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Urine-based therapy, an ancient practice, has been utilized across numerous
civilizations to address a wide range of ailments. Urine was considered a priceless
resource in numerous traditional therapeutic applications due to its reported
medicinal capabilities. While the utilization of urine treatment is contentious and
lacks significant support from modern healthcare, the discovery of urine-derived
stem cells (UDSCs) has introduced a promising avenue for cell-based therapy.
UDSCs offer a noninvasive and easily repeatable collectionmethod, making them
a practical and viable option for therapeutic applications. Research has shown
that UDSCs contribute to organ preservation by promoting revascularization and
decreasing inflammatory reactions in many diseases and conditions. This review
will outline the contemporary status of UDSCs research and explore their
potential applications in both fundamental science and medical practice.
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GRAPHICAL ABSTRACT

1 Introduction

Regenerative medicine can restore damaged or incapacitated
organs. Stem cells have made significant progress and are an
increasingly popular approach in regenerative applications
thanks to their tremendous multiplying ability and multi-
differentiation potential (Augustine et al., 2021). Since all
tissues include endogenous stem cells that are crucial for their
equilibrium, they are usually recognized as a more accessible cell
reservoir for use in therapy and remain an expanding and
fascinating field with the promise to improve human
healthcare (Liu et al., 2020a). Urine-derived stem cells
(UDSCs) have developed as a potential cellular origin in the
last decade due to their noninvasive acquiring process, robust
proliferation capacity, and diverse medical applications and act as
the starting point in order to convert them into disease-tailored
induced pluripotent stem cells (IPSCs). UDSCs are now playing a
significant part in adult stem cell biology (Barakat et al., 2020; Ji
et al., 2017).

Sutherland and Bain announced the practical separation of
live cells from urine utilizing specimens of newborns (Sutherland
and Bain, 1972). Several teams repeated the process in subsequent
years, and cells were taken from individuals with various
illnesses. These urinary cells had a variety of topologies
(polygonal or elongated), but the source was primarily
epithelial (from the kidney tubules and urothelial) according
to biomarker gene transcription (Kibschull et al., 2023;
Zhuang et al., 2021; Sun et al., 2022b; Lone et al., 2022).

2 Extraction of UDSCs

As previously mentioned, Sutherland and Bain published the
first research to describe the gathering of exfoliated urine cells in
1972. They obtained proliferating cells from the urine of four
newborns under the age of 2 days (Sutherland and Bain, 1972).
Zhang et al. identified renal progenitors in cultivated urine-derived
cells from 15 healthy persons and eight patients with vesicoureteral
reflux. There were around 2–7 progenitor-like cells per 100 mL of
urine, capable of forming a homogeneous, concentrated colony from
an individual cell in 2 weeks. These cells may develop in vitro for
eight passages before differentiating into urothelial, smooth muscle,
endothelial, and interstitial cells. Nevertheless, the fraction of cells
that display stem/progenitor characteristics declined after every
passage (Zhang et al., 2008).

Following gathering urine, it should be centrifuged to extract
UDSCs, and then contaminated cells should be progressively
eliminated. Urine cryopreservation from healthy young
individuals is the most effective sample for extracting fresh
UDSCs from samples taken from diseased persons, especially
those suffering from diabetes (Zhao et al., 2018).

However, the most recent research demonstrates that they can
be effectively obtained from these patients, but their regenerating
capacity has been substantially decreased, making them unsuitable
for treatment (Ouyang et al., 2019). After collecting the appropriate
specimens, an antibiotic is applied to minimize contamination. After
centrifuging, the remaining residue is eliminated, followed by two
washes with phosphate buffer saline (PBS) and resuspension of the
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material. Because urine involves many types of cells, it is vital for
identifying the different contents following extraction (Kim
et al., 2020).

3 UDSCs culture

Separation of UDSC from fresh urine is more appropriate,
but procedures for UDSC isolation could be accomplished
within 24 h if urine is kept at 4°C in a storage medium with
serum; prolonged preservation negatively affects the lifespan of
cells (Lang et al., 2013). Investigations on urine storage for
UDSCs separation are still limited, and it is a crucial subject
to tackle as it would provide numerous benefits to the
methodology of UDSCs separation (Zeng et al., 2022; Xie
et al., 2023). Bharadwaj et al. reported an average of 3.7 ×
108 UDSC cells at passage five after 27 days of culture.
Nevertheless, amounts may vary depending on conditions
(Bharadwaj et al., 2011). UDSCs may be separate from
persons of both sexes, and the age range documented so far is
5–75 years (Kim et al., 2023). Telomerase activity in adult cells is
mainly restricted to stem cells and is linked with strong
proliferating ability. Bharadwaj et al. reported telomerase
activity in 60% of the separate UDSC specimens (Bharadwaj
et al., 2013), whereas standard genome sequencing was
discovered at least until cell passage 15 (Kibschull et al., 2023).

Moreover, Chun et al. suggested implementing a 5% O2 hypoxic
medium with collagen type I as a tailored technique for expanding

collected UDSCs while preserving their chromosomal integrity and
multipotent development capacity (Chun et al., 2016).

A new investigation found that flavonoids enriched with
Matrigel. Flavonoids might improve UDSCs isolation, yield,
colony-building capability, and differentiation capability (Kim
et al., 2020). Nevertheless, to create a significant amount of
developed cells before therapeutic administration, maximal
growth of UDSCs is frequently necessary in vitro, resulting in
cellular aging following several passages (Shi et al., 2022).

Liu et al. used undifferentiated UDSCs throughout the initial
phases of in vitro passaging (≤p3) with a heparin hyaluronic-acid
hydrogel (hp-HA) gel encapsulating growth factors. Following
subcutaneous insertion in vivo, the cells demonstrated enhanced
survival, integration, vascular, neuronal, and myogenic
transformation capabilities (Liu et al., 2020b).

4 Properties of HUDSCs

Urine contains multiple cell types, generically categorized as
UDSCs, containing numerous cellular groups and stem cells. UDSCs
have MSC-like characteristics and possess the capacity to divide and
multiply into diverse cell lines. The essential sources and particular
mechanisms that underpin the formation and evacuation of UDSCs
are yet unknown. In addition, they may be lost in urine due to the
normal cycle of homeostatic tissue repair and renewal. Urine stem
cells are proven to have several outstanding biological features
(Figure 1) (Zhou et al., 2012).

FIGURE 1
An overview on biological characteristics of UDSCs regrading pluripotent differentiation capacity, paracrine effects, self-renewing capacity,
immune-modulating characteristics, antioxidant activities, modulation of apoptosis, and genetic stability.
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4.1 Genomic durability

In vitro multiplication of UDSCs is required to generate a
substantial number of cells for therapeutics because of their small
quantity in human urine; however, this method enhances the danger
of genetic changes and cellular mutations. Genetic integrity is an
important safety issue for stem cell-based therapies since
destabilization in the genome, including chromosomal changes, is
linked to higher tumor formation (Wu et al., 2011). Telomere
degradation during the proliferation of cells leads to cell death
and mortality. Telomere length is critical for the continued or
limitless multiplication of self-renewing cells. Cells’ telomerase
transcription (low or undetectable) should be evaluated to
exclude the potential of tumorigenicity. UDSCs’ powerful
dividing capability is linked to their lengthy telomeres.
Surprisingly, specific UDSCs clones exhibited apparent amounts
of telomerase activity during the initial stages, and their dividing
capacity was greater than that of telomerase-negative cells (Shi et al.,
2022). Nonetheless, telomerase activity gradually dropped
throughout cellular subculture. As a result, notwithstanding
identifiable telomerase activity within specific UDSCs clones, in
vivo investigations show that USCs did not become tumorigenic
upon growth.

4.2 Differentiation capacity

Autologous somatic stem cells provide a unique benefit for
upcoming therapeutic uses since they seldom cause
immunological rejection (Jha et al., 2024; Selvido et al., 2023).
Furthermore, the capacity to grow rapidly and be driven into

multiple cell lineages provides a foundation for stem cell
therapies. UDSCs may be grown to produce a vast population,
and their adaptability has been extensively established via research
(Figure 2; Table 1) (Shi et al., 2016). Initially, UDSCs were cultivated
from newborn infants and showed low proliferation capacity
(Sutherland and Bain, 1972). In 2008, urological tissue
regeneration researchers effectively generated urine cells with
remarkable division capacity (Zhang et al., 2008). Once extracted,
UDSCsmay be grown in vitro and divided into various cellular kinds
by inducing lineage-specific differentiation under the right
circumstances. UDSCs enhance PDLSC division, osteogenic and
cementogenic transformation, and regrowth of fresh tissues in vivo
in a ratio-dependent fashion via noncontact coculture. These
findings point to its potential application as a unique strategy for
clinical periodontal regeneration (Yang et al., 2020). Human urine-
induced pluripotent stem cells (hU-iPSCs)-derived epithelium
layers developed into dental-like frameworks, exhibiting physical
qualities similar to those exhibited by regular human teeth (Cai
et al., 2013).

