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Human Motion Intention Recognition (HMIR) plays a vital role in advancing
medical rehabilitation and assistive technologies by enabling the early
detection of pain-indicative actions such as sneezing, coughing, or back
discomfort. However, existing systems struggle with recognizing such subtle
movements due to complex postural variations and environmental noise. This
paper presents a novel multi-modal framework that integrates RGB and depth
data to extract high-resolution spatial-temporal and anatomical features for
accurate HMIR. Our method combines kinetic energy, optical flow, angular
geometry, and depth-based features (e.g., 2.5D point clouds and random
occupancy patterns) to represent full-body dynamics robustly. Stochastic
Gradient Descent (SGD) is employed to optimize the feature space, and a
deep neuro-fuzzy classifier is proposed to balance interpretability and
predictive accuracy. Evaluated on three benchmark datasets—NTU RGB + D
120, PKUMMD, and UWA3DII—our model achieves classification accuracies of
94.50%, 91.23%, and 88.60% respectively, significantly outperforming state-of-
the-art methods. This research lays the groundwork for future real-time HMIR
systems in smart rehabilitation and medical monitoring applications.
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1 Introduction

Human Motion Intention Recognition (HMIR) stands as a revolutionary computing
domain that utilizes sophisticated computational models to interpret human movements
(Ahmad et al., 2020). The applications of HMIR systems continue to broaden throughout
surveillance security and human-computer interaction, but healthcare remains their most
critical domain of deployment (Mahwish et al., 2021). HMIR shows remarkable potential to
detect subtle medical movements such as sneezing and coughing while recognizing signals
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from back distress and neck discomfort and other specific regional
pain indicators. Successful medical HMIR systems require a multi-
modal architecture which combines RGB along with depth data for
enhanced detection of hard-to-detect movements (Azmat and
Ahmad, 2021).

HMIR stands as a revolutionary computing domain that utilizes
sophisticated computational models to interpret human
movements. The applications of HMIR systems continue to
broaden throughout surveillance security and human-computer
interaction but healthcare remains their most critical domain of
deployment (M. Muneeb et al., 2023). HMIR shows remarkable
potential to detect subtle medical movements such as sneezing and
coughing while recognizing signals from back distress and neck
discomfort and other specific regional pain indicators. Successful
medical HMIR systems require a multi-modal architecture which
combines RGB along with depth data for enhanced detection of
hard-to-detect movements (Mahwish and Ahmad, 2023).

Applications of a multi-modal HMIR framework include RGB
and depth data to achieve complete spatial and temporal details.
When RGB data combines with depth data it delivers detailed visual
information that is enhanced by depth details which reduce the
impact of scene lighting variations and spatial occlusions (Amir
et al., 2020a). The integrated system produces enhanced human
action recognition capabilities which work especially well in medical
settings with complex environments and poor lighting conditions
(Ahmad et al., 2019).

The proposed approach leverages three key datasets—NTURGB
+ D 120, PKUMMD, and UWA3DII—known for their diversity in
activities and environments. These datasets which feature
comprehensive patient scenarios validate model training because
they expand medical application possibilities. Through the
combination of RGB and depth data extraction techniques the
HMIR system obtains both detailed spatial information and
temporal pattern analysis. Kinetic energy alongside Histograms of
Optical Flow (HOF) and angular geometric features together with
eight round angles create the RGB features for analyzing movement
dynamics and postural modifications. Depth features incorporate
2.5D point clouds together with random occupancy patterns and
movement polygon which add to RGB data by providing strong
three-dimensional spatial understanding to resist occlusions and
environmental changes. The performance optimization process
depends on stochastic gradient descent (SGD) for achieving
efficient and accurate model convergence (Ogbuabor et al., 2018).
A neuro-fuzzy classifier performs classification work by aligning
neural network adaptability with fuzzy logic interpretability for
identifying medical significant movements with precision. Our
proposed research contributions to this field:

• This study introduces a multi-modal approach combining
RGB and depth data to extract features like kinetic energy,
HOF, angular geometry, and 3D spatial patterns, enabling
precise analysis of human activities in medical contexts

• The proposed system incorporates stochastic gradient descent
(SGD) for optimization, ensuring rapid convergence and
robustness even when handling large-scale datasets, which
are essential for real-world applications.

• By employing a neuro-fuzzy classifier, the research addresses
the challenges of uncertainty and overlapping characteristics

in medical activity recognition. This classifier enhances
interpretability and precision, ensuring accurate
differentiation of subtle actions.

• A comprehensive benchmark evaluation of the model takes
place on NTU RGB + D 120, H3D and PKUMMD datasets to
assess its performance for different medical applications. The
proposed model exceeds all current benchmark methods by
delivering superior outcomes for accuracy, precision, F1 score
and recall metrics.

The remainder of this paper is structured as follows: Section 2
provides a comprehensive review of existing literature in the domain
of Human Motion Intention Recognition (HMIR), particularly
focusing on multimodal approaches and rehabilitation
applications. Section 3 details the materials and methodology,
including system architecture, preprocessing, segmentation,
skeleton generation, and feature extraction techniques. Section 4
presents the feature optimization and classification techniques used,
including stochastic gradient descent and the deep neuro-fuzzy
classifier. Section 5 describes the performance evaluation setup
and elaborates on the benchmark datasets used. Section 6
discusses experimental results, learning curves, and ablation
studies, followed by a comparative analysis with state-of-the-art
methods. Section 7 outlines the implications, potential applications,
and limitations of the proposed system. Finally, Section 8 concludes
the paper and suggests directions for future research.

2 Literature review

The study by Chen et al. (2021) developed a hybrid vision-based
system that employed RGB and depth sensors to track stroke patient
rehabilitation activities. The system processed depth sensor skeleton
features together with RGB video spatiotemporal data to produce its
inputs. A dual-stream convolutional neural network analyzed
multiple input modalities to achieve 91% success in detecting
rehabilitation exercises. The system showed drawbacks because
outdoor lighting fluctuations deteriorated the quality of RGB
sensor information. The study conducted by Lin et al. (2023)
investigated depth data interpretation for Human Motion
Intention Recognition (HMIR) in assistive technologies. Their
research developed a HMIR model with depth sensors that traced
joint movements to generate advanced motion pathway data for
people who need help walking. The developed model performed
better than traditional depth-only approaches achieving a fall
detection accuracy with an F1 score of 0.94. The system faced
persistent problems detecting occlusions when operating in
crowded areas (Riedel et al., 2008).

A multimodal fusion approach was developed by Xefteris et al.
(2024) to merge inertial sensors with an RGB camera for 3D human
pose analysis in posture correction therapy. The hybrid LSTM-
Random Forest fusion network operated on time-series motion data
to generate accurate improper movement detection outcomes. The
system needed extensive computational capacity which made its
real-time deployment impractical. The research team of Jang et al.
(2020) developed an assistive system powered by RGB-D sensors to
track daily routines of elderly individuals at affordable prices. The
ETRI-Activity3D dataset provided researchers with real-world daily
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elderly life action categories alongside tools to analyze large-scale
activity recognition problems. The systemmonitored body positions
with depth information as it aimed to create budget-friendly
monitoring solutions that avoided invasive medical procedures.
Sensor blocks and individual behavioral variations led to
detection challenges for the system when monitoring
subtle movements.

A system for human activity detection utilizing encrypted RGB
and depth data was developed by Wang et al. (2022). The study
demonstrated that real-time functionality could run smoothly when
privacy protection protocols were implemented. Data encryption
created restrictions that diminished the system’s measurement
precision. A detection system for fainting events in elderly
populations was created by depth sensors using their ability to
analyze skeletal changes (Chalvatzaki et al., 2018). The combination
of long short-term memory cells within the network produced
accurate human gait stability predictions by analyzing fainting
events. Despite these shortcomings the system showed reduced
effectiveness for detecting subtle or incomplete transitions that
could signal potential syncope events requiring further
development.

An RGB-D-based system created by Chen and Fisher (2023)
monitored older adult inactivity through detecting prolonged
periods of immobility that indicated potential health issues. The
lightweight camera monitoring system delivered successful results
across multiple environments although issues with irregular lighting
conditions and obstructed objects negatively affected its operational
stability. (Elforaici et al. (2018) invented a rehabilitation monitoring
system that used RGB cameras to measure repetitive motion as well
as posture asymmetry. This technique demonstrated average
accuracy because it processed only RGB information yet shown
flexibility to illumination changes although it failed to capture depth
perception.

