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Microbially enhanced coalbed methane production (MeCBM) is a way towards
translation of the recent momentum of the high demand for renewable energy
into operational capacity. The present study demonstrates the enhancement of
biogenic methane in coalbed methane (CBM) wells of an Indian coal reservoir via
in-situ biostimulation. A laboratory-scale strategy was previously developed to
understand and enhance themicrobial processes for the bioconversion of coal to
methane before transferring it to the field. The quantitative measurement of gas
production after the industrial-scale microbial stimulation job carried out at the
EOGEPL Raniganj block indicated upto a four-fold enhancement in methane
production, with the best results observed in Well-B, from a baseline production
of 117.04 standard cubicmeters per day (scmd) to 461.38 scmd, followed byWell-
E, with an increase from 210.93 scmd to 385.19 scmd, and Well-C, with an
increase from 514.22 scmd to 670.22 scmd. Molecular and isotopic compositions
of the gases collected by post-nutrient injection have been studied and the
results indicate the occurrence of secondary microbial gas. The 16s rRNA
amplicon sequencing analysis of formation water samples post-nutrient
injection, and its comparison with previously published pre-injection microbial
community analysis gives an insight into the impact of the microbial stimulation
on the indigenous microbiome of the CBM wells. The present study provides a
framework for understanding the effects of in-situ biostimulation via nutrient
amendment in a coal reservoir. Further, the findings of the study will help to
implementmethane enhancement strategy via biostimulation on awider range of
coal fields to enhance its commercial potential.
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1 Introduction

Coalbed methane (CBM) is an unconventional natural gas that has gained worldwide
interest. Its calorific value and CO2 emissions are comparable to those of conventional
natural gases (R. Chen et al., 2023). The environmental consequences of coal-fired power
plants can be greatly mitigated by increasing the use of this unconventional gas source
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(Dresselhaus and Thomas, 2001; McJeon et al., 2014), which has led
industrial corporations to concentrate on improving the production
of biogenic coalbed methane.

While thermogenic methane is created during the coalification
process, biogenic methane is the result of continuous microbial coal
degradation. The biogenic coal-to-methane conversion is a multi-
step process that involves microbial communities including a
diversity of both bacterial and archaeal groups. Complex carbon
in coal is progressively broken down by hydrolytic bacteria into
intermediate organic compounds such as polyaromatic
hydrocarbons, monoaromatic carboxylic acids, single-ring
aromatics, long-chain alkanes, ketones, long-chained fatty acids,
etc. . These organic are then broken down by fermentative bacteria
into substrates such as CO2, H2, volatile fatty acids, methanol,
methyl sulfide, etc., which the methanogenic archaea use for
methane gas production (Colosimo et al., 2016; Jones et al., 2010;
Orem et al., 2010). The volatile fatty acids produced during the
fermentation stage can be utilized by acetogenic bacteria, forming
CO2 and H2 (Beckmann et al., 2011) that hydrogenotrophic
methanogens use during the methanogenesis step (Equation 1).
On the other hand, homoacetogenic bacteria can convert
CO2+H2 to acetate which can be utilized by acetoclastic
methanogens to produce methane (Equation 2), while
methylotrophic methanogens directly use methanol and other
methylated compounds as substrates for methane production
(Equation 3) (Guo et al., 2012a; Guo et al., 2012b; Laguillaumie
et al., 2023; Thauer, 1998; Buan, 2018).