When stimulated with proper media, UDSCs produce
urothelial-specialized biomarkers, including uroplakin-III and
cytokeratin. During the differentiation process, cell morphology
changed dramatically, resulting in a cuboidal form (Wan et al.,
2018). When grown in a myogenic media, UDSCs display muscular-
associated biomarkers like myosin (Liu et al., 2013). Intradermal
applications in nude mice and USCs with myogenic transformation
could create an assortment of smooth muscle cells (Chen
et al., 2017).

UDSCs can successfully transform into functional endothelial
cells when incubated in an endothelial stimulating medium,
exhibiting a cobblestone-like form, expressing endothelial

FIGURE 2
Schematic representation of differentiation capacity of UDSCs, whether they were used as programmed or unprogrammed cells, they have an
outstanding tendency to form epithelial, endothelial, fibroblast-like, myo-epithelial, neurons-like, osteoblasts, cementoblasts, and chondrocytes.
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biomarkers, forming tubules on Matrigel, and developing tight
connections, analogous to natural endothelial cells (Liu et al., 2018).

Following osteogenic development, UDSCs can generate
mineralized matrices. During osteogenic cell commitment,
alkaline phosphatase activity and osteogenic biomarker
transcription increase (Qin et al., 2014). UDSCs can alter shape
to become a neuron-specific architecture with distinct neurogenic
extensions (Wu et al., 2020). Additionally, the generated UDSCs
exhibit neuronal biomarkers, including Nestin, and Sox2 (Sato
et al., 2019).

4.3 Paracrine effects

UDSCs have substantial paracrine impacts and could discharge
various paracrine substances, including regulatory molecules and
exosomes. The UDSCs secretory system has sparked considerable
curiosity in tissue repair (Xiang et al., 2020). Human USCs were
proven to decrease inflammatory reactions and fibrosis via paracrine
mechanisms. When cultivated alongside PDLSCs, UDSCs can
promote the osteogenic development of PDLSCs via paracrine
mechanisms. Transfected genes have been used to modulate
UDSCs synthesis. UDSCs could express the VEGF gene, showing
more enhanced angiogenesis. Transplanting UDSCs engineered

with the FGF2 gene significantly restored vascularity via
paracrine actions in rats. As a crucial paracrine mediator,
extracellular vesicles (EVs) carry numerous bioactive cargos
(Zidan et al., 2021). Investigations on animals have highlighted
the excellent prospects of UDSC-derived EVs (UDSC-EVs). For
example, in ischemic mice, USC-EVs significantly improved
angiogenesis. Furthermore, UDSCs-EVs can improve tissue
repair, which could be due to the microRNAs they contain.
UDSCs-exosomes (UDSCs-EXOs) can effectively inhibit
osteonecrosis by delivering peptides having proangiogenic and
antiapoptotic properties (Wan et al., 2022). UDSCs-EVs are
capable of treating osteoporosis in mice by delivering functional
proteins. UDSCs-EXOs are also helpful in shielding tissues from
injuries (Chen et al., 2020).

4.4 Self-renewal potential

UDSCs could be obtained from urine, producing significant
cellular quantities from just one copy. These cells produce
homogeneous kinds of cells and are excessively proliferating since
they have more vigorous telomerase activity and more considerable
telomere lengths than other forms of MSCs(Supakul et al., 2023).
The majority of UDSCs obtained from young adults displayed

TABLE 1 Differentiation capacities of UDSCs/U-IPSCs.

Cell line Expressed biomarkers Reprogramming technique References

Osteoblasts CD73, CD90, and CD105 Park et al. (2023)

Cardiomyocytes Troponin-T Lentiviruses Jiang et al. (2018)

c-Myc and Klf4 Lentiviruse Guan et al. (2014b)

Oct4/Sox2, c-Myc, and Klf4 Sendai virus Cao et al. (2018)

NKX2-5, GJA1, GJA5 and RYR2 Episomal vectors Jouni et al. (2015)

Hepatocytes ALB, CYP450, AFP Zhou et al. (2020)

CD24, CD29, CD73, CD90, and CD146 Zhang et al. (2021)

CD24, CD29, andCD146 Hu et al. (2020)

Neural cells PAX6, SOX1, SOX2 and nestin Episomal vectors Wang et al. (2013)

Sox2- and Nestin Lentivirus Guan et al. (2014a)

MNP, Olig2 and Pax6 Sendai virus Yi et al. (2018)

Renal cells PAX2, WT1, and CADHERIN 6 Choi et al. (2017)

Skeletal myocytes myf5, myoD, myosin, and desmin Chen et al. (2017)

PAX7, MYOD, MYOG, and MF20 Episomal vectors Kibschull et al. (2023)

Chondrocytes Agg, Col I, Sox9, and Col II Sun et al. (2021b)

Pancreatic β-cells Ngn-3 and Pdx-1 Hwang et al. (2019)

Endothelial CD31, vWF, eNOS Liu et al. (2018)

Epithelial FOXA2 and SOX17 Episomal plasmids Wang et al. (2016)

Cementogenic CEMP1 Yang et al. (2020)

AFP, Alpha-fetoprotein; Agg, Aggrecans; ALB, Albumin; CADHERIN, calcium-dependent adhesion; CD, Clusters of differentiation; CEMP1, Cementoblastoma-derivedprotein1; c-Myc,

Cellular myelocytomatosis oncogene; Col I, Collagen; CYP, Cytochromes-P; FOX, Forkheadbox protein; GJA, Gap juxtaglomerular apparatus; Klf4, Krüppel-like factor 4; MF, Myosin Heavy

Chain Antibody; MNP, Manganese peroxidase; Myf, Myogenic factor; MyoD, Myoblast determination protein; Ngn, Neurogenin; Olig, Oligodendrocyte lineage transcription factor; PAX6,

Paired-box; PDX, Pancreatic and duodenal homeobox; RYR2, Ryanodine receptor; Sox, Sex determining region Y-box; WT, Wilms tumor.
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telomerase activity (TA+) and maintained extended telomeres sizes
Telomerase activities, while UDSCs-TA + dropped to 50%–60% of
the UDSCs among individuals 50 years old and beyond (Shi et al.,
2012). Regardless of multiple passes, TA+ and TA-USCs maintain
standard karyotyping in the growing environment. They did not
develop teratomas 3 months following implantation (Shi et al.,
2012). About 100–140 UDSC clones can be acquired every 24 h
from every person (Zhang and Atala, 2022).

4.5 Immune-modulating activities

Recent investigations have revealed that UDSCs implantation
can minimize localized inflammation and expedite tissue
regeneration by encouraging macrophage polarization toward the
M2 phenotype (Sun et al., 2021a; Pei et al., 2023). There was no
evident immunological rejection or cancer detected in these
investigations, indicating that USCs are low immunogenic and
safe for xenotransplantation (Cehakova et al., 2023; Liu et al., 2022).

Host exposure to periodontitis controls not only the shift from
microbial symbiosis to dysbiosis but also the onset of inflammation
and the advancement of irreversible tissue degradation (Darby,
2022). Periodontitis advancement and severity are influenced by
host-related factors, including immunoregulatory dysfunction,
immunodeficiency, and systemic diseases associated with
periodontitis (Hernández et al., 2021). Deficiencies or
dysfunction of the host’s defenses lead to a failure to control
dysbiotic microbial populations and the associated disease (Deng
et al., 2022). Silk fibroin (SF)/nanohydroxyapatite (nHA) composite
loaded with less than 0.5% GO were biocompatible and enhanced
UDSCs multiplication and bone formation. It could stimulate M2-
type differentiation while inhibiting M1-type conversion of
macrophages. It displayed the most substantial potential for
boosting the M2-type polarization of macrophages and
promoting osteoinduction in vivo (Sun et al., 2021a).

4.6 Antioxidant activity

Oxidative stress is a hazardous mechanism that can cause
malignancies, cardiac illness, neurological problems, respiratory
diseases, renal disease, chronic inflammation, and premature
aging (Deng et al., 2021). Li et al. discovered that UDSCs-EXOs
had antioxidant potential since they were able to enhance SOD
activity and decrease MDA levels (Li et al., 2020). Comparably,
Zhang et al. discovered higher concentrations of SOD-1 in mice
treated with UDSCs (Zhang et al., 2020a). Furthermore, UDSCs
have been shown to have an antioxidant impact by significantly
lowering the levels of oxidative stress-associated markers (Li
et al., 2017a).

4.7 Apoptosis regulation

Apoptosis is a type of planned cell mortality that occurs when
separate apoptotic bodies arise to preserve equilibrium and manage
the normal cell cycle. However, severe apoptosis might degrade
tissue function further, leading to serious diseases. As a result,

blocking apoptosis is viewed as saving damaged tissue (Xu
et al., 2019).

Sun et al. discovered that UDSCs inhibited the formation of Bax
and Caspase three while increasing the production of the
antiapoptotic protein Bcl-2 (Sun et al., 2019). An in vivo study
proved that therapy with UDSCs decreased apoptotic levels by
significantly lowering caspase-3 and Bax levels while significantly
boosting Bcl-2 levels, resulting in fewer apoptosis nuclei (Li
et al., 2017a).