The researchers developed a real-time fall detection system
using depth sensors which found applications in medical settings
according to Smith et al. (2021). The model showed high sensitivity
that led to quick emergency responses. System performance suffered
due to its inability to distinguish abrupt non-critical movements
during activities such as sitting from genuine accidental falls. An
integrated fainting detection solution was proposed by Huang et al.
(2020) through combining depth sensors with thermal sensors.
Strong environmental adaptability combined with excellent
operational performance enabled the system to detect fainting
incidents effectively. Additional system modifications were
required to make the system more sensitive yet still maintain
total reliability standards (Rodrigues et al., 2022).

3 Materials and methods

3.1 System methodology

The developed framework effectively obtains distinct temporal
and spatial features from RGB images and depth data to establish
robust activity group classification. The system transforms video
frames into images to execute preprocessing activities that remove
unnecessary data while obtaining crucial information. The system
maintains high data quality while achieving efficient computation

through its data processing sequence. The preprocessing phase
consists of three key steps: image normalization, noise removal,
and Region of Interest (ROI) extraction. Through a combination of
image normalization and noise removal processes the data achieves
enhanced refinement before ROI extraction produces distinct vital
regions by filtering away nonessential background components.
Body segmentation techniques enable more effective subject
isolation by disassociating human figures from their surrounding
environments. The determination of subjects becomes precise when
depth data is used accurately throughout this processing stage
because it yields detailed boundary definitions for improved
subsequent analytical results. The system conducts skeleton
extraction and key-point generation procedures which derive
vital spatial information from segmented contours.

The system employs a method which reduces extracted features
to optimize performance versus precision in identification tasks. The
optimized features travel to a classifier for both accurate and efficient
activity recognition. Figure 1 shows a complete model design that
combines RGB and depth data to boost HMIR performance. This
multi-modal approach leverages the complementary strengths of
both data types, resulting in a robust system capable of accurately
identifying subtle and complex human activities.

3.2 Image preprocessing

Image preprocessing plays a pivotal role in handling video or
image-based data, as it helps eliminate irrelevant information while
enhancing image quality for seamless and efficient analysis. This
stage involves three primary steps: 1) Normalization, 2) Noise
reduction, and 3) ROI identification. For RGB data, video
sequences are first converted into individual image frames, with
the number of frames per video varying significantly. Given that
typical videos contain around 30 frames per second, processing all
frames can lead to increased system complexity (Nida et al., 2021).
To address this, we reduced the frame count to 20 keyframes by
analyzing pixel intensity through histogram distribution and
selecting frames with the most significant intensity variations.
Mathematically expressed in Equation 1:

H I( ) � argmaxi∈ 1,...,N( ) ∑B
k�1

��������������
Hi k( ).Hi−1 k( )( )2

√⎛⎝ ⎞⎠ (1)

whereHi(k) represents the kth bin in the histogram for the ith time
frame. N is the total number of frames and B is the total number of
bins in the histogram. Once the frames are extracted from the RGB
and depth data, the next step involves removing noise to enhance
image quality while preserving essential details for subsequent
analysis. To address the unique characteristics of each modality,
we applied separate denoising techniques: median filtering for RGB
data and bilateral filtering for depth data. Median filtering is a non-
linear approach particularly effective for removing salt-and-pepper
noise in RGB images. In this method, each pixel is replaced with the
median of its neighboring pixel intensities within a predefined
window. By focusing on the central tendency of pixel values,
median filtering not only eliminates noise but also preserves
edges, which are critical for accurate feature extraction.
Mathematically expressed in Equation 2:
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M v[ ] i, j( ) � median v x, y( )∣∣∣∣ x, y( ) ∈ N i, j( ){ } (2)

whereM[v](i, j) is the median filtered value at pixel (i, j), v(x, y)
is the original pixel value at position (x, y) and N (i, j) is the
neighborhood of pixel (i, j) defined by the kernel size. Bilateral
filtering performs depth data processing in a manner that
maintains all depth discontinuities without compromising
their effectiveness (Raza et al., 2023). The bilateral filtering
mechanism applies weighted pixels averaging through which
distance between pixels and their intensity match levels
impact weight intensity. Spatial and intensity data combine to
make pixels that are closer to both factors receive greater
importance in the averaging mechanism (Min et al., 2020).
Mathematically, the bilateral filter is defined in Equation 3:

B v[ ] i, j( ) � 1
W i, j( ) ∑

x,y( )∈N i,j( )
v x, y( )

· exp − i, j( ) − x, y( )���� ����2
2σ2s

− v i, j( ) − v x, y( )���� ����2
2σ2r

⎛⎝ ⎞⎠
(3)

where B[v](i, j) represents the filtered value at pixel (i, j), v(x, y) is
the intensity of the pixel at location (x, y), and N (i, j) denotes the
neighborhood around pixel (i, j). The parameters σ2s apply influence
on both pixel distance characteristics from others and pixel intensity
similarity features. The normalization factorW(i, j) ensures that the
weights sum to one. This filtering technique uses these parameters to
produce smoothed depth data which protects essential structural
boundaries needed for depth assessments. The joint implementation
of median filtering for RGB data with bilateral filtering for depth

information achieves optimal denoising results for each modality
(Mushhood et al., 2023).

Uniform pixel value scales across all images become the focus
during image normalization subsequent to denoising. Image
normalization stands as an essential step because both model
performance and generalization quality benefit from it
significantly. Without normalization the learning process
becomes controlled by features with large values that lead to
inaccurate predictions. Different normalization approaches exist
in architecture which support the preservation of distinct features
between RGB images and depth images (S. Hafeez et al., 2021).
Dimension normalization techniques function differently between
RGB images where Min-Max normalization is used and depth
images which require Z-Score normalization.

Through Min-Max normalization the pixel values in RGB data
acquire values between 0 and 1 while preserving their initial relative
strength patterns across the data set. Mathematically, this technique
is expressed as follows in Equation 4:

M v( ) � I x, y( ) −Min

Max −Min
(4)

In the above equation, I(x, y) represents the original pixel value
at position (x, y), while Max and Min denote the maximum and
minimum pixel values of the image, respectively. The normalization
method through value scaling produces consistent data while
lowering the impact of fluctuating light conditions in RGB image
bases (Saleha and Jalal, 2024).

Z-Score normalization shifts depth pixel values to zero mean
through scaling that depends on standard deviation. The method
provides advanced depth information processing by managing the

FIGURE 1
The architecture of the proposed system.
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variations in scene intensity distribution patterns (Singh et al., 2022).
Z-Score normalization is expressed in Equation 5:

Z v( ) � I x, y( ) − μ

σ
(5)

In this equation, I(x, y) is the pixel value at position (x, y), μ
shows the mean pixel value of the image, and σ depicts the standard
deviation of pixel values. Conducting this transformation produces
data with 0 mean and 1 standard deviation thus making the data
ready for depth measurements which require extensive value ranges
between frames.

The ROI extraction function operates as the final step of
preprocessing (Hammad et al., 2022). The selection of regions of
interest enables researchers to pinpoint image sections containing
human shapes which forms a critical step in the process. The system
accuracy and computational simplicity increase when ROI focuses
analysis on particular image sections. The proposed design utilizes
an automated method to extract target regions from RGB and depth
data which maintains accurate and consistent region detection
throughout multiple modalities.

Connected component analysis serves as the method for
extracting ROI by detecting human silhouettes. The method
arranges neighboring pixels with equivalent brightness levels to
recognize objects present in the image. After component
detection the algorithm calculates dimensions to create bounding
boxes around identified regions (Mushhood et al., 2022).
Mathematically, connected components can be represented in
Equation 6:

Ci � xi, yi, wi, hi( )∣∣∣∣∣∣∣∣∣∣ ∑xi+wi

p�xi
∑yi+hi
q�yi

f p, q( )> 0
⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭ (6)

Here, Ci represents a connected component, xi and yi denotes
the coordinates of the top-left corner of the bounding box, and wi

and hi are the width and height of the bounding box, respectively.
The double summation ∑xi+wi

p�xi ∑yi+hi
q�yi

f(p, q) ensures that the

bounding box encloses all pixels (p, q) where the intensity
function f(p, q) is greater than zero, indicating the presence of
relevant components. Once the connected components are
computed, bounding boxes are drawn around the detected
human silhouettes to define the ROI. The extracted ROI can be
mathematically represented in Equation 7:

ROIi x, y( ) � I x, y( )for xi ≤ x < xi + wi, yi ≤y < yi, hi (7)

Here, ROIi(x, y) represents the pixel values within the extracted
region of interest, and I(x, y) corresponds to the pixel values of the
original image. This formulation ensures that only the relevant
portions of the image containing the human silhouette are
retained for further processing. The automated ROI extraction
method efficiently processes both RGB and depth data by
dynamically identifying and isolating human silhouettes in
varying conditions. Figure 2 illustrates the preprocessing pipeline
for both RGB and depth data (Rafiq et al., 2024).