CO2 + 4H2 → CH4 + 2H2O

ΔG � −131 kJ/mol, hydrogenotrophic reaction
(1)

CH3COOH → CH4 + CO2

ΔG � −31 kJ/mol, acetoclastic reaction (2)
4CH3OH → 3CH4 +HCO−

3 +H2O +H+
ΔG � −105 kJ/mol,methylotrophic reaction (3)

Research on the microbial composition of various CBM
reservoirs has revealed the presence of diverse communities of
both bacteria and archaea (Green et al., 2008; Midgley et al.,
2010; Singh et al., 2012; Strąpoć et al., 2008), with the bacterial
diversity being higher than the archaeal diversity (Barnhart et al.,
2013; He et al., 2020; Y. Li et al., 2023; Penner et al., 2010). This
suggests that the in-situ microbial communities work in syntrophic
action, with coal hydrolyzing and fermentative bacteria breaking
down complex coal, rendering substrates available for the
methanogenic populations for the final step of methanogenesis
(Iram et al., 2017; Strąpoć et al., 2011). The bacterial
communities have been seen to be dominated by coal
hydrolyzing Proteobacteria and Actinobacteria, with Firmicutes,
known for acidogenic capabilities, often as a minority. The
dominance of Proteobacteria in most CBM wells is noteworthy
due to its known association with methanogens, and the capability to
degrade Polycyclic Aromatic Hydrocarbons (PAH) (Guo et al.,
2012a; Meslé et al., 2013; Penner et al., 2010). Despite being a
minority in the in-situmicrobial composition of some of the studied
CBM reservoirs. The members under phylum Firmicute,
particularly fermentative and acetogenic bacteria, are an
important part of the methanogenic community, and may be
enriched in the laboratory scale microcosms by supplementing

nutrients for microbially enhanced methane production (Li et al.,
2008; Ritter et al., 2015).

With the discovery of the biogenic CBM synthesis processes,
attempts have been made to boost CBM production by using
techniques such as biostimulation and bioaugmentation. In-situ
biostimulation is performed by adding organic nutrients, trace
elements, inorganic minerals, yeast extract, etc. To stimulate or
activate the microbial population in a CBM field (R. Chen et al.,
2023). Nutrient amendment in the coal field supports the growth of
the microbial community and encourages metabolic processes,
which include the breakdown of coal into methane (Park and
Liang, 2016). Table 1 shows cases of enhancement in methane
yield achieved in previous studies via nutrient addition.

Bioaugmentation is performed by introducing specific microbes
involved in the process of methane generation into the system along
with nutrients for enhancement of methane production. Previous
works have demonstrated significant enhancement in methane yield
by using mixed methanogenic cultures including bacteria capable of
hydrocarbon degradation, and methanogens responsible for direct
conversion of substrates to methane. Jones et al. (2010) studied the
effect of bioaugmentation treatment on methane yield by adding a
microbial consortium that included bacteria such as Acinetobacter
sp., Azonexus sp., and Pelotomaculum, along with methanogens,
particularly, Methanosaeta concilii and Methanosarcina spp., and
Methanomicrobiales, which showed a significant enhancement in
methane production in the microcosm. Gállego-Bravo et al. (2023)
studied the production of methane from organic waste via anaerobic
digestion and demonstrated an improvement in methane yield by
4% by bioaugmenting the anaerobic digestor with hydrogenotrophic
methanogens, dominantly Methanoculleus.

The productivity as well as longevity of a CBM well can be
improved by such microbial interventions, which could improve the
economics and viability of produced gas from CBM wells, thereby
making it a sustainable process. A few industrial corporations have
attempted to increase the production of biogenic CBM on a
commercial level using biostimulation techniques. Luca
Technologies, Inc. Implemented their methodology of nutrient
addition at four U.S sites: Black Warrior Basin, Uinta Basin, San
Juan Basin, and Powder River Basin (Strąpoć et al., 2011). The
nutrient mixture contained weak organic acids, glycerol, complex
nutrients like yeast extract, and synthetic vitamins and minerals
(Ulrich and Bower, 2008). Studies have confirmed that glycerol acts
as an easily digestible co-substrate that increases methane
production (Hutňan et al., 2013; X. Li and Shimizu, 2023).
Organic acids, and vitamins and minerals act as substrates
biomethane production (Ritter et al., 2015). Weak organic acids
can be directly utilized by methanogenic archaea that produce
biomethane (Liu et al., 2022; Wang et al., 2019). Ciris Energy
also implemented in-situ biostimulation in the Powder River
Basin using synthetic nutrients and yeast extract (Ritter et al.,
2015). Addition of yeast extract improves the carbon/nitrogen
ratio and enhances biomethane production due to the presence
of yeast nucleotides, one of the major components in yeast extract,
which can help microbes digest and absorb nutrients at a higher rate,
thus enhancing their growth performance (Zhang and Liang, 2017).
Nutrient supplementation with yeast extract in coal experiments has
previously demonstrated significant enhancement of methane in the
laboratory. Zhang and Liang (2017) observed that reducing the

