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Introduction: To develop a temporal-convolutional-LSTM (TCN-LSTM) hybrid
model integrating surface electromyography (sEMG) signals for forecasting post-
Schroth Cobb angle progression in adolescent idiopathic scoliosis (AIS) patients,
thereby offering accurate feedback for personalized treatment.

Methodology: A total of 143 AIS patients were included. A systematic Schroth
exercise training program was designed. sEMG data from specific muscles and
Cobb angle measurements were collected. A neural network model integrating
Temporal Convolutional Network (TCN), Long Short-Term Memory (LSTM)
layers, and feature vectors was constructed. Four prediction models were
compared: TCN-LSTM hybrid model, TCN, LSTM, and Support Vector
Regression (SVR).

Results: The TCN-LSTM hybrid model demonstrated superior performance, with
Cobb angle-Thoracic (Cobb Angle-T) prediction accuracy reaching R2 = 0.63
(baseline) and 0.69 (Week 24), achieving overall R2 = 0.74. For Cobb angle-
Lumbar (Cobb Angle-L), accuracy was R2 = 0.61 (baseline) and 0.65 (Week 24),
with overall R2 = 0.73. The SVR model showed lowest performance (R2 < 0.12).

Conclusion: The TCN-LSTM hybrid model can precisely predict Cobb angle
changes in AIS patients during Schroth exercises, especially in long-term
predictions. It provides real-time feedback for clinical treatment and
contributes to optimizing treatment plans, presenting a novel prediction
approach and reference basis for evaluating the effectiveness of Schroth
correction exercises in AIS patients.
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1 Introduction

Adolescent Idiopathic Scoliosis (AIS) is a common spinal deformity during puberty,
characterized by spinal curvature and rotation (Peng et al., 2020). It affects 2%–3% of
adolescents, with most cases being idiopathic (Kuznia et al., 2020). While genetic or
congenital factors contribute to some cases, the majority lack clear physiological or
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environmental triggers. Acquired factors like poor posture,
inactivity, and obesity may worsen spinal curvature (Weinstein
et al., 2008; Altaf et al., 2013). Without timely intervention, AIS
can progress, impairing physiological function and daily activities
(Cheng et al., 2015). AIS impacts adolescents’ health in multiple
ways: (1) Altered physical appearance may lead to low self-esteem
(Horne et al., 2014); (2) Severe curvature compromises respiratory
function and organ health (Reamy and Slakey, 2001; Lonstein,
1994); (3) Progressive deformity limits mobility and causes
chronic pain (Schreiber et al., 2014; Bleck, 1991); (4)
Psychological stress, including anxiety and depression, is
prevalent due to physical and social challenges (Ma et al., 2023).
Early diagnosis and intervention are thus critical. Currently, AIS
severity is assessed via Cobb angle measurements from spinal
radiographs (Mohamed and Yousef, 2021). The Cobb angle,
calculated from vertebral inclination lines, classifies curvature as
mild (<25°), moderate (25°–45°), or severe (>45°) (Jin et al., 2022).
However, this method has limitations: (1) Operator-dependent
errors and radiation exposure risks (Pasha et al., 2021); (2)
Inability to capture spinal rotation (Greiner, 2002); (3) Time-
consuming processes hinder real-time monitoring. A rapid,
accurate alternative for tracking AIS progression is urgently needed.

Electromyography (EMG) detects muscle activity through
bioelectrical signals, providing insights into muscle function and
contraction timing (Farina, 2006). In scoliosis patients, EMG reveals
asymmetric muscle activation patterns, offering valuable
information about disease mechanisms and progression (Wang
et al., 2022). Surface EMG (sEMG) enables non-invasive
monitoring of muscle activity, showing promise for assessing
motor function in AIS (Zhang et al., 2024). However, EMG
applications in AIS remain limited due to challenges in data
analysis sensitivity and equipment requirements. Deep learning
approaches, especially Temporal Convolutional Networks (TCN)
and Long Short-Term Memory (LSTM) networks, excel at
processing sequential biomedical data (Dolan et al., 2024). TCN
effectively models long-term dependencies through convolutional
layers, while LSTM addresses the vanishing gradient problem in
recurrent networks (Ruiz-Garcia et al., 2021). These methods have
proven successful in ECG and EEG analysis (Zhang et al., 2019;
Currie et al., 2019), yet their application to scoliosis research,
particularly in combination with EMG data, remains
underdeveloped. Integrating neural networks with EMG could
enable more accurate tracking of disease progression and
personalized treatment strategies.