3.3 Body segmentation

In computer vision applications body segmentation proves
essential for human interaction recognition because it creates
effective boundaries between human figures and their
environmental contexts (Poulose et al., 2021). Segmentation
creates a human-focused section by removing extraneous
background features to allow enhanced analytical accuracy and
speed. Silhouettes act as fundamental image elements while all
surrounding video content functions as background information.
Segmentation serves an essential role by extracting meaningful
features which lead to improved classification system accuracy.
The work uses level set segmentation for RGB data processing
while combining RGB and depth-based methods for depth data
to produce exact and reliable silhouette extraction across both
data types.

FIGURE 2
Visuals of Preprocessing pipeline (a) Original Frames (b) Noise Removal (c) Image Normalization (d) ROI Extraction on NTU RGB + D 120 dataset.
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For RGB data, body segmentation was achieved using level set
segmentation. In this method, the silhouette is represented
implicitly using a level set function, ϕ(x, y, t), where the zero
level set ϕ � 0 corresponds to the boundary of the object. The
evolution of the contour is governed by the minimization of an
energy function that integrates internal forces to ensure
smoothness and external forces to attract the contour to object
boundaries (Fatima et al., 2024). The energy functional is
mathematically represented in Equation 8:

Etotal � ∫
Ω
μ ∇ϕ

∣∣∣∣∣∣∣∣ 2 + λg I( ) ∇ϕ∣∣∣∣ ∣∣∣∣ + vH ϕ( )( )dxdy (8)

Here, μ, λ and v are weighting parameters that control the
influence of each energy component. The first term, |∇ϕ | 2,
penalizes irregularities in the contour, ensuring smooth evolution.
The second term involves g(I), an edge indicator function given in
Equation 9:

g I( ) � 1

1 + ∇I || 2 (9)

where |∇I | represents the gradient magnitude of the image
intensity, directing the contour toward high-gradient regions. The
third term, H(ϕ), is the Heaviside function, which controls the

FIGURE 3
Illustration of Body Segmentation on RGB and Depth frames (a) Cough Falling Down Back Pain Fan self on NTU RGB + D 120 dataset. Illustration of
Body Segmentation on Depth frames (b) Cough Falling Down Back Pain Fan self on NTU RGB+D 120 dataset.
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contour’s size and position. The evolution of the level set function is
expressed by the following partial differential Equation 10:

∂ϕ

∂t
� μ · κ + λg I( )·|∇ϕ∣∣∣∣ − v (10)

where κ � div( ∇ϕ
|∇ϕ | ) is the curvature of the contour, ensuring

smoothness. The term g(I) attracts the contour to object edges,
while −v serves as a balloon force, adjusting the contour’s size. In the
proposed system, level set segmentation begins with an initial
contour placed around the approximate boundary of the human
silhouette. The contour iteratively adapts to align with the true
boundaries of the silhouette based on the gradient and curvature
information (Muhammad Hamdan and Ahmad, 2024). This
approach ensures accurate isolation of the human silhouette,
effectively separating the foreground from the background as
illustrated in Figure 3.

Unlike RGB data, Depth data provides rich spatial information,
making it effective for capturing the structure and posture of human
figures. In this approach, affine transformations serve as the primary
technique for segmenting depth silhouettes by aligning them
spatially and geometrically within a consistent reference frame.
This approach ensures precise segmentation and eliminates
discrepancies caused by variations in perspective or acquisition
conditions (Iqra and Ahmad, 2024).

Affine transformation is a linear mapping method that preserves
geometric properties such as points, straight lines, and planes while
enabling translation, scaling, rotation, and shearing. It is
mathematically represented in Equation 11:

x′
y′[ ] � a b

c d
[ ] x

y
[ ] + tx

ty
[ ] (11)

In this equation, (x, y) are the original pixel coordinates in the
depth image, and (x′, y′) represent the transformed coordinates.
The parameters a, b, c, d constitute the transformation matrix,
encapsulating scaling, rotation, and shearing operations. While tx
and ty define translation components. The system computes a
transformation matrix based on depth image silhouette spatial
features to achieve alignment with a predefined reference region.

Segmentation starts when the affine transformation aligns depth
data for the target reference frame. The alignment process follows
detected high gradient magnitude regions on depth maps which
represent human silhouette edges. The gradient magnitude is
expressed in Equation 12:∣∣∣∣∣∣∣∣∇D x, y( ) �| ��������������

∂D

∂x
( )2

+ ∂D

∂y
( )2

√√
(12)

where D(x, y) denotes the depth value at pixel (x, y). The
computed gradient highlights areas of significant depth
transitions, enabling accurate boundary localization. Once the
affine transformation aligns the silhouette within the reference
frame, a binary mask is applied to isolate the region of interest,
effectively separating the foreground (human silhouette) from the
background (Tayyab and Ahmad, 2024).

This technique ensures that the segmented depth silhouette
remains spatially consistent and free from misalignments,
thereby providing a clear and accurate representation of the

human figure. To achieve this, affine transformation is
employed as a robust and mathematically precise approach for
segmenting depth data. Figure 3 illustrates depth
datasegmentaion effectively.

3.4 Skeleton and key point generation

Skeleton extraction is a crucial step in pose estimation and
human movement analysis, allowing for the identification and
structured representation of key body landmarks. By extracting
skeletal features, it becomes possible to analyze motion patterns,
assess posture, and understand body mechanics—essential aspects
for applications in sports science, healthcare, and animation. This
approach simplifies the complexity of humanmotion by focusing on
connections between major joints, providing a concise yet
informative depiction of the human form (Fakhra and
Ahmad, 2024).

In this work, MediaPipe Pose was selected due to its proven high
accuracy in landmark detection, achieving a normalized landmark
error of less than 5% on various real-world datasets. Its two-stage
architecture—comprising a lightweight CNN-based pose estimation
model and a temporal smoothing mechanism—ensures stability
across frames even in the presence of partial occlusion or erratic
movements. This makes it particularly suitable for medical activity
recognition where subtle pose changes are crucial (Laiba and
Ahmad, 2024).

The MediaPipe Pose model served as the framework of choice
because it detects joints and generates precise skeletal models.
Although the model initially identifies 33 landmarks across the
human body, a subset of these points was selected to emphasize
major joints, including the head, shoulders, elbows, wrists, hips,
knees, and ankles. To enhance the skeletal model, a computed
“neck” point was added as the midpoint between the left and
right shoulder landmarks. This point was mathematically
calculated using in Equation 13:

Neck x, y( ) � x11 + x12

2
,
y11 + y12

2
( ) (13)

where x11 and x12 represent the x-coordinates of the left and right
shoulders, respectively, and similarly for the y-coordinates
(Muhammad et al., 2024). Following the identification of key
landmarks, skeletal lines were drawn between specific pairs of
points to create a structured representation of the human body.
These connections, linking joints such as the neck to the shoulders,
elbows to wrists, and hips to knees, were defined by the expression in
Equation 14:

S x1, y1, x2, y2( ) � x1, y1( ) → x2, y2( )( ) (14)
where S(x1, y1, x2, y2) represents a line connecting two key points.
The visualization method showed the human skeletal framework
through a technique that overlaid the generated skeleton onto
original silhouette images. The annotated silhouettes shown in
Figure 4 represent human poses in a format that enables
further analysis.

The method developed by Handrich and Al-Hamadi (2015)
provides an effective way to identify human body poses from depth
images. The methodology builds a graph representation from 3D
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point clouds to compute distance measurements using geodesic
paths while maintaining body pose independence. The system fits a
rigid 3D torso model to the point cloud data to extract surface points
before processing. Dijkstra’s algorithm computes geodesic paths to
these points using edge weights defined by Euclidean distances
between neighboring points (Saleha and Ahmad, 2024).
Specifically, the shortest geodesic distance g(a, b)) between two
graph nodes a and b is defined in Equation 15:

g a, b( ) � ∑
E∈P a,b( )

w E( ) (15)

where w(E) is the edge weight, and P(a, b) is the path
connecting the nodes. The algorithm detects limb end points
one by one according to their highest geodesic distance from the
torso center. Unique detection is ensured by adding a zero-
weight edge between the detected maximum and an
intermediate point which requires distance recalculation. The
body part segmentation is performed by labeling geodesic paths
based on their relation to the torso center and the extremities of
the body surface (Aljuaid et al., 2023). Finally, a kinematic
skeleton model is adapted to the segmented body parts, fitting
its joints to the 3D points by minimizing residual errors.