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Chawla et al. 10.3389/fbioe.2025.1571653

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1571653


concentration of yeast extract from 2 g/L to 0.5 g/L in nutrient media
having coal had a negative impact on the production of methane,
with the production levels decreasing from 200 ft3/ton to 50 ft3/ton.
Similarly, the study performed by (Davis et al., 2018) demonstrated
that in contrast to the 0.5 g/L yeast extract amended coal treatments,
which ranged from 1960 to 2,185 μg CH4/g coal, the methane
concentrations for the 0.1 g/L yeast extract amended coal
treatments ranged from 1,371 to 1,456 μg CH4/g coal. (Barnhart
et al., 2017). production of methane in sets with media + coal and
media + coal + yeast extract at day 165 as 341 ± 89 μg and 1,400 ±
313 μg respectively.

The present work is a field-scale implementation of the in-situ
biostimulation technique for enhancement of coalbed methane
production was performed in CBM wells located in the Raniganj
coal-seam reservoir of the Gondwana Basin, India. The objective of
the study was to assess the impact of in-situ biostimulation via

nutrient injection on the indigenous microbial communities of the
formation water. The bottom-hole temperature of the selected CBM
wells ranges between 55°C and 65°C, with abundance of
thermophilic microbial communities in the reservoir. The
nutrient treatment strategy was developed according to the
biogeochemical and microbiological assessment in the feasibility
study performed in a prior investigation (Chawla et al., 2023).

2 Materials and methods

2.1 Geology of the study site and
characteristics of the study well

India offers great potential for CBM exploration and
development because it contains the world’s fifth-largest coal

TABLE 1 Previous studies showcasing methane yield enhancement via nutrient addition.

Study Treatment Maximum CH4 Yield

Bi et al. (2017) Formation water-based nutrient recipe 1,042 ft3/ton

Harris et al. (2008) H2/CO2 amendment
Inorganic nutrient amendment

4.5–12.0 scf/ton
4.2–9.1 scf/ton

Davis and Gerlach (2018) Organic amendment (Algae, Cyanobacteria, yeast cells and granulated yeast extract) 2,185 μg CH4/g coal

J. Zhang et al. (2015) Variable strengths of MS medium 111 ft3/ton

Barnhart et al. (2017) Modified anaerobic co-culture medium (CCM) with coal 311 ± 51 μg CH4/g coal

Modified anaerobic co-culture medium (CCM) with coal + Yeast Extract 1,052 μg CH4/g coal

Modified anaerobic co-culture medium (CCM) with coal + Algal Extract 576 μg CH4/g coal

B. Liu et al. (2024) Bituminous coal + Modified enrichment media 243.3 μmol/g coal

Anthracite coal + Modified enrichment media 207.3 μmol/g coal

Coking coal + Modified enrichment media 163.1 μmol/g coal

Zhou et al. (2022) Anaerobic culture medium 5.75 m3/t

Rathi et al. (2015a) Modified MSP medium 22.9 mM/g coal

FIGURE 1
Schematic representation of the study wells: (a) Well-B, (b) Well-C, (c) Well-E.
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reserves. The majority of India’s coal reserves and all of the country’s
present CBM producing blocks are found in the Gondwana
sediments in Eastern India. A significant portion of the most
promising regions for CBM development and production are in
the Son and Damodar valleys in Eastern India. The Raniganj block is
located in the Burdawan district of West Bengal, India, spread over
500 sq. km in the Damodar valley basin with thick Permo-

Carboniferous Gondwana coal seams. The Barakar and Raniganj
Formations have commercial coal resources in the Raniganj
Coalfields. The Barakar Formations are made up of riverine
sediments that were deposited with a regionally variable
thickness of coal seams that are associated. However, only a very
small portion of this coalfield exposes the coal seams of the Barakar
Formation. With a thickness of almost 1,000 m, the Raniganj

TABLE 2 Detailed parameters of the Study Wells.