Current treatments for adolescent idiopathic scoliosis (AIS),
including physiotherapy, bracing, and surgery, demonstrate
effectiveness but have limitations (Kocaman et al., 2021; Yagci
and Yakut, 2019). For mild to moderate cases, conventional
bracing and surgery may negatively impact long-term quality of
life (Weinstein et al., 2013), while physiotherapy often requires
extended treatment periods with variable outcomes (da Silveira
et al., 2022). Schroth exercises offer a non-invasive alternative,
focusing on spinal symmetry through targeted positioning,
breathing techniques, and postural correction (Ceballos-Laita
et al., 2023). This approach not only improves Cobb angles and
spinal rotation but also enhances muscle endurance and maintains
spinal structure (Mohamed and Yousef, 2021). Importantly, Schroth
exercises also provide psychological benefits by boosting self-

confidence and reducing anxiety (Kuru et al., 2016), making
them a valuable treatment option for AIS.

This study introduces an innovative approach combining
neural networks (TCN-LSTM) with EMG data to improve AIS
management. Our primary goal is to develop an accurate
prediction model for scoliosis progression during Schroth
therapy by analyzing sEMG signals and multi-dimensional
clinical indicators (spinal rotation, Cobb angle, muscle
endurance). This integration provides: (1) a novel diagnostic
perspective through EMG pattern analysis; (2) an objective
assessment tool for Schroth exercise efficacy; and (3) data-
driven support for personalized treatment plannin. The
proposed method addresses current research gaps and offers
clinically significant technical advancements for early AIS
intervention.

2 Methods

2.1 Research subjects

A total of 143 adolescent idiopathic scoliosis (AIS) patients were
included in this study, all recruited from the outpatient department
of Hospital. The age range of the patients was from 10 to 18 years
old, with an average age of (14.6 ± 2.7) years. This age group is the
high-incidence stage of AIS, during which the spine is still in the
process of growth and development and has relatively high
plasticity. The initial Cobb angle of the included patients ranged
from 10° to 40°, with an average Cobb angle of (17.9 ± 5.9)°. This
range covered mild to moderate scoliosis, and for such patients,
conservative treatment is usually the main approach, and the
Schroth exercise therapy is a commonly used conservative
treatment method. All patients were diagnosed through detailed
physical examinations, full-length spinal X-ray films, CT scans, and
other examinations. Patients with scoliosis caused by other reasons
such as congenital spinal deformities, neuromuscular diseases, and
trauma were excluded to ensure that the research subjects were
patients with simple AIS. In addition, none of the patients had
underlying diseases such as severe back pain, severe
cardiopulmonary dysfunction, or cognitive dysfunction that could
affect exercise training and data collection. They were in generally
good physical condition and were able to cooperate to complete the
Schroth exercises and related examination tests. Before the study
was carried out, all patients and their families fully understood the
purpose, process, and potential risks of the study, and voluntarily
signed the informed consent form. The research protocol was
reviewed and approved by the Ethics Committee and strictly
adhered to the Declaration of Helsinki.

The sample size of this study was 143 cases, which was
determined by referring to the sample sizes of previous similar
studies and based on the statistical power analysis method.
During the preliminary literature review, it was found that the
sample sizes of most electromyographic and biomechanical
studies related to the rehabilitation treatment of AIS patients
were mostly around 20–50 cases. AIS patients are a relatively
scarce group, so the sample collection was limited. To address
the issue of small samples, it was ensured that each patient
completed multiple exercises to construct a larger data set.
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2.2 Schroth exercise intervention program

Based on the Schroth therapy system and combined with the
individual spinal scoliosis characteristics of the patients, a systematic
exercise training program was formulated for the patients, which
included four typical Schroth exercises (See Figure 1):

• Quadruped position exercise: The patient placed their hands
and knees on the ground, keeping the spine naturally
extended, avoiding excessive collapse or arching. The head
hung down naturally, and the eyes looked at the ground. On
the basis of this position, the patient was guided to perform
stable breathing, with the focus on activating core stabilizing
muscle groups such as the erector spinae and multifidus
muscles to enhance the spine’s control ability in the
sagittal, coronal, and horizontal planes. This position was
maintained for 20 s.

• Squatting on the bar exercise: The patient stood on a specially
made bar close to the ground with feet shoulder-width apart,
grasped the upper bar with both hands, and slowly squatted
until the thighs were parallel to the ground. During the
process, the spine was kept straight, avoiding leaning
forward or backward, and the knees did not exceed the
toes. The bar was used to assist in maintaining body
balance, reducing the pressure on the waist, and
maintaining spinal stability through the tightening of the
core muscle groups to enhance the spine’s tolerance to
vertical pressure. The downward position was maintained
for 20 s.