FIGURE 4
Illustration of Skeleton Generation on RGB frames (a) Cough (b) Headache (c) Backache (d) Vomit on NTU RGB + D 120 dataset.

FIGURE 5
Illustration of Skeleton Generation on RGB frames (a) 3D Point Cloud (b) Torso Detection (c) Geodesic Distance (d) Body Part Segmentation (e)
Skeleton Generation on NTU RGB + D 120 dataset.
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Figure 5 represents the step-by-step graphical representation of
the proposed technique.

3.5 Feature extraction

Feature extraction represents an essential building block for
human interaction recognition (HMIR) systems that employ RGB
and depth data. The system uses an integrated technique to acquire
powerful spatial and temporal features. The analysis of motion
dynamics and spatial relationships for RGB data relies on Kinetic
Energy features, Histogram of Optical Flow (HOF), angular
geometric features and eight round angles. Depth data processing
uses Random Occupancy Patterns (ROP) in conjunction with 2.5D
point clouds and Movement polygons to model global body
structures and depth information (Aftab Ahmad et al., 2024).
The system achieves enhanced activity recognition accuracy
through its combined use of different methods which capture
localized body movements while also detecting full-body spatial-
temporal patterns.

3.5.1 Kinetic energy features
Human Motion Intention Recognition (HMIR) detects detailed

complicated movements through kinetic energy features to
recognize medical conditions involving coughing sneezing and
falling alongside headache and neck pain. Medical assessments of
localized and global body movements need the tracking of both
linear and rotational body segment motions. Medical condition
detection reaches high accuracy by using kinetic energy features
to identify physical motion strength levels and pattern distribution
throughout various body motions (Mujtaba and Ahmad, 2024). The
total kinetic energy Etotal for the human body is calculated by
summing the contributions from both linear and rotational
motions of all body segments and is given as Equation 16:

Etotal � ∑n
i�1

1
2
mivi t( )2 + 1

2
Iiωi t( )2( ) (16)

where n represents the number of body segments, mi is the mass of
the i − th segment, vi(t) is its linear velocity, Ii is the moment of
inertia, and ωi(t) is its angular velocity at time t. The first term,
linear kinetic energy 1

2mivi(t)2, captures the translational motion of
body parts, which is particularly useful for identifying conditions
such as falling or rapid upper body jerks during coughing and
sneezing. The linear velocity vi(t) can be expressed as Equation 17:

vi t( ) �
�����������������
_x t( )2 + _y t( )2 + _z t( )2

√
(17)

where _x(t)2 + _y(t)2 + _z(t)2 are the temporal derivatives of the
spatial coordinates of the body segment. During falling motions
the body segments experience high linear velocities, but coughing
and sneezing activities involve strong linear displacements focused
on the torso along with the neck and shoulder areas (Laiba and
Ahmad, 2024). The second term in the expression describes
rotational kinetic energy 1

2Iiωi(t)2 which calculates angular
motion energy around joints and becomes essential for detecting
head tilts during headaches and minimal neck rotations related to
neck pain. The angular velocity ωi(t) is calculated as Equation 18:

ωi t( ) �
�����������������
_θ t( )2 + _ϕ t( )2 + _ψ t( )2

√
(18)

where _θ(t)2 + _ϕ(t)2 + _ψ(t)2 represent the derivatives of rotational
angles about the three axes. Themoment of inertia Ii, which depends
on the mass and geometry of the segment, is given by Equation 19:

Ii � kimir
2
i (19)

where ki is a shape-dependent constant and ri is the distance
between the axis of rotation and the center of mass of the
segment. The rotational energy output from neck movements
with pain or delicate head tilts concentrates primarily in upper
body segments but the energy expenditure from falling
distributes more heavily between multiple segments (Amir
et al., 2020b). Kinetic energy features enable a comprehensive
body dynamics analysis by measuring both linear and rotational
energy patterns throughout all body segments to establish exact
medical diagnosis distinctions. Stage seven shows how kinetic
energy features are illustrated through visual diagrams to depict
energy changes which occur across frames (Bonato et al., 2024).

Medical condition recognition benefits strongly from kinetic
energy features because these features detect both forceful activities
including falls and small bodily movements beyond basic position
detection capabilities (Iqra et al., 2025). Changes in kinetic energy
levels across multiple frames produce active motion profiles that
help spot brief occurrences such as sneezes and coughs. Medical
monitoring systems benefit from kinetic energy features because
these metrics demonstrate both accuracy under uncertain sensor
data and resistance tominor measurement errors. Figure 6 illustrates
results of kinetic energy features (Liu et al., 2021).

3.5.2 Histogram of optical flow (HOF)
The human interaction recognition system employs HOF

features to detect fundamental movements related to medical
conditions and minor actions including coughing and sneezing
and falls as well as head movements and neck pain. Pixel-level
movement tracking operated by HOF creates exact temporal
representations of moving patterns preserving detailed motion
data (Nazar and Jalal, 2025). The features show particular success
in recognizing activities linked to medical conditions because
they effectively handle abrupt together with gradual
motion changes.

The optical flow at each pixel is represented as a vector (u, v),
where u and v denote the horizontal and vertical components of
motion between consecutive frames. To construct the Histogram of
Optical Flow, the motion vectors are first divided into a fixed
number of directional bins θk, where θk � arctan(vu) represents
the angle of motion for each pixel. The magnitude of motion,
� ������

u2 + v2
√

, is used to weight the contribution of each motion
vector to the corresponding bin (Mujtaba et al., 2025). The HOF
descriptor for a given region is computed as Equation 20:

Hk � ∑
p∈R

Mp · δ θp ∈ bin k( ) (20)

where Hk represents the cumulative weighted contribution to the
k − th bin, p denotes the pixels in the region R,Mp is the magnitude
of motion at pixel p, and δ(θp ∈ bin k) is an indicator function that
assigns the motion vector to its respective bin. A histogram develops
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during this procedure to represent dominant motion directions as
well as their strength within the analyzed region. The extracted HOF
features appear in Figure 7.

3.5.3 Angular geometric features
The quantification of skeletal point angular relationships serves

as an essential factor for HMIR through angular geometric features.

FIGURE 6
Illustration of Kinetic Energy over time on RGB frames (a) Cough (b) Neckache (c) Backache on NTU RGB + D 120 dataset.
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The system derives these features from essential body landmarks
which enable the capture of human body structure and geometric
alignment throughout activities. The analysis of angular
relationships between predefined body segment sets through
angular geometric features generates a robust motion dynamic
and postural representation that helps identify medical
conditions through specific physical activities (Rafiq and
Jalal, 2025).

Extraction of skeletal points during earlier processing enables
researchers to create meaningful triangular geometric structures
linking joint relationships. Multiple triangles in this model
emerge when researchers choose three relevant body landmarks
starting from shoulder-elbow-wrist to hip-knee-ankle. For instance,
triangles such as (11,13,15) and (23,25,27) represent upper limb and
lower limb configurations, respectively, while (11,29,12) and
(23,29,24) capture torso and hip alignments. The arranged
triangles measure the entire human body position space to reveal
essential details about regional and complete body movements
(Laiba and Jalal, 2025).

The calculation of angles at triangle vertices allows researchers to
measure body segment connections. Given three points P1, P2 and
P3, where P2 is the vertex of interest, the angle is computed using the
vectors v1

→ � P1 − P2 and v2
→ � P3 − P2. The angle θ is determined as

Equation 21:

θ � arccos
v1
→ · v2→
v1
→���� ���� v2

→���� ����( ) (21)

where v1
→ · v2→ represents the dot product of the vectors, and ‖v1→‖‖v2→‖

are their magnitudes. This algorithm determines the exact angular
position between linked body segments to identify critical
movement characteristics including flexion and extension and
rotational alignment. The extracted angular geometric features
appear in Figure 7.