S.No Parameters description Results

Well-B Well-C Well-E

1 Bottom Perf (MD m) 881.4 1,144.2 1,221.9

2 Bottom Perf (TVD m) 789.81 1,144.2 1,081.54

3 PBTD (MD m) 929 1,182 1,293

4 Sump (MD m) From Bottom Perf 48 38 71

5 Temp Deg C @ Bottom Perf (TVD m) 49 59 57

6 Hydro Static Pressure (Psia) 1,122 1,625 1,536

7 Injectivity (LPM) 7.6 (Pre-frac) NA NA

8 Permeability (Pre-Frac) (md) 4.8 (IFT) NA NA

9 Fracture Half Length (m) 57 114 29

10 Permeability (Post Frac) (md) 4 (HM) 3 (HM) 7 (HM)

11 Volume of sump (L) 143 466 214

12 Volume of the Casing (excl. Sump) (L) 10,868 14,108 15,066

13 Volume of Tubing (L) 2,653 3,444 3,678

14 Tubing Displacement (L) 1,031 1,338 1,429

15 Volume of Annulus (Casing-Tubing) (L) 7184 9326 9959

16 Net Pay of Completed Coal Seams (TVD m) 24.86 28.30 21.73

*NA-Not Available.

FIGURE 2
Methane production in the headspace of the serum bottles containing nutrient media prepared with technical water samples.
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TABLE 3 Physicochemical analysis of the formation water sample.

S.no Parameter Test
method

Results (mg/L)

Well-B Well-C Well-E

1st
sampling
phase

2nd
sampling
phase

3rd
sampling
phase

1st
sampling
phase

2nd
sampling
phase

3rd
sampling
phase

1st
sampling
phase

2nd
sampling
phase

3rd
sampling
phase

1 Cadmium (Cd) APHA-
3100 (B)

<0.01 <0.01 <0.01 0.04 0.01 0.01 0.01 <0.01 <0.01

2 Arsenic (As) IS:3,025 (P-
37):1988

0.043 0.020 <0.01 0.083 0.046 <0.01 0.033 <0.01 <0.01

3 Zinc (Zn) APHA-
3100 (B)

<0.01 <0.01 <0.01 <0.01 0.023 <0.01 0.057 0.06 0.059

4 Total
Chromium (Cr)

APHA-
3500 (B)

