, employing floating-point chromosomes for crossover and
mutation might lead to convergence at a local optimum. Therefore,

FIGURE 4
Schematic diagram of signal processing.
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simulated binary crossover (SBX) and polynomial mutation
operators are used to enhance the randomness during the
iteration process of the GA.

4 Experiment

The raw EMG signals are collected using the wireless surface
electromyography analysis system (YW-Wireless) from Beijing
Zhitong Huayu Technology Co., Ltd. The wireless sEMG sensors
are placed on the skin closest to the target sampling muscles, with a
sampling frequency of 2,000 Hz and a receiver bandwidth set at
7 Hz–1,000 Hz. The lower limb motion information is collected
using the NOKOV motion capture system, which has a sampling
frequency of 200 Hz and consists of 12 cameras and 20 markers. All
sensor positions in the lower limbs are shown in Figure 3.

The subjects were asked to perform static standing, maximum
voluntary contraction (MVC) tests, and hip joint internal/external and
flexion/extension movements. Static standing movement is used for
constructing individual musculoskeletal simulation models in
OpenSim. The MVC tests are conducted according to the
experiment protocol given by Moreira et al. (2021) and include tests
for quadriceps and hamstrings muscles, which are completed in sitting
and lying positions, respectively. The MVCs are used for calculating
standardized EMG signals. Hip joint internal/external and anterior/
posterior extension movements require the subject to first stand on one
leg so that the tested leg is suspended; then, the subject tries to keep the
thigh and calf in a straight line with the knee angle unchanged, followed
by performing hip joint adduction, abduction, flexion, and extension,
and finally returning to a standing position. This action can ensure
single-leg suspension, thus simplifying the need for ground reaction
force sensors, while ensuring the contraction and extension of thigh
muscles and allowing the knee joint to bear a certain torque. When the
participants performed the actions, the raw signal from two kinds of
sensors was synchronously collected using XINGYING software of the
NOKOV motion capture system, and after interpolation of distorted
points, the position data of marker points in a ground coordinate
system and sEMG signal data were exported.

Considering the variability in the EMG intensity, skeleton, and
muscle geometry among different individuals, it is necessary to
perform normalization and calibration based on biological and
physical signals. For the EMG signal, the band-pass filter is used
to remove noise. A second-order Butterworth band-pass filter with
cutoff frequencies at 20 Hz and 450 Hz is used, and a fourth-order
Butterworth low-pass filter with a corner frequency at 6 Hz is then

FIGURE 5
Comparison between the estimated results and the reference of eight subjects in the validation trial. Each identified model exhibits good accuracy.

TABLE 2 NRMSE and R2 in the validation trial. The model performances of
S1 and S6 are the poorest, whereas those of S4 and S7 are the best.

Subject NRMSE
(%)

R2 Subject NRMSE
(%)

R2

S1 11.226 0.8590 S5 6.2660 0.9721

S2 10.702 0.8917 S6 10.482 0.8357

S3 10.320 0.9052 S7 5.4358 0.9656

S4 5.9170 0.9709 S8 8.6556 0.9409
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applied. Following this, the absolute value of the filtered EMG signal
is taken and then divided by the maximum EMG amplitude
recorded during MVC, thereby obtaining the normalized EMG
signal. For the calibration of skeleton and muscle geometry,
along with using medical imaging (such as MRI), which offers

high precision but is complex and costly, one approach is to
create personalized musculoskeletal models and motion
simulations in OpenSim. This method only requires motion
capture data to obtain geometric data. By using motion capture
data from a standing position to scale the simulation model in

FIGURE 6
Comparison of the muscle activation curves between the worst group (S1 and S6) and the best group (S4 and S7). The curve fluctuation of the worst
group is significantly greater than that of the best group.

TABLE 3 Mean of identified parameters.

Function parameter Value Function parameter Value

A/λ1 −1.3895 ΔWasc/λ2 0.3514

vasc/λ3 2.7315 ΔWdes/λ4 0.4015

vdec/λ5 2.5282 ε0/λ6 0.3687

Muscle–tendon parameter RF VL VM BF

lmo,i(m) / λ7 ~ λ10 0.0957 0.0667 0.1049 0.1020

ϕo,i(rad) /λ11 ~ λ14 0.0946 0.0838 0.1028 0.2419

Fm
o,i(N) / λ15 ~ λ18 1196.8 1779.8 1000.7 1437.7

qvi / λ19 ~ λ22 13.794 8.9608 7.7009 11.862

lti / λ23 ~ λ26 0.4278 0.2006 0.1538 0.4466

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Li et al. 10.3389/fbioe.2025.1566381

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1566381


OpenSim, one can obtain approximate skeletal geometry data for the
individual. Then, based on motion capture data during movement,
action simulations are performed to derive specific time-varying
values of tendon lengths and muscle moment arms, serving as
muscle geometry data. After calibrating the musculoskeletal
model, it is then possible to analyze the reference joint torque
through the lower limb dynamics. The schematic diagram
illustrating the biological and physical signal processing methods
is shown in Figure 4.