• Unilateral kneeling position exercise: The patient knelt on
one knee, extended the other leg to the side, placed both
hands on the sides of the body, adjusted the pelvis to a
horizontal position with the thigh on the kneeling side as
support, and kept the spine extended to avoid
exacerbating the scoliosis and convexity on the scoliosis
side. On this stable basis, breathing was adjusted, and the
imbalance of muscle strength on both sides of the spine
was corrected to promote the spine’s return to the midline.
This position was maintained for 20 s.

• Lateral flexion sitting position exercise: The patient sat with
the buttocks placed on the heels of the feet and slowly tilted the
body to one side. During the process, the pelvis was kept from
twisting, and the hand on the tilted side could use a support
block to assist in maintaining balance. This position was
maintained for 20 s.

Before the formal collection of exercise data from the
patients, professional rehabilitation therapists provided each
patient with 30 min of action standard training every day for
3 days to ensure that the patients mastered the exercise skills
proficiently. Each movement was performed in six sets, with
10 repetitions in each set, and a 1-min rest between each
repetition. The training plan was carried out 3 times a week,
with each session lasting 30 min and lasting for 24 weeks.
During the exercise process, the therapists supervised the
whole process, corrected the patients’ incorrect movements
in a timely manner, and ensured the quality of the exercise
and the validity of the data.

FIGURE 1
Schroth exercise intervention program. (A): Quadruped position exercise; (B): Squatting on the bar exercise; (C): Unilateral kneeling position
exercise; (D): Lateral flexion sitting position exercise.
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2.3 Surface electromyography (sEMG) signal
acquisition and processing

The sEMG sensors produced by the American DELSYS
Company were used for surface electromyography signal
acquisition. Based on the anatomical positions of the
paraspinal muscles and their association with spinal scoliosis,
the bilateral erector spinae (L4 - L5 segments), multifidus
muscles, rectus abdominis, and external oblique muscles
were selected as the sites for electromyography signal
acquisition, with a total of eight muscles (See Figure 2). The

positions for electromyography acquisition were arranged
according to the SENIAM manual. Before attaching the
electrode patches, the skin was wiped with alcohol cotton
balls to reduce skin resistance and ensure good contact
between the electrodes and the skin. The patches were
attached parallel to the direction of the muscle fibers at the
belly of the selected muscles, and the sampling frequency of the
sensors was set to 1,000 Hz.

Before performing each Schroth exercise, the participants
relaxed in a resting state for 3 min. Subsequently, during the
exercise process, continuous electromyography signals were
continuously collected during each movement. Only the
electromyography signals during one training session were
collected for each movement, and generally, a random signal
among the 3rd to 8th repetitions of the second set of each
movement was selected to ensure that muscle fatigue did not
affect the signal quality. Each participant performed each
movement once. Since there were four movements in total,
572 sample data were generated for each movement from
143 participants each time. Electromyography was measured at
the 0th week, 8th week, 16th week, and 24th week. A total of
2,288 electromyography data were collected.

In this study, a fourth-order Butterworth band-pass filter was
adopted. The lower cutoff frequency was set to 20 Hz, which could
filter out low-frequency motion artifacts, such as slow potential
changes caused by overall body shaking and respiratory movements.
The upper cutoff frequency was set to 400 Hz, which could
effectively remove high-frequency noise.

FIGURE 2
Placement of the EMG.

FIGURE 3
Architecture of neural networks.

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Yin et al. 10.3389/fbioe.2025.1570022

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1570022


The root mean square value (RMS) was extracted from the
filtered sEMG signals. The calculation formula is:

RMS �

������
1
N
∑N
i�1
x2i

√√
where N is the number of signal sampling points, and xi is the
electromyography signal value at the i-th sampling point.

And the paraspinal muscle symmetry index (PMSI) was
calculated as PMSI � RMSconvex

RMSconcave
. A PMSI close to 1 indicated high

symmetry of the paraspinal muscle. A PMSI< 1 indicated that
RMSconcave was greater than RMSconvex , and a PMSI> 1
indicated that RMSconvex was greater than RMSconcave of the
scoliotic curve.

These two features were calculated as the basic parameters for
descriptive statistics and the basic information input into the neural
network. All the remaining filtered electromyography signals were
input into the neural network as time series data as a whole. The
neural network adopted in this study could independently extract
the time-domain and frequency-domain information from the
electromyography signals.