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

5 Nickel (Ni) APHA-
3111(B)

0.19 <0.01 0.05 0.06 0.048 0.12 0.037 0.06 0.055

6 Total Iron (Fe) APHA-
3100(B)

4.50 5.62 0.53 4.41 7.62 5.7 9.12 7.45 7.61

7 Copper (Cu) APHA-
3111 (B)

0.05 0.12 <0.01 0.04 0.03 0.02 0.02 0.02 0.02

8 Silver (Ag) APHA-
3113 (B)

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

9 Sulphate (SO4) IS:3,025 (P-
24):1986

3.21 1.32 <0.01 6.88 1.85 <0.01 1.46 <0.01 <0.01

10 Fluoride (F) IS:3,025 (P-
60):2008

1.02 2.89 1.10 3.01 3.45 1.90 2.15 1.68 1.61

11 Lead (Pb) APHA-3110:
2017

0.28 0.01 0.03 0.32 0.012 0.06 0.02 0.05 0.05

12 Manganese (Mn) APHA-3110:
2017

0.42 0.68 <0.01 0.31 0.08 <0.01 0.13 <0.01 <0.01

13 Calcium (Ca) IS:3,025 (P-
40):1988

24 24 24 48.0 40 52 24 40 38

14 Magnesium (Mg) IS:3,025 (P-
44):1988

14.67 6.12 17.15 29.34 22.05 31.85 7.35 12.25 13.15

15 Sodium (Na) IS:3,025 (P-
45):1993

1,124 1,035 1,158 2,510 2,395 3,805 977 888 914

(Continued on following page)
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Formation is most developed there. In the Raniganj Formation, ten
regional coal seams with an average thickness of more than 1.2 m are
identified. In the Raniganj Formation, the lower seams are
comparatively thicker. The eastern portion of the coalfield
contains the laterite and alluvium outcrops of the Raniganj
measures (Chattaraj et al., 2021).

CBMWell-B having a drilled depth of 946.84 m, profile depth of
881.4 MD m, net pay of complete coal seam 24.86 TVD m, and coal
seam interval 30.30MDm (Figure 1a), CBMWell-C having a drilled
depth of 1,210 m, profile depth of 1,144.2 MD m, net pay of
complete coal seam 28.3 TVD m, and coal seam interval
26.3 MD m (Figure 1b), and CBM Well-E having a drilled depth
of 1,314 m, profile depth of 1,221.9 MD m, net pay of complete coal
seam 21.73 TVD m, and coal seam interval 27.4 MD m (Figure 1c)
were selected from the Eastern block of the Raniganj coal field. The
wells are lined with a K55 grade casing shoe secured by concrete. The
average bottom-perforation temperature is 49°C. Table 2 provides
detailed parameter descriptions of the wells.

2.2 Feasibility studies

Several factors should be taken into account before
implementing Microbially Enhanced Coalbed Methane (MeCBM)
tactics that have been studied in laboratories in an actual setting. A
deeper knowledge of every stage of the coal-to-methane conversion
process is made possible by bench-scale experiments, which are
significantly simplified models of the subterranean coal
environment and offer more control over the conditions.
Understanding the in-situ reservoir conditions in regions where
active microbial CBM generation occurs is necessary to comprehend
the potential effects of varying natural conditions on methane
generation rates associated with MeCBM projects.

The formation water and coal samples collected from the CBM
wells were previously analyzed for physicochemical composition as
part of the feasibility study (Chawla et al., 2023). Enrichment of the
methane producing microbial consortium in the formation water
was also performed in methanogen-specific modified MPB media.
For the in-situ biostimulation of the indigenous microbial diversity
involved in the biological enhancement of CBM production, Well-B,
Well-C, and Well-E were selected for field trial in accordance with
the results of feasibility study and availability of wells for field job
(Chawla et al., 2023). To ascertain whether the indigenous microbial
population of the studied CBM wells would utilize coal as a carbon
source for biological methane production was also tested on a lab-
scale in the initial phase of the study during media modification
experiments in the feasibility studies (Supplementary Figure S1). A
single factor experiment was performed during the media
optimization studies to identify the essential media components
for microbial methane production Supplementary Figure S2).
Production of Volatile Fatty Acids (VFA) was also analyzed
during the enrichment process (Supplementary Table S1), with
results indicating anaerobic digestion of coal and subsequent
utilization of VFA during methane formation.

2.2.1 Compatibility study
Three treated technical water samples, namely, TW-1, RO-64, and

RO-50 were collected from water sources near the well site and testedT
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for compatibility with the modified nutrient formulation of MPB
media: K2HPO4; 0.4 g/L, KH2PO4; 0.2 g/L, MgCl2.6H2O; 0.1 g/L,
NaCl; 0.5 g/L, Yeast Extract; 0.5 g/L, NaHCO3; 0.2 g/L, NH4Cl;
0.2 g/L (Chawla et al., 2023). Three sets of modified MPB media
were prepared with technical water samples to check for biogenic
methane production. The media sets were prepared in anaerobic serum
bottles. 1% (w/v) coal was added as a carbon source, and the bottles were
sparged with nitrogen to maintain an anaerobic environment, followed
by inoculation of each technical water set with 1% (v/v) formation water
collected from each well. The pH of all the sets of media wasmaintained
at 7.5. The bottles were incubated at 55°C for 30 days. Control sets
consisted of media prepared with technical water samples, and added
coal (1% (w/v)). To stimulate the coal well conditions, no agitation was
used during the experiment at the lab-scale. The C/N ratio of the coal
received fromWell B,Well C,Well E, and yeast extract are 41.55, 51.54,
52.56, and 3.34 respectively.