TIMP1 is a naturally occurring matrix metalloproteinase
(MMP) inhibitor. The PI3K and JNK signaling mechanisms were
activated by the recombinant human TIMP1 protein, which
prevented apoptosis. TIMP1 was discovered to be exceptionally
abundant in UDSC-EVs by Chen et al. and might improve the anti-
apoptotic properties of osteoblasts and endothelial cells, therefore
playing a protective function (Chen et al., 2020).

5 UDSCs vs. U- IPSCs

UDSCs were previously classed as cells with multipotent
characteristics, indicating that they may transform into several
varieties of cells within the same lineage. Furthermore, they are
capable of being turned into induced pluripotent stem cells., which
have greater effectiveness (Guan et al., 2014b). However, a new study
discovered that empty urine includes many functional epithelial cells
that may be well cultivated and transformed into IPSCs (Kibschull
et al., 2023).

There are two fundamental methods for creating a significant
amount of different cell numbers: the first is cellular reprogramming
using UIPSCs, and the second is immediate reconfiguration from
baseline UDSCs (Table 5). Cell reprogramming, which is commonly
performed through the viral or non-viral administration of
reprogramming reagents, transforms UDSCs into proliferative
U-IPSCs that can then be transformed into numerous cellular
kinds utilizing established procedures. While this approach is
quite efficient for creating vast quantities of cells, it is not
without risk because of the reprogramming reagents. U-IPSCs
may divide into various kinds of cells; U-IPSCs frequently
develop into specific cell types by employing specialized
induction procedures and triggers that mimic physiological
phases of development. Here are some instances of how U-IPSCs
can differentiate (Liu et al., 2021).

In preclinical research, developed u-iPSC-derived renal cells
were used as an option for regenerative therapies. U-IPSCs have
also demonstrated their ability to turn into various cellular
lineages. The usefulness and productivity of techniques for
development can change according to cellular species and
techniques employed (Mulder et al., 2020). Continuing
studies are concentrated on improving differentiation
strategies to boost the efficiency and usability of U-IPSCs for
regenerative therapies and disease models. The direct technique
includes changing critical transcriptional genes. It aims to turn
UDSCs directly into targeted kinds of cells without crossing via
the iPSC stage, possibly preserving lineage-specific data while
addressing safety issues. Numerous investigations proved that
UDSCs can be directly transformed into multiple cell lines (Liu
et al., 2021).
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It is essential to stress that direct reprogramming investigations
are just starting, and further investigations are essential for properly
comprehending the possible uses of this technique for
therapeutic purposes.

6 Employment of UDSCs in
pathological simulation

U-IPSCs have been employed in disease models for researching
an extensive spectrum of human illnesses, allowing researchers to
understand the molecular processes, pathophysiology, and
prospective treatment methods to address diverse ailments

(Figure 3) (Li et al., 2017b). Furthermore, U-IPSCs obtained
from those with certain genetic conditions can develop into
illness-related cellular populations to simulate the condition
in vitro. This strategy has been utilized to investigate pathological
conditions (Li et al., 2017b; Shi and Cheung, 2021).

Investigators can learn more about disease causes, evaluate
possible medication candidates, and investigate personalized
medicine techniques by examining u-iPSC-derived cells from
afflicted patients. U-IPSCs have been employed to imitate several
neurological illnesses; neurogenic transformation of U-IPSCs allows
researchers to detect illness-specific cellular characteristics, evaluate
disease development, and test novel treatments (Shi and Cheung,
2021). U-IPSCs have also been utilized to simulate cardiac illnesses

FIGURE 3
Adaptability of UDSCs as large-scale, ethical approach for disease modelling in numerous diseases and conditions, such as blood disorders,
neurological conditions, infertility isorders, musculoskeletal disorders, kidney disorders, cadiac conditions, and genetic disorders.
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TABLE 2 UDSCs treatment for illnesses in different tissues and organs.

Application Procedure Model Outcomes Advantages Limitations Recommendation References

Genitourinary
repair and
regeneration

UDSCS In vitro:
UDSCs
In vivo:
rabbits

In vitro: UDSCS
differentiated into
myogenic and
urothelial like cells
In vivo: promote
urethral
reconstruction, as
demonstrated by
substantial
increases in urethral
diameter,
rejuvenation
velocity, muscle
content, and
vascularization

USCs that are
effortlessly
separated by
voided urine may
be widely increased
with elevated
quantities

Molecular
mechanisms were
not clarified

Additional studies are
required to transfer such
technology into the clinic

Liu et al. (2017)

Cartilage
regeneration

ACM/hUSCs In vitro:
hBMSCs
and
hUDSCs
In vivo:
rabbits

In vitro: hUDSCs
had a higher
potential for
division, colony
formation, and
migration than
hBMSCs in the
same passage
In vivo:
considerably
stimulated cartilage
defect healing

hUDSCs can be
regarded an
alternative to
typical stem cells
for cartilage repair

A fferent cellular
microenvironment
provided by the
media may affect
cellular behaviors
Absence of
investigation of
interindividual
differences

Further examined utilizing
cell surveillance, genomic
assessments, and another
research

Sun et al.
(2021b)

Skin wound
healing

UDSCs-PCL/GT In vitro:
UDSCs
In vivo:
Rabbits

In vitro: UDSCs
may develop into
osteoblasts,
adipocytes, and
chondrocytes. In
vivo: UDSCs-PCL/
GT-treated lesions
healed considerably
quicker, with
enhanced re-
epithelialization,
collagen
production, and
angiogenesis

Non-invasive
procedure

Failure to regenerate
skin appendages

More research on higher
animal models is needed

Fu et al. (2014)

Diabetes UDSCs In vitro:
UDSCs
and
hADSCs

UDSCs can be
transformed into
insulin-generating
cells

Easy and
inexpensive
isolation procedure

The levelof
responsiveness to
glucose was lower
than in the main
islets

Additional research is
required

Hwang et al.
(2019)

Dental engineering UDSCs In vitro:
UDSCs
In vivo:
mice

In vitro: UiPSCs-
derived epithelial
sheets developed
into ameloblasts in
dental-like
structures
In vivo:
Regenerative teeth
comprise enamel
with human-
derived ameloblast-
like cells and have
physical qualities
similar to
conventional
human teeth

Noninvasive
technique

Un clear molecular
processes

Future research ought to
concentrate on the
derivation of odontogenic
capacity of Ifhu-iPSCs

Cai et al. (2013)

Periodontal
regeneration

UDSCs/PDLSCs
sheets

In vitro:
PDLSCs
In vivo:
mice

In vitro: When
combined with
UDSCs, PDLSCs
could exhibit
enhanced division

Noninvasive
collecting
approach to uscs
and their steady
growth render

Cellular process of
this experiment
deserves additional
investigation

These findings need more
investigation point to a
potential new technique for
clinical periodontal tissue
restoration

Yang et al.
(2020)

(Continued on following page)
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TABLE 2 (Continued) UDSCs treatment for illnesses in different tissues and organs.

Application Procedure Model Outcomes Advantages Limitations Recommendation References

and cementogenic/
osteogenic
transformation
In vivo: generated
more fresh and
dense tissues while
also expressing
greater quantities of
osteogenic and
cementogenic
proteins

Ophthalmological
disorders

UDSCs-derived
exosomes

In vitro:
RGCs

Suppressing cell
apoptosis,
increasing cellular
survival, and
promoting the
division of aged rgcs

Exosome targeted
therapy is a fresh
strategy to cell-free
therapy and
medication
delivery for the
management of
age-related
illnesses

Genetic variations as
well as modifications
in communication
signaling need more
clarification

In general, attention to the
influence of ageing on USCs
and vice versa is crucial for
devising innovative therapy
employing USCs with an
emphasis on the treatment
of older adults

Dan et al. (2023)

Female infertility SIS loaded with
UDSCs

In vitro:
HEEC
and
hESC.
In vivo:
Rats

In vitro: the SIS
scaffolds showed
good mechanical
characteristics and
biocompatibility
while promoting
epithelial migration
and
revascularization
In vivo:
Transplantation of
SIS/UDSCs
preserved standard
luminal structure,
increased
endometrial and
glandular
rejuvenation,
revascularization,
reduced fibrosis,
and enhanced
endometrium
responsiveness

This has resulted in
a new technique
for boosting
endometrial shape
and functioning,
which could prove
useful for IUA
avoidance and
management in
clinics

The biological
process behind the
unique role of the
USCs to the
endometrial and
gland regeneration is
inadequately known

It deserves rigorous and
comprehensive research

Song et al.
(2023)

Male infertility UDSCs and
UDSCs-EXOs

In vivo:
Mice

Recovered
spermatogenesis in
NOA mice 36 days
following busulfan
administration

This investigation
offers a unique
perspective on the
therapy of NOA

Failed to shield the
mouse testicles from
early busulfan
damage

More investigations are
needed in higher animal
models

Deng et al.
(2019)

Cardiac
regeneration

UDSCs In vitro:
UDSCs
In vivo:
Rats

In vitro: cellular
architectures were
altered to produce
endothelial and
smooth muscle-like
cells
In vivo, the
application of
UDSCs could
alleviate fibrosis
and apoptosis of the
myocardium in
rats. Injection of
USCs restored the
poor functioning of
the left ventricle

A viable therapy
strategy for
problems might
involve reducing
fibrosis and
preventing cell
death

Unclear mechanism Additional studies should
look at the mechanism and
therapeutic applications

Dong et al.
(2016)

Bone engineering Calcium silicate
(CS) particulates,
and mixed with

In vitro:
UDSCs

In vitro: boosted cell
division, ALP
action, calcium

Non invasive The precise
mechanism behind
this phenomenon

These findings can help
guide future research on
biomaterial development

Guan et al.
(2015a)

(Continued on following page)
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(Huang et al., 2020). Differentiation of U-IPSCs into cardiomyocytes
allows scientists to explore disease processes, assess aberrant cardiac
cell function, and test prospective therapy techniques (Huang
et al., 2020).