3.5.4 Eight round angles
The eight round angles use a powerful spatial encoding

technique which documents directional adjustments according to

FIGURE 7
Illustration of HOF and Angular Geometric Features on RGB frames (a) Staggering Falling Down Backache Stretch Oneself on NTU RGB + D
120 dataset. Illustration of Histogram of Optical Flow (HOF) on RGB frames (b) Staggering Falling Down Vomit Backache on NTU RGB+D 120 dataset.
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the 8 Freeman Chain Code principles. The quantification of position
and direction relationships through spatial features remains
essential for HMIR because these features show how body
positions modify human silhouette structure and orientation.
This method tracks skeletal posture modifications by analyzing
both curvatures and directional shifts across skeletal features
which creates a universal spatial motion description (Ashraf
et al., 2025).

The system starts by utilizing skeletal points from previous steps
that align with important joints together with body landmarks. The
points extracted from the human body silhouette function as
references for silhouette outline creations which are used as
inputs in the 8 Freeman Chain Code algorithm. The algorithm
represents the curve by dividing the space around each skeletal point
into eight equally spaced angular sectors, the eight principal
compass directions: 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°.
Each curve point receives directional assignments through its
relative neighbor position which generates a sequence of
directional codes (Mohammed et al., 2025).

For a given boundary point bwith n contour points, the curveCb

is defined as a series of connected points from the starting point C0

to the endpoint Cn−1. The algorithm moves clockwise along the
curve, measuring the directional changes at each step. For example,
if the direction changes fromC0 toC1, the next step is to measure the
transition from C1 to C2, and so on, until all points in the contour
have been processed. The directional changes are expressed in
Equation 22:

Δθ � θi+1 − θi (22)

where θi and θi+1 represent the angular direction of successive points
along the contour. The encoding system produces angular
characteristics which summarize skeletal outline modifications
(Naif et al., 2025). These eight round angles obtained from the

process deliver essential data about spatial movement and posture
relationships. The directional code measurements indicate sudden
jerky movements through large code changes while smoother code
transitions detect controlled and refined actions that include head
movements and postures. The computed features demonstrate high
discrimination power and their translation and scaling invariance
and tolerance of minor noise make them ideal for HMIR
applications in medical environments. Figure 8 illustrates these
features (Goecks et al., 2022).

3.5.5 2.5-D point clouds
2.The 5D point cloud system provides an effective approach to

extract depth features which support HMIR applications in medical
settings for coughing, sneezing, falling and back and neck pain
assessment (Sumbul et al., 2025). The single-perspective view of
2.5D point clouds captures body surface depth while maintaining
efficient spatial representation when compared to the complete
coverage needed in 3D point clouds. The representation works
well with medical HMIR applications because it maintains critical
motion details with minimal processing complexity and data
redundancy.

The depth map D(x, y), representing the distance of each point
(x, y) from the sensor, is transformed into a 2.5D point cloud
P � (xi, yi, zi){ }Ni�1, where zi � D(xi, yi) is the depth value. To
capture the dynamic behavior of body movements, features such
as velocity, acceleration, and curvature of the point trajectories are
computed over successive frames (Awan et al., 2024). For example,
the velocity v(t) of a point is given in Equation 23:

v t( ) � P t( ) − P t − Δt( )
Δt

(23)

where Δt is the time interval between frames. Additionally, the
curvature κ(t), which provides insights into local surface
deformation due to movement, is calculated using Equation 24:

FIGURE 8
Illustration of Eight Round Angles on RGB frames (a) Cough (b) Fanself (c) Backache (d) Headache on NTU RGB + D 120 dataset.

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Kamal et al. 10.3389/fbioe.2025.1568690

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1568690


κ t( ) � v t( ) × a t( )‖ ‖
v t( )‖ ‖3 (24)

where a(t) is the acceleration. The system differentiates between
activities that show different spatial and temporal motion patterns
through these features (Zahra et al., 2025). The human body’s
respiratory motions which include coughing and sneezing
activate head and torso region high-frequency local deformations
but extensive body movements occur during a fall. The analysis of
these characteristics throughout the 2.5D point cloud space enables
successful detection and classification of subtle medical condition-
related movements. The compact nature of 2.5D point clouds makes
them efficient for real-time HMIR systems in medical monitoring
systems because they reduce computational complexity (Seerat et al.,
2025). Figure 9 demonstrates 2.5 D point cloud results.

3.5.6 Random occupancy pattern (ROP)
Random Occupancy Pattern (ROP) features effectively describe

the spatiotemporal dynamics of HMIR while demonstrating
particular performance in medical condition detection including
coughing sneezing and falls and posture-induced pain (Wang et al.,
2012; Li et al., 2017). The tracking of voxel occupancy patterns
across time in a 3D voxel grid delivers robust motion representation
and enables accurate activity recognition because ROP features
demonstrate resistance to sensor variability and noise.

The voxel grid is defined by partitioning the spatial domain into
uniform cells, and the occupancy of each voxel at time t is denoted as
oi(t), where oi(t) � 1 if the voxel i is occupied and oi(t) � 0
otherwise. A random sampling approach is applied to select a
subset of voxels, reducing computational cost while preserving
discriminatory information (Muhammad et al., 2025). The ROP
feature vector fROP is then constructed by concatenating the
occupancy patterns across the sampled voxels over T frames
using Equation 25:

fROP � oi t1( ), oi t2( ), . . . oi tT( )[ ], i ∈ S (25)
where S is the set of randomly selected voxels. The effective activity
differentiation under ROP occurs through analysis of spatial
occupancy patterns. The speed of body motion in falling creates
extensive grid occupancy changes but coughing or sneezing leads to

localized changes in the torso and head region. The temporal
variations of ROP features reveal movement velocity and
repetition patterns to support medical diagnosis (Ahmed et al.,
2023). The sparse sampling structure of ROP features optimizes
computational resources and memory which makes them ideal for
real-time medical surveillance. The resistance of ROP features to
body size and orientation changes and environmental conditions
enables reliable performance in multiple medical situations (Iqra
and Jalal, 2025). The figure depicting ROP feature results appears
in Figure 10.

3.5.7 Movement polygons
Movement polygons serve as an effective skeleton-based feature

extraction methodology that extracts information for HMIR
analyses from depth sensor data (Tayyab and Jalal, 2025).
Movement polygons display skeletal spatial motion dynamics
through three-dimensional joint position projection to two-
dimensional movement polygons. A set of three-dimensional
skeletal joint positions J � (xi, y, zi){ }Ni�1 forms the joint positions
into a two-dimensional polygon. The boundary of this polygon is
determined, and its centroid, G � (Gx, Gy), is calculated as
Equations 26, 27:

Gx � 1
N
∑N
i�1
xi (26)

Gy � 1
N
∑N
i�1
yi (27)

To reduce the dimensionality of the data, the distance of each
polygon boundary point from its centroid is computed as
Equation 28:

di �
�������������������
xi − Gx( )2 + yi − Gy( )2√

(28)

where di represents the distance of the i − th boundary point. These
distances are then sampled at uniformly spaced angles, resulting in a
one-dimensional feature vector � d(θ){ }360θ�1. This 1D feature vector
captures the geometric characteristics of skeletal movement,
enabling efficient representation and discrimination of human

FIGURE 9
Illustration of 2.5D Point Cloud on Depth frames (a) Staggering (b) Cough (c) Stretch Oneself (d) Chest Pain on NTU RGB + D 120 dataset.
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FIGURE 10
Illustration of ROP Features on Depth frames (a) Staggering (b) falling down (c) Chest Pain on NTU RGB + D 120 dataset.

FIGURE 11
Illustration of 2.5D Point Cloud on Depth frames (a) Falling Down (b) Staggering (c) Headache on NTU RGB + D 120 dataset.

TABLE 1 Summary of feature effects on human motion intention recognition.