2.4 Dependent variable measurements

2.4.1 Spinal scoliosis angle (Cobb method)
The Cobb method was utilized to assess the degree of spinal

curvature in both thoracic and lumbar regions. It is widely
acknowledged as the gold standard for monitoring the
progression of spinal scoliosis. The Cobb angles (in degrees) were
obtained from standard anteroposterior standing full-spine X-ray
films, with separate measurements performed for the thoracic (Cobb
Angle-T) and lumbar (Cobb Angle-L) regions. X-ray examinations

were performed in the posterior-anterior and lateral positions, with
the patient in the anatomical standing position. The spinal scoliosis
angles at both regions were measured independently at baseline and
at the end of the 24-week period.

2.4.2 Rotation angle (scoliometer)
The Bunnell scoliometer and Adam’s forward - bending test

were employed to evaluate the trunk rotation angle (ART). The
patient was required to bend forward, and the trunk rotation angle
(the angle between the horizontal plane and the plane across the
posterior part of the trunk) was measured using the apical vertebra
of the curve. In cases of double scoliosis, ART was measured in the
two most prominent regions, namely, the thoracic and lumbar
regions. The rotation angle was measured at the 0th, 8th, 16th,
and 24th weeks.

2.4.3 Back muscle endurance
The Biering - Sorensen test (BST) is an effective and reliable

method for measuring extensor muscle endurance. This test is used
to evaluate the isometric endurance of the back muscles. To conduct
this test, the patient lies face - down on an examination table and
maintains the trunk in an extended position for as long as possible.
The test concludes when the patient can no longer maintain the
correct posture or when 240 s have elapsed. Back muscle endurance
was measured at the 0th, 8th, 16th, and 24th weeks.

2.4.4 Quality of life
The SRS - 22r questionnaire was applied to assess the quality of life

(QoL). The SRS - 22r questionnaire is a scoliosis - specific quality - of -
life questionnaire that evaluates five domains: function, pain, self -
image, mental health, and satisfaction (with 5 questions in each domain
except for treatment satisfaction, which contains 2 questions). Quality
of life was measured at the 0th, 8th, 16th, and 24th weeks.

FIGURE 4
Selection of predictive variables.
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2.5 Neural network model construction

This study utilized Python’s TensorFlow framework to
develop a hybrid deep learning model that combines a
Temporal Convolutional Network (TCN), Long Short-Term
Memory (LSTM) layers, and feature vectors to predict Cobb
angle and other dependent variables. The TCN module was
designed to extract local patterns and short-term features from
time-series data, while the LSTM module captured global
patterns and long-term dependencies. The feature vector
component was responsible for extracting basic patient
characteristics (e.g., BMI, gender). The model architecture
consisted of multiple 1D convolutional layers, LSTM layers,
and fully connected layers.

2.5.1 1D convolutional layer
The formula for the 1D convolutional layer is as follows:

y � σ W*x + b( )
where:

• y: Output of the convolutional operation,
• σ: Activation function,
• W: Convolutional kernel weights,
• *: Convolution operation,
• x: Input,
• b: Bias term.

The 1D convolutional layers serve as the foundational blocks of
the TCN, allowing the model to identify local temporal
dependencies and extract short-term patterns in the time-
series data.

2.5.2 LSTM layer
The LSTM layer equations are defined as follows:

ft � σ Wf · ht−1, xt[ ] + bf( )
it � σ Wi · ht−1, xt[ ] + bi( )

~Ct � tanh WC · ht−1, xt[ ] + bC( )
Ct � ft · Ct−1 + it · ~Ct

ot � σ Wo · ht−1, xt[ ] + bo( )
ht � ot · tanh Ct( )

where:

• ft: Forget gate,
• it: Input gate,
• ~Ct: Candidate cell state,
• Ct: Current cell state,
• ot: Output gate,
• ht: Current hidden state,
• Wf,Wi,WC,Wo: Weight matrices for the forget gate, input
gate, candidate cell state, and output gate, respectively,

• bf, bi, bC, bo: Bias vectors for each respective gate,
• σ: Sigmoid activation function,
• tanh : Hyperbolic tangent activation function,
• xt: Input at time step ttt,
• ht−1: Hidden state at the previous time step,
• Ct−1: Cell state at the previous time step.

The LSTM layer allows the model to maintain long-term
dependencies, making it particularly effective for sequential data
like sEMG signals.