Furthermore, U-IPSCs have been used to imitate various
nephrological conditions and acute renal damage. The
transformation of U-IPSCs into kidney cellular lineages enables
scientists to evaluate illness-specific cellular characteristics, track
disease development, and test novel therapeutic approaches for
kidney ailments (Bharadwaj et al., 2013).

Guo et al. obtained u-iPSC from a 5-year-old boy suffering
from X-linked Alport Syndrome (X-LAS) and showed the
practicality as a cellular-orchestrated illness model by validating
the pluripotency capacity and proper karyotyping (Guo
et al., 2020).

Hemophilia is a widespread inherited hemorrhaging disorder
(Shah et al., 2023). Because of deficiencies in the way blood clots,
those who have severe hemophilia could experience fatal episodes of
bleeding during trauma or surgeries (Gualtierotti et al., 2024). The
primary therapy is to replace the deficient factors (Koga et al., 2023).
Lu et al. produced U-IPSCs from a Hemophilia A patient with an
Inv22 mutation (Lu et al., 2020). The pathogenesis of neurological
diseases is multifactorial, including intricate links between genetics
and the environment that cannot be fully replicated in animal
models (Yau et al., 2023).

Teles et al. developed human cerebral organoids from U-IPSCs
obtained from Down syndrome (DS) patients, expressing
evolutionary patterns of the early-stage forebrain (Teles e Silva
et al., 2023). Musculoskeletal illnesses are the second most
common cause of disability worldwide, inflicting a considerable

TABLE 2 (Continued) UDSCs treatment for illnesses in different tissues and organs.

Application Procedure Model Outcomes Advantages Limitations Recommendation References

poly (lactic-co-
glycolic acid)
(PLGA)/

In vivo:
Rats

deposits, and
strongly stimulated
the bone-forming
transformation
In vivo: Promoted
the synthesis of new
bones significantly

remains obscure and
requires additional
exploration

ACM, Acellular cartilage extracellular matrix; ALP, Alkaline phosphatase; CS, Calcium silicate; GT, Gelatin; HADSCs, Human adipose stem cells; HEEC, Human endometrial epithelial cell;

HESC, Human endometrial stromal cell; Ifhu-iPSCs, Integration-free human urine induced pluripotent stem cells; IUA, Intra- uterine adhesion; NOA, Non obstructive azoospermia; PCL,

Polycaprolactone; PDLSCs, Periodontal stem cells; PLGA, Poly (lactic-co-glycolic acid); RGCs, Retinal ganglion cells; SIS, Small intestine submucosa; UDSCS, Urine derived stem cells; UiPSCs,

Urine induced pluripotent stem cells.

FIGURE 4
Versatility of UDSCs as economic, non-invasive therapeutic and regenerative approach in numerous applications, such as cartilage regeneration,
management of cardiac conditions, management of optical disorders, periodontal regeneration, dental engineering, skin regeneration, management of
diabetes, management of infertility disorders in both of males and females, and genitourinary repair and regeneration.
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cost on society (Giardullo et al., 2021). Autosomal dominant
osteopetrosis type II (ADO2), a dominantly inherited
musculoskeletal condition, causes fractures, joint discomfort, and
bone morphological abnormalities (Lu et al., 2022). Ou et al.
generated U-IPSCs from ADO2 patients and detected the
identical CLCN7 polymorphism (R286W) in their specimens by
juxtaposing them with ADO2-IPSCs (Ou et al., 2019).

Cryptorchidism is a frequent congenital condition in newborns,
with the potential for infertility. Because human embryos are
difficult to obtain for scientific research, in vitro models may be
useful (Li et al., 2024). Zhou et al. used lentivirus to reprogram
UDSCs from a cryptorchid patient, which co-cultured onto
irradiated mouse embryonic fibroblasts and cultivated using
human embryonic stem cells (ESCs) media. Their findings
showed that these two cell lines resembled human ES cells in
terms of morphology, biomarker transcription, and pluripotency-
associated genes (Zhou et al., 2013).

7 Therapeutic and regenerative
applications of UDSCs

Concerning the previously mentioned characteristics, UDSCs
represent a promising option as a source for stem cells (Table 2).
With the utilization of proper scaffolding material, the
administration of UDSCs could be a promising therapeutic
modality in addressing periodontal defects (Yang et al., 2020;
Xing et al., 2022) (Figure 4).

7.1 Genitourinary repair and regeneration

UDSCs, which originate in the urinary tract system, are an
excellent alternative for repairing genitourinary organs (Table 3)
(Liu et al., 2017). Application UDSCs have shown tremendous
potential for treating acute kidney injury (AKI). For example,

UDSCs or UDSCs-Exos can reduce cell death, control
inflammatory reactions, and enhance renal functionality (Tian
et al., 2017). UDSCs-Exos can protect kidney cell function during
hypoxia/reoxygenation in vitro by transferring functional
microRNAs (Zhang et al., 2020c). UDSCs could reduce fibrosis
in the kidneys and inflammatory conditions and protect kidneys
from damage through paracrine effects in rats (Xiong et al., 2020).

Bladder regeneration has been viewed as a viable approach to
restoring functionality in individuals suffering from severe bladder
disorders, including congenital abnormalities and malignancies
(Sharma et al., 2013). Intravenous injection of UDSCs
dramatically reduced oxidative stress, inflammatory reactions,
and cell death in bladder tissues in mice. USCs can be accessible
using a straightforward, noninvasive, and low-cost technique that
does not need surgical operations. This finding might pave the way
for a potential clinical investigation to evaluate the therapeutic
effectiveness of USC in treating interstitial cystitis. (Li et al., 2017a).

Urethral defects are often treated with reconstructive surgery;
however, this remains a considerable difficulty due to a variety of
postoperative consequences (Hua et al., 2023). Because of the
shortage of autogenic grafts for urethral repair, there has been
much enthusiasm for bioengineered urethras. Given their
multipotent capacity, UDSCs offer significant potential for
urethral regeneration (Casarin et al., 2022).

UDSCs-loaded SIS scaffolds were found to promote urethral
reconstruction, as demonstrated by substantial increases in urethral
diameter, rejuvenation velocity, muscle content, and vascularization.
There are several restrictions. First, scientists did not examine the
bioactive substances produced by USCs that are thought to improve
tissue regeneration. These include growth factors and cytokines.
Second, in the current study, urethral defect models were produced
in normal animals, that can’t adequately imitate the clinical state of
urethral strictures, which are distinguished by a fibrotic urethral bed.
Finally, just a few test subjects were examined at each time point.
Additional studies are required to transfer such technology into the
clinic (Liu et al., 2017).

TABLE 3 UDSCs in genitourinary repair and regeneration.

Platform Method of
application

Model Outcomes References

USCs-Exos In vivo: Rats Lower tubular damage scoring, more dividing
cells, and fewer apoptotic cells

Tian et al. (2017)

Intravenous In vivo: Rats Could efficiently reduce apoptosis and provide
functional preservation

Zhang et al.
(2020c)

Intra-lesion injection In vivo: Rats Revealed reduced function loss, cell penetration,
and oxidative stress

Xiong et al. (2020)

Intravenous In vitro: HK2 (human kidney cortex) cells
In vivo: Rats

In vitro: Suppression of nuclear factor (NF)-κB
signaling and protecting HK2 cells from
damage
In vivo: Protected kidneys from damage

Li et al. (2020)

Intravenous In vitro
In vivo: protamine/lipopolysaccharide (P/LPS)-
induced interstitial cystitis in a rodent

UDSCs recovered bladder functionality and
histological integrity

Li et al. (2017a)

SIS scaffold/
UDSCs

Implantation In vitro
In vivo: Rabbit

The urethral diameter, urothelial regeneration
velocity, smooth muscle content, and vascular
density all increased dramatically

Liu et al. (2017)

Exos, Exosomes; LPS, Lipopolysaccharide; P, Protamine.
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7.2 Cartilage regeneration

Due to cartilage’s weak intrinsic healing capabilities, stem cells
have sparked interest in articular cartilage repair. Autogenic stem
cells are the golden standard in tissue engineering; however, most
conventional stem cells need invasive and complex steps to use (Zha
et al., 2021). UDSCs are an innovative stem cell reservoir that may be
obtained non-invasively and repeatedly from the same
person (Table 4).