Feature type Modality Description & captured characteristics Contribution to HMIR performance

Kinetic Energy Features RGB Quantifies linear and rotational body motion via velocity
and angular velocity

Enhances detection of forceful and high-energy movements (e.g.,
falling, coughing, sneezing)

Histogram of Optical
Flow (HOF)

RGB Measures pixel-wise motion direction andmagnitude over
time

Captures temporal movement flows, beneficial for classifying
staggered or jerky activities

Angular Geometric
Features

RGB Computes joint angles between skeletal landmarks Differentiates postural changes (e.g., neck pain vs. back pain) based
on geometric articulation

Eight Round Angles RGB Encodes silhouette contour direction using Freeman
Chain Code

Offers shape-based cues for pose transitions, robust to scale/
rotation

2.5D Point Clouds Depth Projects depth maps into spatially aligned surface
representations

Provides detailed spatial structure for complex actions, resistant to
occlusion

Random Occupancy
Pattern (ROP)

Depth Tracks voxel-wise occupancy across space and time Distinguishes global vs. local activity spread and intensity

Movement Polygons Depth Constructs 2D polygonal projections of joint trajectories
with centroid analysis

Captures motion symmetry, body coordination, and repetitive
patterns (e.g., stretching, waving)
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actions (Tayyab et al., 2025). In addition to the polygon boundary
features, the trajectory of the most-moving joint over time is
considered to model temporal dynamics. The most-moving joint

is discovered by calculating the covariance matrix of its coordinates
across frames. Its angular displacement, tan−1(y(t)−y(0)x(t)−x(0)), is tracked
across successive frames to produce a 20-dimensional trajectory
vector. The final feature vector combines the polygonal boundary
features and the most-moving joint trajectory, yielding a compact
representation suitable for classification (Saleha et al., 2025). These
features are highly effective for HMIR, as they capture both spatial
and temporal aspects of motion while maintaining computational
efficiency. Figure 11 illustrates movement Polygons.

Below is the proposed summary Table 1 that outlines the effects
of each feature described in Section 3 of your manuscript. This table
provides a concise yet informative overview of the modalities,
motion characteristics, and contributions of each feature type to
the HMIR task:

3.6 Feature optimization via stochastic
gradient descent

After extracting robust full-body and point-based features, these
features are concatenated to form a comprehensive feature vector.
However, the resulting feature vector resides in a high-dimensional
space, which introduces challenges related to computational efficiency
and system performance. To address this, dimensionality reduction
through feature optimization techniques is applied, ensuring improved
computational efficiency and enhanced system performance (J. Ahmad
et al., 2025).

In the proposed architecture, Stochastic Gradient Descent
(SGD) is employed as the optimization algorithm. SGD is a
highly efficient technique for training machine learning models,
particularly suitable for large-scale datasets and complex parameter
spaces. Unlike traditional gradient descent methods, which compute
parameter updates based on the gradient of the loss function over
the entire dataset, SGD updates the model parameters iteratively
using individual training examples or small mini batches of data
(Laiba and Jalal, 2025; Laiba et al., 2025). This iterative approach is
computationally efficient and accelerates convergence, particularly
for high-dimensional optimization problems. The parameter update
rule for SGD is formalized as Equation 29:

θt+1 ≔ θt − η∇θL θt;xi, yi( ) (29)
where θt represents the parameter vector at iteration t, η> 0
denotes the learning rate, and ∇θL(θt;xi, yi) is the gradient of
the loss function L with respect to the parameters θ, computed
for the training example (xi, yi). To generalize this
formulation for a mini-batch of size m, the gradient is
computed as the mean of the gradients over the batch,
expressed as Equation 30:

θt+1 ≔ θt − η
1
m
∑m
i�1
∇θL θt;xi, yi( ) (30)

The utilization of SGD for feature optimization not only reduces
the dimensionality of the feature vector but also facilitates faster
convergence to optimal parameter values, even in the presence of
large-scale and high-dimensional data (M. Javeed et al., 2024).
Furthermore, the stochastic nature of the updates introduces
noise into the optimization process, which can help the model

FIGURE 12
Graphical Representation of Stochastic Gradient Descent (a)
Back Pain (b) Sneezing + Cough (c) Headache (d) Neck Pain on NTU
RGB + D 120 dataset.
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escape local minima and converge towards better global minima in
non-convex loss landscapes. Figure 12 illustrates SDG results.

3.7 Feature classification via deep neuro
fuzzy classifier

The classification task was performed using the Deep Neuro-
Fuzzy Classifier, a hybrid model that integrates the learning
capabilities of neural networks with the interpretability of fuzzy
logic systems. This approach leverages the strengths of both
paradigms to achieve robust performance on complex datasets
(Israr and Ahmad, 2024; Wang et al., 2019).

The classifier operates by mapping input features into fuzzy
membership values, which are then processed through neural layers
for adaptive learning. Let the input feature vector be represented
as x � [x1, x2, . . . , xn]T ∈ Rn.The system utilizes fuzzy membership
functions to compute the degree of membership for each feature
using Equation 31:

μAi xi( ) � 1

1 + xi−ci
σ i

∣∣∣∣∣ ∣∣∣∣∣2m (31)

where μAi(xi) is the membership degree of xi to fuzzy setAi, ci is the
center of the fuzzy set, σ i is the spread parameter, and m> 1 is the
fuzzification factor. These membership values are then passed
through a set of fuzzy rules of the form:

Rk : IF x1 is A
k
1 ANDx2 is A

k
2 . . .THENyk � wk (32)

where in Equation 32 k � 1, 2, ..., K, Ak
j represents the fuzzy set

associated with the jth input for the kth rule, and wk is the
output weight corresponding to Rk. The aggregated output of the
fuzzy inference system is computed using the weighted average in
Equation 33:

y � ∑K
k�1μk · wk∑K

k�1μk
(33)

where μk � ∏n
i�1μAk

i
(xi) is the rule activation strength. To optimize

the system, the neural network component adjusts the parameters,
ci, σ i and wk using backpropagation (Zhang et al., 2021). The loss
function employed for training is typically the mean squared error
(MSE) in Equation 34:

L � 1
N
∑N
i�1

yi − ŷi( ) (34)

whereN is the total number of samples, yi is the actual output, and
ŷi is the predicted output. The deep architecture further enhances
the model’s performance by incorporating multiple layers of rule-
based transformations, allowing for hierarchical feature extraction
(Tayyab et al., 2024; Li et al., 2021). The method’s multi-layered
structure enables advanced pattern learning within an interpretable
framework that works well for medical condition assessment
applications. Figure 13 shows the architecture of deep neuro
fuzzy Classifier.

3.7.1 Hyperparameter tuning
To optimize system performance, we performed empirical

tuning of key hyperparameters in both the feature optimization
and classification stages using grid search on the NTU RGB + D
120 validation set. For the Stochastic Gradient Descent (SGD)
algorithm, we evaluated learning rates in the range (0.001, 0.01,
0.05, 0.1) and selected 0.01 as optimal for convergence speed and
stability. Mini-batch sizes were tested in (16, 32, 64), with
32 providing the best trade-off between gradient stability and
training time. The maximum number of epochs was set to
100 with early stopping criteria based on validation loss
stagnation for 10 consecutive epochs.

For the Deep Neuro-Fuzzy Classifier, we fine-tuned the number
of fuzzy rules in the range (5, 10, 20), fuzzification factor in (1.5, 2.0,
2.5), and Gaussian membership function spread parameter σ ∈ [0.2,
1.0]. Optimal performance was achieved with 10 rules, a
fuzzification factor of 2.0, and σ = 0.5. Regularization weight was
set to 0.01 to prevent overfitting, and the classifier was trained using

FIGURE 13
Architecture of Deep neuro Fuzzy Classifier.
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the Adam optimizer with an initial learning rate of 0.001. All
hyperparameters were selected based on average performance
across 5-fold cross-validation to ensure robustness and
generalizability.

4 Performance evaluation

The proposed system was rigorously assessed using three
benchmark datasets: NTU RGB + D, PKU-MMD, and
UWA3DII. The system underwent complete performance
evaluation using confusion matrices and precision, recall metrics

and F1 scores. Multiple evaluation metrics showed that the system
performed exceptionally well to reach its defined goals.

The evaluation took place on a Windows 11 64-bit platform
using an Intel Xeon processor and 32 GB memory with an Intel i7
11th Gen CPU that featured 8 cores. The implemented system
optimized its computation pipelines for efficient dataset handling
and real-time processing needs.

4.1 Dataset description

4.1.1 NTU RGB + D 120 dataset
The NTU RGB + D 120 dataset operates as the leading action

recognition benchmark that supports research into both
fundamental body actions and health-related body movements.
The dataset contains 114,480 video samples showing
120 different action categories performed by 40 individuals. The
dataset classifies actions into three main groups: The NTU RGB + D
dataset comprises 82 daily activities such as face wiping and coin
tossing alongside 12 health-specific actions including sneezing and
neck pain incidents and 26 interactive actions that include punching
and hugging and kicking. A total of three camera positions were
used to record actions at −45°, 0° and +45° horizontal angles to
expand viewpoint diversity. Notable for its multi-modal nature, the
dataset includes depth information, 3D skeletal joint data, RGB
video frames, and infrared sequences, making it especially valuable
for medical condition monitoring and patient care research.
Illustration of some interactions in Figure 14a.