Methane production was monitored after 30 days of incubation
by extracting 0.5 mL of headspace gas samples from the anaerobic

serum bottles using a gas-tight syringe and quantifying the produced
methane using gas chromatography. The gas analysis was carried
out for triplicate bottles of each technical water set. The data points
represent the triple average plus standard deviation (<5%
of average).

2.3 Demonstration of microbially enhanced
CBM in the Raniganj coal field

2.3.1 Establishing a production baseline prior to
nutrient injection

Daily gas and water production trends of the wells were
monitored for 1 month before the field demonstration. Average
gas production rates of Well-B, Well-C and Well-E were calculated,
and the baseline values of gas production were set as 117.04 scmd,
514.225 scmd, and 210.193 scmd respectively, with baseline water
production of 5.26 cmd, 10.8 cmd, and 16.67 cmd respectively.

FIGURE 3
Production trends observed post-stimulation in the study wells.
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2.3.2 Nutrient injection set-up
An optimized nutrient media of composition: K2HPO4; 0.4 g/L,

KH2PO4; 0.2 g/L, MgCl2.6H2O; 0.1 g/L, NaCl; 0.5 g/L, NH4Cl; 0.2 g/
L, NaHCO3; 0.2 g/L, and Yeast extract; 0.5 g/L, previously
formulated according to the abundance of thermophilic microbial
communities in the selected CBM wells, and tested by Chawla et al.
(2023) during the feasibility studies was used for nutrient injection
in the CBM wells. Treated technical water selected according to the
results of the compatibility studies was collected from the well site
shortly before the injection and used for nutrient preparation. The
total injection volume was 200 m3 for each well, prepared in thirty
non-corrosive and sterilized water tanks (20 m3 each to avoid
contamination). An injectivity test was performed in Well-B,
Well-C and Well-E to establish an injectivity rate of 2.11 barrels
per minute (BPM), 2.4 BPM, and 2.15 BPM respectively. A pumping
unit was placed to inject the nutrient solution into the well as per the
injectivity rate. 197 m3 nutrient solution was injected in each well,
followed by 3 m3 water filled in the columns after injection. The
Casing Head Pressure (CHP) in the well-head was at 0 PSI
throughout the injection process, after which the wells were
closed and kept on incubation for the period of 30 days.

2.4 Post-job monitoring

After an incubation period of 30 days, the wells were opened and
dewatered to gradually knock out the amount of nutrients injected
into the wells, i.e., 200 m3 in each well during the field
demonstration. After a complete water knockout, the wells were

ready to be closely monitored for post-injection assessment.
Formation water and gas samples were then collected for
analysis. Gas was collected from the well-heads in nitrogen-
flushed cylindrical metal gas bombs. The formation water
samples were collected in pre-sterilized anaerobic serum bottles
containing 2% Na2S. The bottles were filled up to the brim and
sealed while avoiding any air bubbles (Rathi et al., 2015b). The
samples were transported to the laboratory in under 48 h, stored at
4°C, and were immediately processed for all required analyses.

2.4.1 Physicochemical characterization of
formation water

The formation water samples collected from the CBMwells after
well opening were analyzed for physicochemical characterization.
The analysis was performed according to the American Petroleum
Institute (API) standard and APHA guidelines. The samples were
analyzed for total iron content, sulphate, fluoride, calcium,
magnesium, sodium, potassium, and nitrate. The parameters of
analysis included heavy metal concentrations of arsenic,
chromium, lead, cadmium, zinc, nickel, manganese, copper,
silver, and mercury, along with the pH, electrical conductivity,
and total dissolved solids. Formation water samples were
collected bi-monthly in three sampling phases to study
physicochemical characterization.