Chen et al. initially verified the potential of UDSCs for cartilage
healing in 2018 (Chen et al., 2018). They found that induced
hUDSCs produced chondrogenic biomarkers such as aggrecan
and collagen II, and their transcript levels were elevated in vitro.
In addition, they mixed hUDSCs with hyaluronic acid (HA) and
administered in joint defect in rabbits. Twelve weeks following
treatment could encourage cartilage regeneration. These results
indicated that hUSCs might be another potential medicinal cell
origin for cartilage tissue engineering, particularly if coupled with
HA. Despite the outcomes of this investigation seem intriguing,
numerous constraints must be tackled before therapeutic
applications, and more research is necessary to demonstrate: 1)
how to boost hUSCs’ chondrogenic capability since the expression
levels of all chondrogenic genes were comparatively low; 2) the
benefits of hUSCs over other MSCs by comparing their
chondrogenic ability to that of other MSC types, including
hBMSCs and hASCs; and 3) the biological processes that govern
the chemical reactions between hUSCs and HA (Chen et al., 2018).

Sun et al. tested the chondrogenic biological activities of
hUDSCs and hBMSCs from the same person. In vitro tests

showed that hUDSCs had a higher potential for division, colony
formation, and migration than hBMSCs in the same passage. At
12 weeks after placement, scaffolds loaded with hUDSCs or hBMSCs
considerably stimulated cartilage defect healing in the rabbit knee
model, with the regenerated tissue primarily being hyaline cartilage.
Nevertheless, there was not a substantial distinction in cartilage
repair efficacy between hUDSCs and hBMSCs. However, this
investigation has certain drawbacks. First, since various media
can sustain the steady and fast proliferation of hUSCs and
hBMSCs, respectively, the micro-environment supplied by the
media may influence cellular activities in vitro. Moreover, there
are differences in cellular activities across stem cells from various
donors. Further investigations should also investigate
interindividual differences.

In general, hUSCs can be regarded as an alternative to typical
stem cells for cartilage repair; however, differences in the capability
of hUSCs and hBMSCs to stimulate cartilage regeneration in vivo
and in vitro should be further examined utilizing cell surveillance,
genomic assessments, and other research (Sun et al., 2022a).

The tendon-bone interface (TBI) is critical in the transmission of
mechanical stresses, yet it is vulnerable to injuries, which usually
contribute to fibrous scar tissue development (Chae et al., 2021). As
a result, rejuvenation of the fibrocartilaginous zone has become a
critical topic of study. Currently, the utilization of stem cells offers
an auspicious method for TBI therapy (Yea et al., 2020).

Small intestine submucosa (SIS) hydrogel loaded with hUDSCs
that excessively express bFGF was utilized to treat TBI damage,
correct inflammatory response abnormalities, and promote the
polarizing of macrophages towards regenerative characteristics,

TABLE 4 UDSCs in cartilage regeneration.

Platform Application Model Outcomes References

HA/UDSCs IA Rabbit knee joint with
cartilage defect

HUDSCs-HAmight trigger much greater neocartilage production
by overexpression of aggrecan and collagen II.

Chen et al.
(2018)

ACM/hUDSCs or hBMSCs IA In vitro: hUDSCs hBMSCs
and In vivo: Rabbits

In vitro: HUDSCs demonstrated a higher potential for division,
colony formation, and motility than hBMSCs in the same passage
In vivo: Bioactive scaffolds significantly stimulated cartilage
regeneration in the rabbit knee model 12 weeks after placement,
with the regenerated tissue primarily consisting of hyaline
cartilage

Sun et al. (2022a)

porcine SIS hydrogel
hUDSCs

Intro lesional
injection

In vitro: hUDSCs, and
RAW264.7 cells
1 In vivo: Rats with tendon-
bone interface

In vitro: Outstanding biological compatibility, and enhanced
macrophage polarization from M1 to M2
In vivo: SIS hydrogel loaded with hUDSCs that excessively
expressed bFGF in an optimal immunological environment is
expected to increase hUDSCs’ chondrogenic capacity, assisting in
the functional repair of TBI injuries

Chen et al.
(2024)

HUDSC-EXOs) IA In vitro
In vivo: Rats

In vitro: Chondrocytes fed with IL-1β via hUDSCs-Exos showed
higher division and migration, while inhibiting apoptosis.
However, ECM secretion reduced
In vivo, IA injections of hUDSCs-140-Exos improved
costochondral regeneration

Liu et al. (2022)

UDSCs-UECM) IA ex vivo: Rabbits IPFSCs
In vivo:Rabbits

Enhanced cartilage engineering Pei et al. (2023)

injectable pig cartilage-
derived dECM hydrogels

IA In vitro: UDSCs
In vivo: Rats

In vitro: ECM hydrogels can promote chondrogenic development
in UDSCs
In vivo: Enhanced extracellular matrix production, regulated
immune system activity, and stimulate cartilage regeneration

Zeng et al. (2022)

ACM, Acellular cartilage extracellular matrix; BFGF, Basic fibroblast growth factor; DECM, Decellularized extracellular matrix; ECM, Extracellular matrix; HA, Hyaluronic acid; HBMSCs,

Human bone marrow stem cells; HUDSC-Exos, Exosomes derived from human urine derived stem cells; HUDSCs, Human urine derived stem cells; IPFSCs, Infrapatellar fat pad-derived stem

cells; SIS, Small intestinal submucosa; TBI, Tendon-bone-injury, UDSCs, Urine derived stem cells.
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establishing a favorable immunological milieu. The amalgamated
impact of essential fibroblast growth factor (bFGF) and an optimal
immunological environment are expected to boost hUDSCs’
chondrogenic capacity, assisting in the functional recovery of TBI
injuries. There are several drawbacks to this research. First, while
macrophages are the subject matter, other immune cells like T and
B cells may potentially have a substantial impact on TBI repair, but
their functions have not been investigated in this study. Second, the
specific processes via which SIS hydrogel modifies macrophage
morphologies have yet to be identified. Third, despite the
multiplicity of macrophage phenotypes characterized by
functioning, this study simplifies them into M1 and
M2 categories. As a result, future research must thoroughly
examine macrophage-produced growth factors, describe the
interaction of diverse inflammatory mediators, and document the
temporal-spatial patterns of macrophage phenotypic development
during TBI repair. Notwithstanding these limits, previous data
indicate that SIS hydrogel, especially when paired with hUSCs-
bFGF, is a viable approach for enhancing TBI recovery (Chen
et al., 2024).

In an investigation conducted by Liu et al.,, chondrocytes
injected with IL-1β via hUDSCs-EXOs showed increased
proliferation and migration, while apoptosis was prevented.
However, extracellular matrix (ECM) secretion diminished as an
undesirable effect. HUDSCs-140-Exos preserved the benefits of
hUDSCs-EXOs while further increasing ECM secretion by
targeting VEGFA, such as collagen II and aggrecan. In vivo
testing proved they could promote osteochondral regeneration.

While IL-1β activation and surgical initiation are commonly
utilized to simulate OA-like changes, the pathophysiology of OA
is far more complicated. Second, they employed female rats to
imitate in vivo OA in their investigation, because estrogen has
been shown to boost miR-140 expression, protecting cartilage
from degeneration. As a result, they must confirm their findings
using male rats (Liu et al., 2022).

As verified by proteomics data, UDSCS decellularized ECM
(dECM) improved rabbit IPFSC cartilage reconstruction and
functionality restoration, especially for UDSCs-deposited dECM.
RNA-Seq research revealed that inflammatory triggering of
macrophages and polarization, as well as mesenchymal-epithelial
transition (MET), may be implicated in the C-dECM-mediated
increase of IPFSCs’ chondrogenic ability, requiring additional
investigation (Pei et al., 2023).

Furthermore, Zeng et al. found that UDSCs in dECM hydrogel
survived, multiplied, and formed a large amount of cartilaginous
ECM comprising collagen II and aggrecan. In addition, This
bioactive platform could stimulate extracellular matrix
production, regulate the immune system’s reaction, and enhance
cartilage repair in rats (Zeng et al., 2022).

7.3 Skin wound healing

Healthy skin is critical for sustaining the physiological
equilibrium because it defends against infection, loss of minerals,
mechanical stresses, and temperature imbalance. It also plays an

TABLE 5 UDSCs in Skin wound healing.