4.1.2 PKU-MMD dataset
The PKU-MMD dataset is a large-scale human action analysis

dataset with a focus on health-related behavior recognition and
multi-modality. Captured by the Kinect v2 sensor, it has two phases
of data collection. Phase 1 has 1,076 video sequences from 51 action
classes, with 66 subjects captured from three camera views. The
dataset contains close to 20,000 action instances, consisting of over
5.4 million frames, with a mean video duration of 3–4 min at 30 FPS.
Actions are categorized into 41 daily activities (waving, drinking,
etc.) and 10 interactive behaviors (hugging, handshakes, etc.). Of
specific interest to rehabilitation and health, the dataset captures
both daily activity and important interactions crucial to the study of
patient-to-patient and patient-to-caregiver communication. Its
structured design enables precise evaluation of motion patterns
vital for healthcare applications. Illustration of some interactions
in Figure 14b.

4.1.3 UWA3DII dataset
The UWA3DII dataset was developed to enhance HMIR by

incorporating diverse motion patterns and multi-view. Thirty
movements including walking while holding the chest and
sneezing and falling comprise the dataset which includes ten
participants. Each action was recorded four times using four
different views: The dataset presents views from both the front
and left, right and top surfaces. The continuous Kinect sensor data
collection has produced a dataset with natural motion variation
which serves medical purposes for fall detection and movement
disorder assessment. Clinical medical research benefits from this
dataset because self-occlusions combined with action similarities

FIGURE 14
Some examples frames of (a) NTU RGB + D 120 (b) PKUMMD (c)
UWA3DII dataset.
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create processing complexity. Illustration of some interactions
in Figure 14c.

5 Results and analysis

The experimental section is organized into five comprehensive
analyses to evaluate the effectiveness and robustness of the proposed
multi-modal HMIR framework. Initially, confusion matrix analysis
is conducted across the NTU RGB + D 120, PKU-MMD, and
UWA3DII datasets to provide a detailed breakdown of
classification performance across multiple medical activity classes.
This is followed by the computation of key evaluation metrics
including precision, recall, and F1-score, offering insights into the
model’s balance between sensitivity and specificity. To further assess
the training dynamics and generalization capability, a learning curve
analysis is presented, illustrating the relationship between training
and validation loss over multiple epochs. An ablation study is then
performed to quantify the contribution of each core module and
feature types such as preprocessing, segmentation, skeletal
modeling, and both RGB and depth-based features—by
systematically removing each component and evaluating its
impact on overall classification accuracy. Finally, the proposed
model is benchmarked against several state-of-the-art approaches
using standardized datasets, demonstrating its superior performance
in terms of classification accuracy, robustness to occlusion, and
adaptability to complex human motion patterns. This experimental
organization ensures a comprehensive and objective evaluation of
the proposed framework’s capabilities in real-world rehabilitation
monitoring applications.

5.1 Experiment 1: confusion matrix

The first experiment shows confusion matrix results for both
datasets. The confusion matrix shows a simple graphical view of the
classifier’s performance as it shows both successful and unsuccessful
classification instances per class. Tables 2–4 present the confusion
matrix for NTU RGB + D 120, PKU-MMD and UWA3DII Dataset.

5.2 Experiment 2: Precision, recall
and F1 score

The F1 score, recall and precision metrics were represented
through line graphs in Figure 15 across the NTU RGB + D 120, PKU
MMD and UWA3DII datasets. These visualizations provide a
performance comparison of the proposed model which
demonstrates its effectiveness across multiple datasets alongside
various performance benchmarks.

5.2.1 Discussion and analysis
Experimental findings demonstrate that the proposed Multi-

Modal Vision Sensor Framework successfully identifies human
interactions. The framework combines RGB and depth data
through state-of-the-art feature extraction methods while using
stochastic gradient descent optimization and a deep neuro-fuzzy
classifier. The proposed model delivers landmark accuracy results of
94.50% on NTU RGB + D 120% and 91.23% on PKUMMD and
88.60% on UWA3DII.

Upon examining the confusion matrices, we can observe that
actions such as falling down, coughing, and sneezing achieve high

TABLE 2 Confusion matrix calculated over the NTU RGB + D 120 Dataset.

Classes SC STG FD HA CP BP NP NUS FS YWN SO BN

SC 94 1 1 1 1 1 0 0 0 1 0 0

STG 1 93 1 1 1 1 0 0 0 2 0 0

FD 1 1 94 2 1 0 0 0 0 1 0 0

HA 0 0 1 96 1 0 0 0 0 2 0 0

CP 1 0 1 0 90 3 1 1 1 2 0 0

BP 0 0 1 0 1 91 3 2 1 1 0 0

NP 0 0 0 0 0 2 94 2 1 1 0 0

NUS 0 0 0 0 0 0 2 95 1 2 0 0

FS 0 0 0 0 0 0 0 1 95 2 1 1

YWN 0 0 0 0 1 1 0 0 0 95 1 1

SO 0 0 0 0 0 0 0 0 0 1 96 2

BN 0 0 0 0 0 0 0 0 0 0 2 98

Mean Accuracy = 94.50%

SC = Sneezing + Cough, STG = staggering; FD = falling down; HA = headache; CP = chest pain; BP = BackPain, NP = NeckPain, NUS = nausea; FS = fanself; YWN = yawn; SO = stretch oneself;

BN = blow nose. Bold values in the confusion matrix displays recognition accuracy for individual class.
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classification accuracy since they have very unique motion
patterns. Nevertheless, there do exist some activities,
particularly ones with fine-grained or overlapping movements,
such as neck pain and back pain, with mild misclassifications.
This occurs due to the similarity in skeletal movement and the
challenge of discriminating against fine-grained actions in
complex situations.

The precision, recall, and F1 scores further validate the system’s
reliability, with consistently high performance across all datasets.
The feature extraction techniques, particularly kinetic energy and
angular geometric features, significantly contribute to differentiating
motion dynamics in human activities. Additionally, the use of
depth-based features like 2.5D point clouds and random
occupancy patterns enhances robustness against environmental
variations such as occlusions and lighting changes.

Despite the promising results, some limitations persist.
Occlusion handling and real-time adaptability remain areas for
improvement, especially in highly dynamic environments. Future
work can explore the integration of self-attention mechanisms,

adaptive feature selection, and transformer-based architectures to
further refine the classification process.

5.3 Experiment 3: learning curve analysis

To assess the convergence behavior and generalization capacity
of the proposed model, we present the learning curve in Figure 16.
The graph plots training and validation loss over successive epochs
during training on the NTU RGB + D 120 dataset. As observed, the
training loss steadily decreases while the validation loss follows a
similar trend with minimal divergence. This indicates that the model
avoids overfitting and maintains generalization across
unseen samples.

The learning curve exhibits several noteworthy characteristics.
First, both training and validation losses decrease rapidly during the
initial epochs (1–15), demonstrating efficient parameter
optimization. This is followed by a more gradual reduction phase
(epochs 15–35), where the model fine-tunes its parameters. Finally,

TABLE 3 Confusion matrix calculated over PKU MMD Dataset.

Classes FL RTHT TB TC TH TN UF WF

FL 92 1 2 0 1 2 1 1

RTHT 1 87 1 2 1 0 0 8

TB 3 2 85 1 3 2 3 1

TC 0 0 0 97 0 0 0 3

TH 3 2 1 3 85 2 1 2

TN 0 0 1 0 1 97 1 0

UF 0 1 1 0 1 0 96 1

WF 0 4 2 2 3 0 0 89

Mean Accuracy = 91.23%

FL, falling; RTHT rub two hands together; TB, touch back; TC, touch chest; TH, touch head; TN, touch neck; UF, use fan;WF, wipe face. Bold values in the confusionmatrix displays recognition

accuracy for individual class.

TABLE 4 Confusion matrix calculated over UWA3DII - Dataset.

Classes FD CH HD BA IW LD SN CG

FD 90 2 2 2 1 1 1 1

CH 2 85 2 2 1 2 2 5

HD 0 4 82 4 1 1 4 4

BA 0 2 1 95 0 0 1 1

IW 2 1 1 0 85 3 2 6

LD 3 0 1 0 0 95 1 0

SN 0 2 2 1 0 1 92 2

CG 1 3 2 4 1 1 2 86

Mean Accuracy = 88.60%

FD, falling down; CH, chest pain; HD, headache; BA, backache; IW, irregular walking; LD, laying down; SN, sneezing; CG, coughing. Bold values in the confusion matrix displays recognition

accuracy for individual class.
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the curves stabilize in the later epochs (35–50), suggesting
convergence to an optimal solution.