2.5.3 Fully connected layer
The formula for the fully connected layer is:

y � σ Wx + b( )
where:

• y: Output,
• σ: Activation function,
• W: Weight matrix,
• x: Input,
• b: Bias vector.

TABLE 1 Demographic data.

Variable Value

Age 14.6 ± 2.7

Gender 46% female

Body Mass Index (BMI) 17.29 ± 1.23

Risser Sign 1.52 ± 1.21

Scoliosis curve

Left curve 64.7%

Right curve 35.3%

Cobb Angle-T (°)

Baseline 19.12 ± 5.95

Post treatment

Cobb Angle-L (°)

Baseline 15.28 ± 6.71

Post treatment 9.53 ± 4.21

ART-T (°)

Baseline 8.97 ± 2.58

Post treatment 3.64 ± 2.10

ART-L (°)

Baseline 4.36 ± 2.65

Post treatment 2.23 ± 1.97

SRS-22

Baseline 3.25 ± 0.32

Post treatment 4.54 ± 0.26

BST (s)

Baseline 88.34 ± 35.17

Post treatment 109.85 ± 43.67

Erector spinae RMSconcave (μV) 25.56 ± 7.83

Erector spinae RMSconvex (μV) 38.57 ± 7.43

Erector spinae PMSI 1.37 ± 0.19

Note: Cobb Angle -T: cobb angle of thoracic, Cobb Angle -L: cobb angle of lumbar, ART-T:

thoracic angle of trunk rotation, ART-L: lumbar angle of trunk rotation, SRS-22: scoliosis -

specific quality - of - life questionnaire, BST: Biering - Sorensen test.
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The fully connected layer combines features extracted by earlier
layers to produce the final prediction output.

2.5.4 Model architecture
The model architecture was composed of four modules in

sequence (See Figure 3):

1. TCN Module: This module consisted of multiple 1D
convolutional layers, batch normalization layers, and
dropout layers, with the ReLU activation function used for
non-linearity.

2. LSTMModule: This module included multiple LSTM layers to
capture temporal dependencies and long-range relationships.

TABLE 2 Mean value of R-squared for cross-validation of different models.

Time TCN+LSTM TCN LSTM SVR

Train R2 Test R2 Train R2 Test R2 Train R2 Test R2 Train R2 Test R2

Cobb Angle-T

0 Week 0.65 0.63 0.76 0.55 0.81 0.60 0.87 0.07

24 Week 0.71 0.69 0.85 0.53 0.87 0.48 0.81 0.07

Total 0.76 0.74 0.80 0.51 0.76 0.48 0.83 0.08

Cobb Angle-L

0 Week 0.63 0.61 0.66 0.58 0.65 0.53 0.87 0.12

24 Week 0.69 0.65 0.69 0.67 0.67 0.53 0.88 0.10

Total 0.75 0.73 0.77 0.53 0.81 0.51 0.89 0.12

ART-T

0 Week 0.54 0.50 0.73 0.43 0.71 0.45 0.91 0.04

8 Week 0.55 0.32 0.67 0.25 0.63 0.28 0.82 0.09

16Week 0.76 0.12 0.84 0.11 0.83 0.08 0.84 0.10

24 Week 0.65 0.33 0.75 0.24 0.77 0.20 0.86 0.06

Total 0.54 0.31 0.84 0.23 0.83 0.26 0.80 0.08

ART-L

0 Week 0.85 0.21 0.91 0.04 0.87 0.06 0.83 0.10

8 Week 0.86 0.14 0.82 0.13 0.80 0.09 0.85 0.11

16Week 0.81 0.15 0.88 0.12 0.84 0.11 0.87 0.07

24 Week 0.87 0.06 0.92 0.07 0.88 0.11 0.89 0.08

Total 0.88 0.11 0.89 0.10 0.90 0.07 0.90 0.09

SRS-22

0 Week 0.94 0.02 0.97 0.01 0.98 0.05 0.88 0.11

8 Week 0.88 0.13 0.98 0.01 0.97 0.01 0.81 0.12

16Week 0.81 0.15 0.91 0.06 0.96 0.10 0.87 0.06

24 Week 0.89 0.21 0.98 0.01 0.95 0.05 0.83 0.07

Total 0.87 0.07 0.97 0.02 0.95 0.06 0.84 0.08

BST

0 Week 0.54 0.43 0.32 0.23 0.35 0.26 0.86 0.10

8 Week 0.54 0.45 0.35 0.15 0.34 0.18 0.87 0.05

16Week 0.45 0.47 0.31 0.16 0.36 0.19 0.88 0.12

24 Week 0.52 0.43 0.45 0.12 0.47 0.16 0.89 0.06

Total 0.51 0.42 0.35 0.17 0.31 0.15 0.90 0.07

Note: Cobb Angle -T: cobb angle of thoracic, Cobb Angle -L: cobb angle of lumbar, ART-T: thoracic angle of trunk rotation, ART-L: lumbar angle of trunk rotation, SRS-22: scoliosis - specific