Platform Application Model Outcomes References

PCL/GT membranes/
UDSCs

Transplantation In vitro: UDSCs
In vivo: Rabbits

In vitro: PCL/GT membrane exhibits mechanical
characteristics similar to skin tissue and high
biocompatibility
UDSCs release VEGF and TGF-β1, and their
conditioned media promotes endothelial cells to
migrate, divide, and form tubules
In vivo, UDSCs-PCL/GT-treated wounds healed
considerably quicker, with more re-epithelialization,
collagen production, and angiogenesis

Fu et al. (2014)

BC In vitro: EA.hy926
In vivo: Rats

In vitro: Could boost EA.hy926 development and
longevity, whereas hUDSCs-CM may promote
EA.hy926 multiplication on BC
In vivo: wound healing rate was dramatically
enhanced, with quicker re-epithelialization, collagen
synthesis, and neovascularization

Cao et al. (2019)

SIS Transplantation In vitro: UDSCs
In vivo: Mice

In vitro: UDSCs demonstrated outstanding cell
survival and architecture
In vivo: Dramatically increased the wound healing
capability o. It increased wound angiogenesis,
encouraged re-epithelialization, and enhanced
collagen fiber accumulation and remodeling in the
latter stages of wound healing

Zhang et al.
(2020b)

BG Transplantation In vitro: Coculture of UDSCS, endothelial cells
and fibroblasts
In vivo: Mice

In vitro: Increased capillary-like network
development of endothelial cells, matrix protein
synthesis, and myofibroblast transformation of
fibroblast
In vivo: BG-activated UDSCs outperformed
untreated UDSCs in wound healing by increasing
angiogenesis and the buildup of collagen in wounds

Zhang et al. (2018)

BC, Bacterial cellulose; BFGF, Basic fibroblast growth fator; BG, Bioglass; EGF, Epidermal growth factor; G, Gelatin; PCL, Polycaprolactone; SIS, Small intestine submucosa; UDSCs, Urine

derived stem cells
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important role in dynamic processes, including hydration, vitamin
D production, and excretion (Kim et al., 2021).

Consequently, any interruption in skin integrity may lead to
tissue breakdown, leading to acute or chronic lesions. Acute wounds
are injuries caused by injuries such as burns or surgically created
wounds that heal in a reasonable amount of time, while chronic
wounds like ulcers or post-surgical wounds do not progress via the
standard healing process promptly, leading to an absence of
substantial rehabilitation over an extended period (Zhong et al.,
2022). UDSCs could perform an important part in the promotion of
skin wound regeneration (Table 5). For example, UDSCs combined
with a nanofibrous membrane composed of polycaprolactone/
gelatin (PCL/GT) significantly improved revascularization and
wound recuperation in rabbits. These findings also show that
adding gelatin significantly enhances the hydrophilicity and
mechanical characteristics of PCL/GT fibrous membranes,
obtaining values equivalent to those of human skin tissue (Fu
et al., 2014).

Bacterial cellulose (BC) has good physical and chemical
characteristics, and it has a strong influence on wound healing
(Liu et al., 2025). Given the superior qualities of bacterial cellulose,
the surface structured BC is built using a modified version of the
“contact guidance” hypothesis, with the goal of influencing cell
activity via the arrangement of the material surface to accomplish
what is needed for therapy (Liu et al., 2024; Don et al., 2025). Cao
et al. discovered that combining the bacterial cellulose and UDSCs
improved revascularization and wound rejuvenation in comparison
with treating with scaffold or UDSCs alone (Cao et al., 2019). When
activated by bioglass, UDSCs may upregulate growth factor
expression, resulting in more favorable wound healing results
(Zhang et al., 2018).

7.4 Diabetes

Diabetes mellitus type 2, the ninth most significant cause of
mortality, causes insulin resistance and loss of pancreatic β-cells (El-
Sherbiny et al., 2020). Isolated UDSCs have been shown to develop
into insulin-producing β cells and enhance pancreatic islet
angiogenesis, making them appropriate for diabetes therapy
(Zhao et al., 2018; Hwang et al., 2019). Hwang et al. discovered
that UDSCs can be transformed into insulin-generating cells, which
makes reestablishing functioning insulin-releasing cells derived
from UDSCs preferable to organ transplantation simply because
of their relative abundance. Though additional research is required,
their findings indicate that hUDSCs might be a promising source for
cell treatment in type 1 diabetes (Hwang et al., 2019).

Given that previous research on UDSCs showed better glucose
tolerance in diabetic mice, these findings appear inconsistent.
Intrapancreatic administrations of UDSCs could represent the
most efficient technique, but intravenous administration had an
insufficient impact on reducing blood glucose due to the possibility
of entrapment in unwanted tissues. Dong et al. found that USCs
repaired and protected pancreatic islets in diabetic rats. Therapy
with USCs dramatically reduced histological damage and functional
deterioration.

While the USC therapy failed to significantly lower fasting blood
glucose levels, it did considerably suppress fibrosis and apoptosis.

The present research suggested that administering USCs might be
beneficial in the treatment of diabetic problems. Regional
administration, intra-arterial delivery, or increasing paracrine
activity might all be helpful therapy options for wounded tissues.
Additional studies should look at the therapeutic benefits of USCs in
T2D and its consequences (Dong et al., 2016).

7.5 Dental engineering

The tooth is generated by a mutually beneficial interplay
between the epithelium and mesenchymal cells (Olaru et al.,
2021). The epithelium then divides into ameloblasts, eventually
becoming the enamel, whereas the mesenchyme develops into
other dental structures. Nevertheless, certain critical difficulties
must be addressed before these emerging ideas may be used in
dentistry clinics. The paucity of persistent avenues for epithelial
stem cells with odontogenic capacity in adult humans is likely the
most significant restricting issue (Shen et al., 2020; Lee et al., 2022).
In this context, Cai et al. differentiated U-IPSCs into epithelial
sheets, which were reorganized with E14.5 mouse dental
mesenchyme. Dental-like constructs have been isolated within
3 weeks, with yields of up to 30% for eight distinct iPSC lines,
similar to H1 hESC. They also discovered that UiPSC-derived
epithelial sheets developed into ameloblasts in dental-like
structures, which had physical attributes similar to those
observed in regular human teeth, like elastic modulus and hardness.

Of course, further work is needed to generate an iPSC-derived
epithelial sheet with odontogenic capability through a deep
examination of molecular processes linked with epithelial-
mesenchymal reactions, which is a recurring theme throughout
development. However, future research ought to concentrate on
the derivation of the odontogenic capacity of integration-free
human urine induced pluripotent stem cells (ifhU-iPSCs), which
will be beneficial for the ultimate objective of the entire regeneration
of human teeth for therapeutic therapy (Cai et al., 2013).

7.6 Periodontal regeneration

Over the past 150 years, significant scientific discoveries in
periodontology have profoundly revolutionized how doctors
diagnose and treat periodontal illnesses. Nevertheless, there is
still no optimum treatment method today to treat periodontitis
or accomplish reliable and efficient tissue regeneration (Karobari
et al., 2022; Marya et al., 2022). In many situations, contemporary
periodontal therapy fails to regain functionality in various tissues
(El-Nablaway et al., 2024b; Atia et al., 2023). Traditional mechanical
or anti-infective periodontal therapy has aimed to eliminate
inflammatory reactions and slow disease development (Rokaya
et al., 2022; Heboyan et al., 2022). In the last 20 years, many
regeneration techniques have been devised, tried, and reviewed to
repair missing tooth-supporting components (Banakar et al., 2022;
Moonla et al., 2022).

Human periodontal ligament stem cells (PDLSCs) have been
used extensively as seeding cells and cellular sheets in periodontal
tissue regeneration (Atia et al., 2025). Despite substantial advances
in PDLSC application, promoting cell proliferation and numerous
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differentiations of PDLSCs remains a key problem due to low cell
numbers at the time of acquiring (Alkandari et al., 2025; El-
Nablaway et al., 2024a). Yang et al. investigated the paracrine
impacts of UDSCs on cell division and bone-forming
transformation in PDLSCs. When combined with UDSCs,
PDLSCs could exhibit enhanced division and cementogenic/
osteogenic transformation. In vivo implantation revealed that
PDLSC sheets cocultured with UDSCs generated more fresh and
dense tissues while also expressing greater quantities of osteogenic
and cementogenic proteins.

These findings point to a potential new technique for clinical
periodontal tissue restoration. While the cellular process of this
experiment deserves additional investigation, the noninvasive
collecting approach to USCs and their steady growth render
USCs a potential novel method for utilization in clinical
periodontal tissue restoration (Yang et al., 2020). Furthermore,
Xiong et al. investigated the biological impacts of the hUSC-
derived ECM on the division, attachment, dispersing, and
transformation of hPDLSCs. They discovered that UDSCs-
derived ECM (UECM) increased PDLSC division, osteogenic
transformation capacity, and angiogenesis in comparison with
native PDLSCs. The drawbacks of this study stem from the
inability to precisely quantify the protein content of the ECM.
Equivalent quantities of cells underwent stimulation for 8 days
to form ECMs.

Yet, the ultimate amount of ECM was challenging to determine
since the process of producing ECM is influenced by a variety of
circumstances. With the features listed above, UECM might be a
potential agent for utilization in 3D bioink applications or biological
constructs. Nevertheless, other biological experiments to identify the
biological basis of the interaction between ECM and hPDLSCs are
deserving of further investigation (Xiong et al., 2019).

7.7 Ophthalmological disorders

Retinal ganglion cells (RGCs) are neurons in the retina’s last
segment. Their axons are dispersed on the surface of the omentum
and gathered in the papilla of the optic tract (optic nerve) (Goetz
et al., 2022). UDSCs-derived exosomes have therapeutic value by
suppressing cell apoptosis, increasing cellular survival, and
promoting the division of aged RGCs. The foundational process
consists of various genetic variations as well as modifications in
communication signaling. Exosome-targeted therapy is a fresh
strategy for cell-free therapy and medication delivery for the
management of age-related illnesses.