The minimal gap between training and validation losses,
particularly in the later stages of training, confirms the model’s

ability to generalize effectively. This robust generalization is
especially significant given the multimodal nature of the NTU
RGB + D 120 dataset, which contains complex action patterns
across 120 different classes performed by multiple subjects.

FIGURE 15
Line graph for Precision, Recall, and F1 score for (a) NTURGB+D120, (b) PKUMMD and (c) UWA3DII Datasets.
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The smooth convergence curve also confirms the effectiveness of
the feature optimization via stochastic gradient descent (SGD) with
momentum. The consistent descent in both curves without
significant oscillations demonstrates that our selected learning
rate and batch size provide stable optimization dynamics.
Furthermore, the fuzzy membership functions effectively capture
the inherent variations in skeletal motion patterns, allowing the
model to adapt to the multimodal distribution of action classes.

These results support the model’s reliability for large-scale,
multimodal data and validate our architectural design choices.
The convergence behavior suggests that the model has

successfully learned discriminative features from skeletal data
while avoiding both underfitting and overfitting issues that
commonly plague deep learning approaches to action recognition.

5.4 Experiment 4: ablation study

To evaluate the relative contribution of each module and feature
type used in the proposed Human Motion Intention Recognition
(HIR) framework, we conducted an extensive ablation study across
three benchmark datasets: NTU RGB + D 120, PKUMMD, and

FIGURE 16
Line graph for Precision, Recall, and F1 score for NTU RGB + D 120, PKU MMD and UWA3DII Datasets.

TABLE 5 Ablation study results (accuracy %).

Experiment PR SS SG KE HOF AGF ERA PC ROP MP NTU RGB D 120 PKUMMD UWA3DII

Full Model ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 94.50 91.23 88.60

WT PR ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 92 90 86

WT SS ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 90 88 84

WT SG ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 88 86 83

WT KE ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ 92 89 86

WT HOF ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 91 86 85

WT AGF ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ 90 88 86

WT ERA ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ 92 89 86

WT PC ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ 92 87 84

WT ROP ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔ 91 88 85

WT MP ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ 91 88 85

WT, without; PR, preprocessing; SS, silhouette segmentation; SG, skeleton generation; KE, kinetic energy; HOF, histogram of optical flow; AGF, angular geometric features; ERA, eight round

angels; PC, 2.5 D Point Cloud, ROP, random occupancy pattern; MP, movement polygons. Bold values in the Ablation study displays mean recognition accuracy against each dataset.
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UWA3DII. This study involved systematically removing (one at a time)
each major component in the feature extraction and processing pipeline
and measuring the resulting classification accuracy.

Table 5 summarizes the results. The baseline (“FullModel”) includes
all components: Preprocessing (PR), Skeleton and Key Point Generation
(SG), Silhouette Segmentation (SS), Kinetic Energy (KE), Histogram of
Optical Flow (HOF), Angular Geometric Features (AGF), Eight Round
Angles (ERA), 2.5D Point Clouds (PC), Random Occupancy Patterns
(ROP), and Movement Polygons (MP). Each subsequent experiment
removes one component while keeping the others intact (denoted
as “WT”—Without).

5.5 Experiment 5: comparisons with state of
the art (SOTA)

To validate the superiority of our proposed system, we compare
its performance against state-of-the-art (SOTA) models in human
interaction recognition. Table 6 presents a comparative analysis of
classification accuracy across NTU RGB + D 120, PKUMMD, and
UWA3DII datasets.

The results indicate that our method outperforms existing SOTA
models across all datasets, achieving a significant accuracy
improvement of 8%–15% compared to leading approaches. The
fusion of multi-modal data, advanced feature engineering, and
deep neuro-fuzzy classification contributes to this enhanced
performance. Unlike recurrent neural networks (RNNs) or purely
CNN-based approaches, our system integrates spatio-temporal
features with interpretable fuzzy logic, making it well-suited for
real-world applications in healthcare and assistive technologies
(Song et al., 2018).

Future enhancements may involve fine-tuning fuzzy rule sets,
incorporating transformer-based spatio-temporal processing, and
optimizing model inference for edge-based applications to further
improve performance and scalability.

6 Implication of proposed system

The proposed Multi-Modal Vision Sensor Framework
demonstrates widespread utility across healthcare as well as
surveillance applications while also serving rehabilitation
purposes and assistive technology needs. The system achieves
robust and accurate HMIR of complex actions alongside medical
activities such as sneezing, coughing, back pain, and fainting
through depth data integration with RGB information. Precise
detection of minimal movements enables useful applications
during patient monitoring and elderly care and rehabilitation
treatments that rely on accurate medical activity recognition.

The system advances medical patient monitoring through real-time
tracking because it identifies activities which indicate patient distress or
discomfort. Its ability to distinguish postural discomfort and abnormal
movements and falls makes this system appropriate for smart hospitals
and home rehabilitation systems and wearable health monitoring
systems. The system achieves better classification accuracy by
employing advanced feature extraction methods together with the
deep neuro-fuzzy classifier in difficult conditions involving occluded
views or reduced visibility. The system provides dependable detection of
medical priority activities which proves essential for both intervention
effectiveness and prompt medical response.

The system extends its effects throughout security and surveillance
operations. The system provides excellent capabilities for automated
security solutions and workplace safety applications because it effectively
detects emergency actions from standard activities. The integration of
spatio-temporal features alongside multi-modal sensor data enhances
real-world anomaly detection capabilities which creates improved public
safety and incident response systems.

The framework demonstrates strong deployment potential because
its high accuracy results emerged from multiple benchmark testing
scenarios. The integration of aggressive feature extraction with
optimized classification and multi-modal data fusion establishes solid
groundwork for building future intelligent monitoring systems. Future

TABLE 6 Comparisons with state of the art using deep learning models.

Method Accuracy %

NTU RGB + D 120 PKU MMD UWA3DII

Song et al. (2016) 81.2 — —

Lee et al. (2017) 74.60 — —

Luvizon et al. (2018) 85.5 — —

Song et al. (2018) — 44.4 —

Li et al. (2017) — 53.3 —

Li et al. (2017) — 54.8 —

Vemulapalli and Chellappa (2016) — — 43.4

H. Rahmani et al. (2014) — — 52.2

Rahmani and Mian (2015) — — 76.9

Liu et al. (2017) — — 73.8

Zhang et al. (2019) — — 81.4

Proposed 94.50% 91.23% 88.60%
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work should enhance real-time adaptability and increase dataset
diversity and implement transformer-based frameworks which
improve recognition in dynamic complex environments.

7 Limitations

While the proposed multi-modal rehabilitation monitoring system
demonstrates high accuracy and robustness across multiple datasets, it
also presents certain limitations. Firstly, the system’s performance may
degrade under severe occlusion or poor-quality depth sensing, which
affects silhouette and skeleton extraction accuracy. Secondly, although
we evaluated the framework across three diverse datasets, cross-dataset
generalization may require further domain adaptation or fine-tuning,
especially for unseen medical gestures or patient-specific behaviors.
Additionally, the integration of multiple feature streams and the deep
neuro-fuzzy classifier introduces computational overhead, which may
limit real-time applicability in low-resource or embedded edge devices.
Lastly, the system has not yet been tested in live clinical or at-home
rehabilitation scenarios, whichwill be an essential next step for validating
practical deployment and usability.

8 Conclusion

A novel and extensive approach to HMIR for medical applications
was developed through joint RGB and depth analysis of the NTURGB +
D 120, PKUMMD, and UWA3DII datasets. The system includes
advanced feature engineering methodologies which integrate kinetic
energy alongside histogram of optical flow (HOF) features and
angular geometric features along with eight round angles for RGB
data and 2.5D cloud ROP features together with Movement polygons
of depth data. A complete analysis of activity recognition emerges
through the combination of SGD optimization with deep neuro-fuzzy
classifier and the introduced features which enables high accuracy
medical activity recognition. Experimental results demonstrate that the
proposed framework proves both durable and versatile by producing
excellent results across numerous datasets. This framework demonstrates
both operational precision and computational effectiveness which makes
it an attractive solution for practical medical assistance technologies.
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