2.4.2 Gas and water production trends
The gas and water production trends were measured via an

online gas and water flowmeter installed on the well pads, which
collected per-day and cumulative data for post-injection

TABLE 4 Molecular and stable carbon isotopic compositions of CBM gas collected from the candidate CBM well post biostimulation.

Parameters Results

Well-B Well-C Well-E

Chemical Composition (% Mol) C1 98.73 98.31 96.41

C2 - 0.02 0.07

C3 0.01 0.00 0.01

iC4 - 0.00 0.04

nC4 0.01 0.00 0.02

iC5 - 0.00 0.01

nC5 0.01 0.00 0.00

C6 0.01 0.00 0.02

C2+ 0.04 0.02 1.25

CO2 0.52 0.56 1.18

N2 0.7 1.1 1.1

Stable Carbon isotopic values (δ13C%) C1/(C2+C3) 9036.5 5075.0 1,026.1

δ13C1 −50.4 −51.6 −45.1

δ13C2 - −30.6

δ13C3 - −29.3

δ13CO2 9.3 7.4 9.2
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monitoring. A digital platform interface, Sensia Avalon, was
deployed for the analysis and digitalization of well-related activities.

2.4.3 Stable carbon isotope analysis
Stable carbon isotope study is an important analytical tool that

has been used in this study to identify the genesis of the CBM gas.
Comprehending the source and nature of CBM gas being produced
in the wells after the microbial stimulation job is a critical parameter
in this study, as it corroborates the results of microbial stimulation in
the reservoir. As per the methodology described by Wang et al.
(2019), the Keshava Deva Malaviya Institute of Petroleum
Exploration, Oil and Natural Gas Corporation Ltd. analyzed the
molecular and isotopic compositions of the gas samples collected on
opening the wells after the biostimulation field trial.

2.4.4 Genomic and data analysis of
microbial diversity

The formation water samples collected from the wells in the
third sampling round after the microbial stimulation job were
processed for extraction of genomic DNA. The samples were
filtered using a filter membrane having a pore size of 0.22 μm,
and particles suspended in the formation water remained on the
filter membrane. The DNeasy PowerWater Kit (Qiagen, Germany)
was used for DNA extraction following the protocol provided by the
manufacturer. The quantitative and qualitative analysis of the
extracted DNA was performed using Thermo Scientific
NanoDrop 2000 spectrophotometer. Sequencing was carried out

on the high-quality extracted DNA samples that showed an A260/
280 ratio between 1.8 and 2.0 and concentrations higher than
50 ng/μL.

The extracted DNA samples were processed for amplicon
sequencing by amplifying the V3-V4 region of the bacterial 16S
rRNA gene using primers 341F (5′-CCTACGGGNGGCWGCAG-
3′) and 785R (5′-GACTACHVGGGTATCTAATCC-3′). In order to
understand the overall diversity of the microbial population. V3-V4
amplicon sequencing was carried out on the Illumina MiSeq
2,500 platform by Medgenome Pvt. Ltd.FASTQC tool v 0.11.8
(Babraham bioinformatics) verified the quality of sequences after
demultiplexing and adaptor/primer/barcodes sequence removal
from raw reads. FLASH v 1.2.11 software was used to merge the
paired-end readings of every sample (Magoč and Salzberg, 2011).
The QIIME 1 standard protocol was adhered to, as stated in
Quantitative Insights Into Microbial Ecology (López-García et al.,
2018). Operational Taxonomic Units (OTU) picking was done
against SILVA database version 132. The microbial analysis was
done in the software MicrobiomeAnalyst (Dhariwal et al., 2017).
The metagenome sequence reads of the samples have been
submitted to the NCBI archive under Bioproject accession
number PRJNA1119685.