Despite exosome treatment being a novel method for combating
aging, translating preclinical outcomes to the clinic requires more
detailed research into exosome biology and associated approaches.
In general, attention to the influence of aging on USCs and vice versa
is crucial for devising innovative therapy employing USCs with an
emphasis on the treatment of older adults (Dan et al., 2023).

7.8 Infertility disorders

Infertility has developed as a global health concern that can be
caused by male, female, or both (Volarevic et al., 2014; Vander

Borght andWyns, 2018). Intrauterine adhesion (IUA), an important
factor of recurrent abortions and secondary infertility, is defined as
partial or complete obliteration of the uterus owing to injuries to the
endometrium. While many therapies have been explored to prevent
IUA, they have demonstrated poor therapeutic efficacy. Tissue
engineering technological innovation, a promising bioengineering
tool, can potentially improve endometrial regeneration.

Small intestine submucosa (SIS) loaded with UDSCs has been
used to regenerate endometrial. In vitro, the SIS scaffolds showed
good mechanical characteristics and biocompatibility while
promoting epithelial migration and revascularization.
Transplantation of SIS/UDSCs preserved standard luminal
structure, increased endometrial and glandular rejuvenation,
revascularization, reduced fibrosis, and enhanced endometrium
responsiveness. This has resulted in a new technique for boosting
endometrial shape and functioning, which could prove useful for
IUA avoidance and management in clinics. The biological process
behind the unique role of the USCs in endometrial and gland
regeneration is inadequately known, although it deserves rigorous
and comprehensive research (Song et al., 2023).

Nonobstructive azoospermia (NOA) is a severe condition of
male infertility with few viable treatment options (Zhankina et al.,
2021). UDSCs have multipotent differentiation potential and
paracrine actions and are involved in tissue reconstruction and
rejuvenation. Deng et al. demonstrated that both UDSCs and
UDSCs-EXOs recovered spermatogenesis in NOA mice 36 days
following busulfan administration, but they failed to shield the
mouse testicles from early busulfan damage. This investigation
offers a unique perspective on the therapy of NOA (Deng
et al., 2019).

7.9 Cardiac regeneration

Cardiomyocyte loss is connected with a reduction in the heart’s
pumping ability. Since cardiomyocytes have an exceedingly poor
self-renewal capability (Bergmann et al., 2015). Human genetically
acquired heart disorders have been researched regardless of patient
genetic origin. Because human cardiomyocytes (CMs) are in short
supply, using urine specimens to make U-IPSCs-derived CMs would
be a noninvasive way to uncover cardiac disorders that cause
diseases in individuals with specific genetic backgrounds.

Jouni et al. modified cells from the urine of a patient with long
QT syndrome who had the HERG A561P gene mutation utilizing an
episomal-based approach.

UhiPS cells were subsequently differentiated into CMs by the
matrix sandwich technique. UhiPS-CMs properly expressed atrial
and ventricular myofilament proteins, as well as ion channels. These
results suggest the application of CMs derived from iPS cells rather
than noncardiac heterologous transcription methods to gain a true
understanding of the mechanism behind cardiac channelopathy.
Currently, they are the most analogous model to human CMs
derived directly from heart tissue, enabling exact knowledge of
the molecular foundation that underlies disease phenotypes
(Jouni et al., 2015).

Ventricular septal defects (VSDs) are among the most prevalent
congenital cardiac abnormalities. Cao et al. used a Sendai virus
vector for successfully generating integration-free iPSCs from urine
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specimens of a patient with VSD and HF who carried an L2483R
mutation in the RyR2 gene. U-IPSCs exhibited characteristics of
cardiomyocytes, such as spontaneously induced contractions and
high levels of cardiac biomarkers. Nevertheless, as compared to
cardiomyocytes produced from H9 cells, UDSCs showed a more
significant amount of autophagy, indicating that autophagy may
play a crucial part in the emergence of VSD with heart failure (HF).
The approach reported here enables the affordable and repeatable
production of human cardiomyocytes in entirely chemically
controlled circumstances, facilitating the implementation of iPSCs
into large-scale testing applications or regenerative therapies (Cao
et al., 2018). In vivo, the application of UDSCs could alleviate fibrosis
and apoptosis of the myocardium in rats. Injection of USCs restored
the poor functioning of the left ventricle. A viable therapy strategy
for problems might involve reducing fibrosis and preventing cell
death. Additional studies should look at the mechanism and
therapeutic applications (Dong et al., 2016).

7.10 Bone engineering

Bone regeneration is important in orthopedic and dental
therapy, particularly in traumatic and congenital abnormalities
and bone strengthening for biomedical implants. Regardless of
the wide range of procedures used in healthcare settings, efficient
and functional bone regeneration represents a substantial issue (Gu
et al., 2022).

While autogenic bone-based surgeries are regarded as the most
effective approach, their practical application remains restricted
because of comorbidity at the donation site and a paucity of
appropriate bone volume. As a result, these constraints have
prompted researchers to investigate artificial substitutes as
potential scaffolds or alternatives to bone transplantation (He
et al., 2022).

Numerous materials have been created and assessed for their
suitability for bone regeneration. Additionally, artificial
implantable biomaterials designed to replace natural bone
should have bone-like architecture and mechanical
characteristics for maximum performance. Stem cell
transplantation, which uses the body’s regenerative capacities,
offers a cutting-edge way to modify conventional therapies and
potentially give more individualized and successful therapies for
bone defects. MSCs also produce bioactive chemicals that can
modulate immunity system activity and stimulate tissue renewal.
As a result, MSCs are widely recognized as a promising tissue
regeneration tool (Lau et al., 2022). Autogenous MSCs have shown
inadequate efficacy in addressing osteoporosis and bone
abnormalities due to diminished functionality and reduced
regeneration capacity (Feroz and Dias, 2021; Liu et al., 2020c).
Numerous materials have been created and assessed for their
suitability for bone regeneration. Additionally, artificial
implantable biomaterials designed to replace natural bone
should have bone-like architecture and mechanical
characteristics for maximum performance. Stem cell
transplantation, which uses the body’s regenerative capacities,
offers a cutting-edge way to modify conventional therapies and
potentially give more individualized and successful therapies for
bone defects. MSCs also produce bioactive chemicals that

modulate immunity system activity and stimulate tissue
renewal. As a result, MSCs are widely recognized as a
promising tissue regeneration tool (Anderson et al., 2022).

Bone substitutes could be utilized as an efficient bone
regeneration method. A substantial human supply of autologous
cells that can develop or be transformed into osteoblasts is vital for
designing human bone transplants (Amini et al., 2012).
Nevertheless, extensive bone injury necessitates the supply of
osteogenic cells as a 3D platform to facilitate bone repair. ESCs
and IPSCs are now employed for bone transplants (Guan
et al., 2015b).

Furthermore, because of UDSC’s excellent proliferative, self-
regeneration, and transformation potential when transformed into
osteoblasts, urine stem cells might be an excellent alternative for
bone regeneration. Guan et al. used Calcium silicate (CS)
particulates and mixed with poly (lactic-co-glycolic acid) (PLGA),
to generate PLGA/CS composite. UDSCs were then sown onto these
frameworks, and they were then transplanted into naked mice. The
findings demonstrated that CS ion extracts boosted cell division,
ALP action, calcium deposits, and the synthesis of new bones
significantly and strongly stimulated the bone-forming
transformation of UDSCs in vivo. As a result, PLGA +10% CS
scaffolds may have the optimal aforementioned features for USCs.
These findings can help guide future research on biomaterial
development. Nevertheless, the precise mechanism behind this
phenomenon remains obscure and requires additional
exploration (Guan et al., 2015a).

8 Limitations and concerns

As previously mentioned, gathering urine before the UDSCs
separation is straightforward, reliable., innocuous, and inexpensive
in comparison to surgical procedures used to collect other stem cell
types. UDSCs can be extracted from healthy and diseased people,
preserving their ability to grow and divide and allowing for large-
scale benign sampling and storage. Moreover, there are no
substantial ethical issues related to UDSCs collection, and they
can be used for both customized and substantial scientific or
therapeutic purposes (Ferreiro et al., 2024).

These changes can be attributed to transforming culturing
circumstances, particularly the chemical composition of the medium
used for cultivation, or to a natural property of the separated cells that
may differ among individuals. Additional investigations are necessary
to understand further surface marker levels of transcription and their
importance in UDSC development (Wang et al., 2024).