5 Simulation and result analysis

5.1 Verification of the proposed model

In this study, eight subjects were selected to collect the biological
and physical information on lower limb movement, and the

parameters of each individual’s musculoskeletal model are
identified. The identified model is vilified by the validation set
composed of signals collected from a single cycle of lower limb
movements using NRMSE and R2. The NRMSE evaluates the
amplitude difference between the model output and the reference
results, while R2 assesses the correlation between the model output
and the reference results. The smaller the NRMSE value and the
greater the R2 value, the better the model performance. Figure 5
shows the comparison of knee joint torque curves calculated by the
identified models with the reference joint torque curve in the
validation set. To eliminate differences in movement speed
between individuals in Figure 5, the movement cycle (from the
start to the end of the movement) is standardized into a normalized
timeline ranging from 0% to 100%, denoted as Cycle (%). Table 2
presents the evaluation parameters of the result.

According to the evaluation results, the NRMSE and R2 of
Subject 1 (S1) and Subject 6 (S6) are worse than those of other

FIGURE 7
First-order sensitivity index of parameters in each individual model.

FIGURE 8
Global sensitivity index of parameters in each individual model.
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subjects. As shown in Figure 5, the reference torque of S1 and
S6 exhibits abrupt changes near 50% of the motion cycle. The
transition from positive torque to negative torque indicates that
the lower limb underwent distinct end and start phases of
movement. In addition, from the perspective of the model input,
Figure 6 compares the muscle activation changes between the worst
group (S1 and S6) and the best group (S4 and S7). It can be observed
that the fluctuations in muscle activations in the worst group are
significantly more frequent and less distinct than those in the best
group. Therefore, the superposition of these two factors may have
contributed to the poor final evaluation results.

Compared with the results evaluated by Zhang et al. (2023) and
WangW. et al. (2021), where the former uses both the identification
model and LSTM model and the evaluation results are NRMSEs of
15.2% and 6.0%, the proposed model in this study demonstrates
better results than the identification model proposed by Zhang et al.
(2023), but is inferior to the LSTM model. The latter also employed
an identification method, but with the addition of an error
prediction mechanism, it results in a single individual model
evaluation RMSE of 1.14. If the proposed model in this study
used RMSE to evaluate the performance, the best and worst
results are 0.6376 and 1.3555, respectively, indicating that the

proposed model is superior in some individuals to the model
proposed by Wang W. et al. (2021). However, considering that
the model proposed byWangW. et al. (2021) did not validate across
multiple individuals, the comparison can only serve as a
preliminary reference.

The above results demonstrate that the proposed model can
accurately estimate knee joint torque based on biological and
physical signals, exhibiting a certain level of accuracy under
controllable input signal noise.

5.2 Parameter sensitivity analysis result

In this section, global sensitivity analysis is conducted on the
musculoskeletal model of each individual, followed by model
simplification based on the sensitivity and, finally, an evaluation
of the performance of the simplified model. It should be noted that
sensitivity analysis can be directly applied to the proposed model
without parameter identification. However, conducting sensitivity
analysis without first validating the effectiveness of the model would
be meaningless. Furthermore, to compare the accuracies of the
original and simplified models, sensitivity-based model
simplification is performed on each identified model.

According to the specific values of all individual model
parameters, the mean of each parameter is shown in Table 3.
This value will be used as the fixed parameter value in the
simplified model.

To simplify the model based on the sensitivity of the
parameters to the model output, the first-order and global
sensitivities of each individual identification model are
calculated separately. The first-order sensitivity index of the
eight individual models is shown in Figure 7. For multiple
subjects, the identified model shows high first-order sensitivity
to maximum voluntary muscle force Fm

o,i (Sλi ≤ 0.9973), followed by
fixed tendon length lti (Sλi ≤ 0.6811). The first-order sensitivity
index of ΔWdes is evident only in the model of S2 (Sλ4 � 0.0802),
and the first-order sensitivity indices of other parameters are
relatively low. The global sensitivity index is shown in Figure 8;
compared with global sensitivity and first-order sensitivity, their
distributions within the individual model parameters are
essentially the same, so it can be inferred that there are weak
interaction effects between high-sensitivity parameters and low-
sensitivity parameters.

To accurately judge the interaction effect between model
parameters, the global interaction index IN is calculated and
shown in Figure 9a. Only the models of S1 and S5 show
significant parameter interaction effects. The parameter
interaction index INi for the models of S1 and S5 is shown in
Figure 9b. If a threshold for INi is set to 0.05, then the second-order
sensitivity coefficients of λ9, λ16, λ18, and λ25 should be checked.
Figure 10a illustrates the second-order sensitivity index for S1,
demonstrating a clear interaction effect between λ9 and λ25.
Figure 10b shows the second-order sensitivity index for S5, also
revealing a clear interaction effect between λ16 and λ18. This proves
that there is no obvious interaction effect between the other
parameters, except for the aforementioned four parameters.