quality - of - life questionnaire, BST: Biering - Sorensen test. The R-squares in the table are the mean of the cross-validated R-squares.
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3. Fully Connected Layer: This layer processed non-time-series
features such as gender, BMI, and multi-measurement PMSI
data to generate a fixed-size feature vector.

4. Output Layer: The time-series features and non-time-series
feature vectors were concatenated, and higher-order features
were extracted through additional fully connected layers to
produce the final predictions.

The model predicted the following (See Figure 4):

• For Cobb angle: Input included sEMG signals and feature
vectors from week 0 and week 24. The output was the Cobb
angle at week 0 and week 12, providing a total of 186 samples.

• For rotation angle, back muscle endurance, and quality of life:
Input included sEMG signals and feature vectors from weeks
0, 8, 16, and 24. The output was the dependent variables at
these time points, providing a total of 572 samples.

2.5.5 Optimization and training
The Adam optimizer was employed to dynamically adjust

the learning rate and accelerate model convergence. To prevent
overfitting, an early stopping strategy was implemented,
halting training if the validation loss did not improve for
10 consecutive epochs. The model was trained for a
maximum of 100 epochs.

2.5.6 Performance evaluation
The trained model was evaluated on the test set using the

following metrics:

1. Root Mean Square Error (RMSE): This metric measured the
average deviation between predicted and true values. The
formula is:

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
where:

• n: Number of samples,
• yi: True value,
• ŷi: Predicted value.

2. Coefficient of Determination (R2): This metric quantified the
goodness of fit of the model. The formula is:

R2 � 1 − ∑n
i�1 yi − ŷi( )2∑n
i�1 yi − �y( )2

where:
• �y: Mean of the true values.

Both RMSE and R2 were used to assess model accuracy and
reliability in predicting Cobb angles and other dependent variables.

2.5.7 Model training strategy
The dataset was randomly split into a 7:3 ratio for training

and testing. To identify the optimal hyperparameter
combination, a combination of grid search and random
search was utilized:

• TCN Module: Hyperparameters included dilation rates (2, 4,
8, 16, 32), filter size (3), and dropout rates (0.1–0.5).

• LSTM Module: Hyperparameters included the number of
neurons per layer (128, 256, 512) and dropout rates (0.1–0.5).

• Learning Rate: Initial range of 0.0001–0.01 with a step size
of 0.0005.

• Batch Size: Fixed at 16.
• Fully Connected Layer Nodes: Explored configurations of 128,
64, and 32 nodes.

Exhaustive trials were conducted with all possible
hyperparameter combinations. The optimal configuration was
determined by comparing validation accuracy and loss across
different combinations, ensuring faster convergence and higher
prediction accuracy.

FIGURE 5
Mean value of R-squared for cross-validation of differentmodels.

TABLE 3 Performance of TCN+LSTM in predicting Cobb Angle.

Time TCN+LSTM

Train RMSE Train R2 Test RMSE Test R2

Cobb Angle-T

0 Week 3.52 ± 0.43 0.65 ± 0.22 3.62 ± 0.22 0.63 ± 0.23

24 Week 3.20 ± 0.46 0.71 ± 0.15 3.33 ± 0.27 0.69 ± 0.11

Total 2.91 ± 0.34 0.76 ± 0.19 3.03 ± 0.32 0.74 ± 0.18

Cobb Angle-L

0 Week 3.61 ± 0.26 0.63 ± 0.15 3.72 ± 0.31 0.61 ± 0.15

24 Week 3.31 ± 0.31 0.69 ± 0.18 3.52 ± 0.24 0.65 ± 0.21

Total 2.98 ± 0.29 0.75 ± 0.21 3.09 ± 0.22 0.73 ± 0.13
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2.5.8 Model validation
To ensure robust and reliable generalization, three-fold cross-

validation was implemented:

1. The preprocessed dataset was randomly split into three
mutually exclusive subsets: A, B, and C.

2. In the first iteration, subset A was used as the test set, while
subsets B and C were combined as the training set.

3. In the second and third iterations, subsets B and C were
sequentially used as the test set, with the remaining subsets
forming the training set.