Several essential biological concerns, including immunoregulatory
actions and carcinogenic potential hazards, have not been thoroughly
investigated to gain additional insight into the usefulness and safety of
UDSCs. UDSCs’ immune-modulating impacts must be explored
because they are most likely significant (Rao et al., 2024). To
produce proof for UDSCs-based therapy, the distinctive
characteristics of UDSCs subpopulations must be identified.
Furthermore, a fundamental study on the origin of UDSCs is
important since it may answer questions including who is best
suited to provide UDSCs, the way to collect UDSCs appropriately,
and if there are any unique indicators of UDSCs. We hope that single-
cell sequencing paired with lineage tracking can provide a few clues.
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Clinical-grade stem cell synthesis should adhere strictly to quality
assurance (QA) criteria. The reliability and efficacy of the UDSCs must
be evaluated (Zhao et al., 2022). Generally, producing UDSCs includes
donor selection, cell harvesting, medium composition, cell amplifying
process, inspection for quality standards, and so on. First, donor factors,
including age, disease, and medications, could impact the biological
properties of the UDSCs collected. Gao et al. discovered that UDSCs
from younger donors had greater proliferating capacity, less death, and
more excellent osteogenic differentiation capability despite UDSCs of
all ages having the capacity for bone regeneration (Pizzuti et al., 2024).

Schosserer et al. discovered a more significant successful
percentage separating UDSCs from males than from females
(70% vs. 42%) (Schosserer et al., 2015). Given the differences
between male and female sexual organs, caution should be
exercised when gathering specimens of urine from females to
avoid the menstrual period and the initial urination of the day,
as well as washing the genitalia. Second, the manner of cell collection
could impact the final treatment effect; thus it is critical to optimize
the UDSCs culture process (Liu et al., 2021; Kibschull et al., 2023).

Third, because medium composition differs by laboratory, the
variances are primarily associated with serum levels and nutritional
factors. Clinical uses typically demand many cells; thus, the rapid
and widespread multiplication of UDSCs for widespread use has
presented a significant obstacle. Microcarrier-based suspension
cultivation could offer a solution (Hao et al., 2023).

Nevertheless, it is unclear if UDSCs cultivated using this approach
stay the same or if the changes between UDSCs cultivated using
numerous ways result in various medicinal properties. An alternative
way to solve the same challenge is to reconstitute the settings for the
cultivation of the UDSCs by including certain nutrients, implanting the
UDSCs on frameworks, and controlling oxygen levels to enhance
UDSCs separation and division (Kibschull et al., 2023; Liu et al., 2021).

Meeting the high-quality assurance standards is a precondition
for UDSCs-based cyto-therapeutics and may require significant
efforts. An assay matrix is proposed that includes RNA
identification of specific genes, transcriptional evaluation of
essential cell surface indicators, and secretome protein
identification (Dayati et al., 2024). When using UDSCs in the
field of regenerative therapy, the scaffold materials should be
evaluated alongside the cellular-scaffolding complexes based on
the clinical requirements and the methods via which stem cells
can perform biological tasks (Yang et al., 2020; Lu et al., 2023).

Indeed, it is unclear how UDSCs might contribute to tissue
restoration. As a result, whether cellular stimulation or other
modifications are required remains unclear (Yang et al., 2018).
Moreover, the use of UDSCs discharges, including exosomes and
ECM, may avoid the possible risks associated with employing
UDSCs to treat the condition. It will require an extended period to
develop sufficient cells for autologous treatment. As a result, it is greatly
practicable to use UDSCs for managing chronic wounds and surgical
operations rather than acute burns until allogeneic UDSCs treatments
are shown to be safe, successful, and cost-efficient (Yang et al., 2024).

Although U-IPSCs show tremendous prospects for personalized
healthcare, various obstacles, and issues should be tackled to realize
their capacity completely. IPSCs have significant pluripotency, but
their reconfiguration responsiveness varies based on the cellular
source, as do their growth courses and development characteristics
(Mulder et al., 2020). Furthermore, changes in reprogramming

component quantities, mechanisms of transfections, cell cultivation
circumstances, and timings among numerous research settings may
result in decreased iPSC initiation efficacy and even the creation of off-
target cells (Al Abbar et al., 2020). As a result, developing standardized
reprogramming techniques is critical to ensuring repeatability and
comparability of experiments among various investigation groups,
which is essential for enhancing research reliability outcomes.
Standardization approaches can involve using a single cell origin,
adopting an array of commonly used classical reprogramming
factors, ensuring uniformity in experimental circumstances, and
developing consistent iPSC recognition standards. Although IPSCs
can proliferate indefinitely, the mutation rates vary amongst cell
lines. Specific genetic alterations could have been generated during
IPSCs processing, resulting in tumorigenesis (DeMasi et al., 2020). As a
result, preserving genetic integrity in IPSCs throughout long-term
proliferation is critical for their safety. To remove potential
variances, researchers evaluate the differentiation status, sequence
the IPSCs, and analyze the karyotypes. Other options involve
employing non-integrative reprogramming strategies, applying
genetic modification approaches to fix putative tumor-causing
abnormalities in IPSCs, and Pre-differentiation of IPSCs into
particular types of cells (Poetsch et al., 2022). To summarize, IPSCs
must undergo severe quality assurance and security precautions before
being used in therapy to eradicate their cancer-causing capacity.

In several contemporary findings from experiments, IPSCs display
standard indicators and have distinct morphological characteristics.
Nevertheless, they may not operate properly in vivo (Du et al., 2015).
Nevertheless, IPSCs can abnormally develop into teratomas, resulting in
immunological rejection. Furthermore, longevity and transplantation of
IPSCs in vivo necessitate adequate criteria, and straightforward cellular
injections might not offer the necessary milieu that encourages their
differentiation and maturity (Kim et al., 2024). As a result, researchers
can examine a variety of approaches, such as selecting the appropriate
treatment schedule, sufficient quantities of cells, and employing
biomaterials as scaffolding for IPSCs.

After overcoming several laboratory difficulties, the objective is
to establish massive iPSC generation to satisfy clinical requirements.
First, the choice of a suitable cell origin, like UDSCs, which can be
acquired in enormous amounts non-invasively, is critical for wide-
scale development (Citterio et al., 2020). Non-integrating
reconfiguration approaches for editing genes and optimized
Cellular development techniques and the construction of
adaptable, computerized culture platforms must be used to
increase cell cultivation effectiveness. Furthermore, periodic
examination and evaluation of IPSCs, early excision of aberrant
cells, and cell quality assurance are required (Citterio et al., 2020).
Moreover, reliable filtration and the acquisition of the intended cell
types, as well as the construction of proper storage techniques, are
required for IPSCs to be used quickly on demand (Jamal et al., 2021).

Although various cell culture settings have been documented,
whether these variables have a substantial influence on the medicinal
value of USCs is mainly unclear (Xie et al., 2023). The absence of
criteria for the classification of UDSCs, in particular, makes direct
comparisons between research difficult, which should be tackled in
the future. Along with freshly discharged urine, samples for UDSCs
separation can be acquired by ureteral catheterization and kept in
various conditions (Wu et al., 2011). In addition to healthy donors,
USCs from patients with various disorders (e.g., bladder cancer)

Frontiers in Bioengineering and Biotechnology frontiersin.org17

Atia et al. 10.3389/fbioe.2025.1571066

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1571066


have been defined (Ooki et al., 2018; Jiang et al., 2016; Zhou et al.,
2012). In initial cultivation, UDSCs revealed a rice grain or spindle-
like architecture (Chen et al., 2017). Due to long telomeres, USCs
can multiply extensively, even after 60–70 cell doublings (Garbe
et al., 2009). From a therapeutic standpoint, it is crucial to evaluate
the variations in USC biology throughout serial cultures, which is a
precondition for determining optimal cell passages for treatment
(Sun et al., 2021b; Liu et al., 2022). Donor age, sex, and specimen
harvesting techniques also affect the separation and development of
UDSCs (Gao et al., 2017). In comparison with older donors, young
people demonstrated better functioning, more significant division,
and reduced aging in their UDSCs (Ferreiro et al., 2024; Strässler
et al., 2018). UDSCs separation wasmore efficient in male volunteers
than with female ones (Klapper-Goldstein et al., 2022; Gutiérrez-
Aguirre et al., 2022). Catheterization-collected urine contained more
UDSCs than freely voided urine, possibly due to the extraction of
cells from the inner bladder wall (Coelho et al., 2023; Yu et al., 2021).

Recommendations on the methodology of urine collection, such
as undesirable conditions (e.g., contaminations and cancers) to be
utilized in regenerative therapies, have already been published;
however, the coming years will bring developments in the
automated retrieval of cells from the urine.

9 Concluding remarks

UDSCs-dependent periodontal tissue engineering has shown
promise in creating a milieu favorable to periodontal regeneration via
well-constructed controlled scaffolding constructions that mimic
periodontal multilayer frameworks. However, the application of
UDSCs continues to encounter various obstacles, notably risks
associated with the proliferation of cells in vitro, standardized
manufacturing processes for biological substances, intrinsic
antigenicity, selectivity of scaffold components, biological
compatibility, and material breakdown. Cell-free therapy, which
incorporates biological compounds to stimulate regeneration in
organisms, focused on a number of the drawbacks of cell therapy and
provided a better understanding of how UDSCs work. Nevertheless, the
setting and conditions of exosome cultivation significantly impact
exosome attributes. Further research is needed to define exosome
activity, dosage, effectiveness, and appropriate collection and
preservation techniques. Finally, pharmacological therapy that targets
signaling molecules promotes functioning periodontal regeneration.
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