Based on the results of sensitivity analysis at each order, the
proposed model can be simplified. After calculating the mean value

FIGURE 9
Global and parameter interaction indices. (a) indicates that S1 and
S5 models have an obvious interaction effect. (b) reveals which
parameter’s second-order sensitivity index should be calculated. (a)
Global interaction index of each individual model. (b) Parameter
interaction index in S1 and S5.

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Li et al. 10.3389/fbioe.2025.1566381

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1566381


of the global sensitivity index for each parameter, the model
parameters are arranged in a descending order based on these
mean values. The first q parameters are selected with the highest
sensitivity as identification objects, and then, q is incrementally
increased to analyze the relationship between model accuracy and

the number of identification objects. Additionally, when q takes its
minimum value, the identification objects should at least include λ9,
λ16, λ18, and λ25, considering the interaction effects among them.
Therefore, we take q = 4 as the minimum value. The GA is used to
identify the parameters of the simplified model, and the ratio of the

FIGURE 10
Second-order sensitivity index. (a) Sλij for S1. (b) Sλij for S5.

FIGURE 11
Variation curve of R relative to q.
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simplified model’s precision compared to the original model’s
precision is expressed as Equation 25:

R � RMSEO

RMSES
, (25)

where RMSEO is the RMSE of the original model and RMSES is the
RMSE of the simplified model. R represents the accuracy of the
simplified model relative to the original model, indicating that the
simplified model can achieve R × 100% of the original model’s
accuracy. As q increases, the change curve of R is shown in Figure 11.

It is noted that when q> 16, increasing the number of
parameters for most individual models yields minimal
improvements in the accuracy. At q � 16, except for Subject
7 and Subject 6, the number of parameters to be identified for
the simplified individual models is reduced by approximately 40%,
with the accuracy loss represented by the R value being less than
20%. Thus, using the model with q � 16 as a simplified model for
subsequent research can be considered. In addition, some individual
models in Figure 11 show a decrease in R as q increases. This is
because the GA used in the identification process limits the
maximum number of iterations to 1,000, which may prevent
high-dimensional models from reaching an optimal solution,
resulting in a worse identification effect than that of low-
dimensional models. Therefore, when applying the simplified
model, factors such as computing power, precision, and efficiency
should be comprehensively considered. The results of this part
provide certain ideas for a more in-depth study on
musculoskeletal model simplification.

6 Discussion

In this section, the limitations of this study are discussed, along
with potential ways to address these limitations and enhance the
performance of lower-limb musculoskeletal models.

This study proposes amusculoskeletal model of the knee joint by
integrating four major muscles. The selection of these muscles is
mainly based on the ease of signal acquisition and related research
on EMG signal collection (Moreira et al., 2021; Wei et al., 2023).
However, the movement and stability of the knee joint are achieved
through the coordinated action of multiple muscles. Although
parameter identification compensates for unmodeled muscle
functions through mathematical equivalence, the choice of
different muscles may influence the musculoskeletal model’s
performance. The specific impact and methods for selecting the
optimal muscle combination require further investigation.
Additionally, there is a structural discrepancy between the
proposed model and biological models, which may result in
muscle parameters falling outside biological ranges. A study has
proposed using measured muscle synergies to estimate unmeasured
muscle excitations (Ao et al., 2020). Combining this approach with
the proposed musculoskeletal mechanics model could potentially
resolve this issue and improve model performance.

The proposed model simplification method is generally
applicable to musculoskeletal models. However, it is based on
statistics and samples, and its computational cost may be high
for high-dimensional models. Moreover, insufficient sample size

or suboptimal sampling ranges may lead to misleading conclusions,
thus requiring further validation of its applicability in other high-
dimensional musculoskeletal models.

The data used in this study were obtained from experiments
involving foot suspension movements, which eliminated the need
for ground reaction force measurement devices. However, this
experimental setup cannot generate data for activities, such as
gait or stair climbing. In addition, the EMG signals from public
databases do not fully match those of the muscles in the proposed
musculoskeletal model. Therefore, the feasibility of the identified
model for more types of movements needs to be further verified.
In future research, we plan to use robots to apply load forces to
human subjects while estimating the force feedback through
robot sensors, enabling online/offline identification of lower-
limb musculoskeletal models across various movements, with
the ultimate goal of applying the identified model to robotic
control systems.

7 Conclusion

This paper investigates parameter identification and
sensitivity analysis of a lower-limb musculoskeletal model,
proposing a novel sensitivity-based model simplification
method. The constructed musculoskeletal model utilizes only
four major muscles, and the identified parameters of multiple
individual neuromusculoskeletal models through the GA exhibit
good accuracy. By applying Sobol’s global sensitivity analysis to
the proposed model, this study systematically reveals the impact
of model parameters on the accuracy of joint torque predictions
and realizes the objective reduction in the number of unidentified
parameters based on the sensitivity. Experimental validation
demonstrates that the sensitivity-based simplification method
effectively balances the accuracy of torque estimation with the
number of unidentified parameters. This study lays a
methodological foundation for human–machine interaction
control in rehabilitation robotics.
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