Performance metrics such as accuracy and RMSE were averaged
across the three folds to obtain a comprehensive evaluation,
ensuring that the model’s performance was not influenced by any
specific data split.

3 Results

Table 1 presents the descriptive characteristics of the
participants. Since the muscles near the Erector spinae are crucial
for Adolescent Idiopathic Scoliosis (AIS), the electromyographic

Root Mean Square (RMS) and PMSI indices of this region during
natural standing posture are shown.

3.1 Comparison of prediction models

This study compares the prediction performance of four models:
the proposed TCN-LSTM hybrid model, the TCN model, the LSTM
model, and a variant of Support Vector Regression (SVR) suitable
for regression tasks.

Table 2 and Figure 5 display the research results, revealing
that prediction accuracy varies across different dependent
variables. The SRS-22 test set had the lowest prediction
accuracy, with all models failing to predict it effectively, with
the highest accuracy (R2) not exceeding 0.21. The prediction
accuracy for ART-L was also low, with a maximum of 0.22.
In contrast, the prediction accuracy for the Cobb Angle was
the highest, indicating that the Cobb Angle is more suitable for
prediction using neural networks, whereas variables like SRS-22
and ART-L are less suitable.

The comparison of models shows that SVR performed the
worst in predicting all dependent variables, with the highest
average accuracy on the test set not exceeding 0.12, and severe

FIGURE 6
Performance of TCN+LSTM for predicting Cobb Angle-T.
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overfitting on the training set. The best-performing model was the
TCN+LSTM hybrid model, followed by TCN and LSTM. The
TCN+LSTM model outperformed the others by a large margin,
consistently exceeding the accuracy of the other models across
most tasks, while the difference between TCN and LSTM was
minimal. Therefore, the following analysis focuses on the
performance of the TCN+LSTM model in predicting Cobb
Angle-T and Cobb Angle-L.

3.2 Prediction of Cobb angle

Table 3 shows the prediction accuracy for Cobb Angle-T. The
accuracy at Week 0 was relatively low (R2 = 0.63), whereas the
accuracy at Week 24 was slightly higher (R2 = 0.69). The overall
prediction accuracy across all samples was R2 = 0.74 for the test set.
The scatter plots for the test set and the training loss function are
shown in Figures 6, 8.

For Cobb Angle-L, as shown in Table 3, the accuracy at Week
0 was also low (R2 = 0.61), with a slightly improved prediction
accuracy at Week 24 (R2 = 0.65). The overall test set prediction
accuracy was R2 = 0.73. The scatter plots for the test set and the
training loss function are presented in Figures 7, 8.

The results in Figure 9 show that for the prediction of Cobb
angle, the training time of TCN+LSTM is the longest, followed by
that of LSTM and TCN, and finally SVR.

4 Discussion

This study demonstrates that the TCN-LSTM hybrid model
achieves superior Cobb angle prediction accuracy (R2 = 0.63–0.74)
compared to TCN, LSTM and SVR models when analyzing sEMG
data from AIS patients, with SVR showing particular limitations due
to overfitting (R2 = 0.07). The model’s effectiveness stems from
TCN’s ability to capture temporal sEMG patterns combined with
LSTM’s capacity for modeling long-term progression, offering
significant potential to transform clinical practice by enabling
more frequent, non-invasive monitoring of scoliosis progression.
Beyond immediate clinical applications, this approach could
facilitate the development of intelligent rehabilitation systems
that provide real-time feedback during Schroth exercises,
optimize treatment personalization, and reduce reliance on
radiographic assessments. The technology’s framework may also
be adaptable to other musculoskeletal disorders where muscle
activation patterns correlate with disease progression. While the

FIGURE 7
Performance of TCN+LSTM for predicting Cobb Angle-L.
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model shows particular strength in predicting structural spinal
changes, its relatively lower accuracy for SRS-22 and ART-L
measures highlights the complex multifactorial nature of these
outcomes and suggests the need for complementary assessment
methods in comprehensive patient care. These findings contribute to
the growing field of AI-assisted rehabilitation by demonstrating how
deep learning can extract clinically meaningful patterns from
physiological signals (Du et al., 2024; Yao et al., 2023), with
implications for both clinical decision-making and home-based
monitoring solutions. Future research should focus on enhancing
model generalizability and developing practical implementation
strategies to maximize clinical impact.

This study demonstrates that the TCN-LSTM model effectively
predicts Cobb angle progression in AIS patients undergoing Schroth
therapy, with improving accuracy over time (R2 = 0.63–0.74) and
decreasing RMSE values (3.52–2.91), indicating robust performance
(Fei et al., 2023; Kriegeskorte and Golan, 2019). The model’s ability
to correlate sEMG patterns with spinal curvature changes offers
significant clinical potential beyond immediate predictions, enabling
a paradigm shift in scoliosis management. By providing quantitative,
real-time feedback on treatment response, this approach could
revolutionize rehabilitation monitoring - reducing reliance on
periodic radiographic assessments while enabling more dynamic
treatment adjustments. The technology’s applications extend to tele-
rehabilitation platforms, where continuous sEMG monitoring
combined with predictive analytics could support remote patient
care, particularly valuable for underserved regions. Furthermore, the
framework established here may be adaptable to other
musculoskeletal rehabilitation contexts where muscle activation

patterns correlate with clinical outcomes. The consistent
predictive performance across treatment phases suggests potential
utility in both short-term intervention planning and long-term
prognosis estimation, offering clinicians a powerful tool for
personalized therapy optimization. These findings align with
broader trends in precision rehabilitation, demonstrating how
deep learning can extract clinically actionable insights from
physiological time-series data (Fei et al., 2023; Kriegeskorte and
Golan, 2019). Future implementations could integrate this
technology with wearable sensors and mobile health platforms to
create comprehensive monitoring ecosystems, though additional
work is needed to standardize sEMG protocols across diverse
clinical settings.

This study demonstrates that combining neural networks with
sEMG data enables accurate prediction of Cobb angle changes

FIGURE 8
Scatter plots of cross - validation for predicting Cobb Angles using different models.

FIGURE 9
Training time for different models to predict Cobb angle.
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during Schroth therapy in AIS patients, with prediction accuracy
improving from R2 = 0.61 at baseline to R2 = 0.65 at week 24, and
overall test set performance reaching R2 = 0.73. The progressive
improvement suggests the model effectively learns temporal
patterns from sEMG signals, offering clinically valuable insights
for personalized treatment planning (Dolan et al., 2024). Beyond
immediate clinical applications, this approach has transformative
potential for scoliosis management by enabling continuous,
radiation-free monitoring that could reduce reliance on frequent
radiographs. The technology could be integrated into tele-
rehabilitation platforms to support remote patient monitoring,
particularly beneficial for geographically isolated populations.
Furthermore, the framework established here may be adaptable
to other musculoskeletal conditions where muscle activation
patterns correlate with disease progression, potentially
revolutionizing physiotherapy outcomes assessment across
multiple domains. The demonstrated success in predicting
structural spinal changes from sEMG data (Minotti et al., 2024)
opens new possibilities for developing intelligent rehabilitation
systems that combine wearable sensors with predictive analytics
to optimize treatment protocols in real-time. While the current
focus is on AIS, the methodology could be extended to adult
degenerative scoliosis or other spinal deformities, providing a
scalable solution for diverse patient populations. These
advancements align with the growing trend toward precision
rehabilitation medicine, where data-driven approaches enable
more objective treatment evaluation and customization (Sitoula
et al., 2015). Future implementations should focus on translating
these technical achievements into clinically accessible tools while
addressing practical challenges such as signal standardization across
different patient demographics and clinical settings.

5 Conclusion

In this study, a hybrid model was constructed based on deep
learning techniques, combining time-sequential convolutional
networks (TCNs) and long-short-term memory networks (LSTMs),
for predicting Cobb angle changes in adolescent idiopathic scoliosis
(AIS) patients during Schrott training. By integrating basic patient
characteristics and time-series electromyography (sEMG) data, the
model was able to effectively capture the relationship between local
short-term dependence and global long-term dependence. The
experimental results showed that the TCN-LSTM model
outperformed the traditional statistical model in predicting the
spine angle changes in AIS patients with high accuracy and
reliability, and the model prediction ability was further enhanced
by calculating features such as the electromyographic symmetry index
(PMSI) and the root mean square (RMS) value. The study provides
accurate and personalised treatment support for AIS patients and
provides data for the dynamic adjustment of clinical treatment
plans. In addition, the study combines multi-dimensional metrics
such as spinal rotation angle and muscular endurance, providing a
more comprehensive assessment tool for clinical use. Overall, the
study promotes the application of smart medical technology in
AIS treatment, provides an innovative direction for early
diagnosis and efficacy assessment, and has broad clinical
significance and prospects.
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