The Alpha diversity analysis using the Chao1 diversity index,
and the prediction of functional profiles of bacterial taxa based on
the 16s rRNA sequencing were performed on Metagenassist
software using the amplicon sequencing data according to the
Silva-132 database. The rarefaction curve plotted between species

FIGURE 4
Bernard plot representing the genetic origin of the CBM gas from the Raniganj reservoir after biostimulation, based on the dryness of gas (Bernard
et al., 1978).
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richness and sequence sample size using MicrobiomeAnalyst has
been shown in Supplementary Figure 3.

3 Results and discussion

3.1 Compatibility of the well-site technical
water with the designed nutrient
formulation

Compatibility studies were performed with technical water
samples RO-50. RO-064 and TW-1, to check the suitability of
these water sources for the application of biostimulation
technology at field scale. The water samples were sourced from a
reverse osmosis water system, having pH between 6.5 and 7,
maximum specific conductivity of 10 μS/cm at 25°C, 1–2 mg/L
total solids, and a maximum silica content of 1 mg/L (according to
ISO 3025). No precipitation or turbidity was observed during
nutrient preparation, indicating that all technical water samples
received from the well-site are compatible with the modified
nutrient media designed for the field trial. Moreover, the
quantification via gas chromatography of methane gas produced
in the headspace of the incubated serum bottles confirms the
potential of the nutrient media prepared with technical water
samples for supporting the growth of a specific methanogenic
consortium that can use the bituminous coal found in
thermogenic CBM reservoirs as a carbon source to facilitate in-
situ methane enhancement.

Figure 2 represents the amount of methane gas produced in the
headspace of serum bottles containing nutrient media prepared with
RO-50, RO-064, and TW-1. Each technical water sample was tested
using formation water samples from Well-B, Well-C and Well-E as
inoculums. In the case of RO-064, 2,864.7 μmol/g coal,
1720.22 μmol/g coal, and 1768.36 μmol/g coal of methane was
produced in the headspace of media bottles inoculated with
formation water collected from Well-B, Well-C, and Well-E
respectively, which was higher than other technical water sets.
The control sets showed no methane production.

Therefore, it could be concluded that technical water RO-064
showed the most compatibility and potential to support the targeted
microbial consortium for enhanced methane production. In
accordance with the results of the compatibility study, technical
water RO-064 was selected for the preparation of the nutrient media
to be injected into the well.

3.2 Post-injection monitoring

3.2.1 Physicochemical characterization
Physicochemical analysis was performed on the formation water

samples was first collected from the treated wells after complete
nutrient media knockout, followed by second and third phase
samples collected on a bi-monthly basis (Table 3). The results
show that the amount of some heavy metals including cadmium,
zinc, chromium, and silver consistently below the detectable limit
(<0.01). The concentrations of all parameters fall in a close range

FIGURE 5
Cross-plot of δ13C1 and δ13CO2 showing secondary altercation of gas confirming the occurrence of secondary microbial gas (from [20] and [29]).
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when compared amongst three sampling phases, indicating a stable
environment for the microbes throughout the monitoring period.
The pH of Well-B formation water samples collected in sampling
phases 1, 2 and 3 were 8.4, 8.8 and 8.6, respectively, and the total
dissolved solids were observed as 2,557 mg/L, 2,658 mg/L and
2,634 mg/L, respectively. The electrical conductivity of the
samples from sampling phases 1, 2 and 3 was found to be
5.51 m/cm, 5.39 m/cm and 5.38 m/c, respectively. The pH of
Well-C formation water samples collected in sampling phases 1,
2 and 3 were 8.2, 8.3 and 8.2 respectively, and the total dissolved
solids were observed as 3,726 mg/L, 4089 mg/L and 3,992 mg/L
respectively. The electrical conductivity of the samples from
sampling phases 1, 2 and 3 was found to be 15.21 m/cm,
12.65 m/cm,and 12.91 m/cm respectively. The pH of Well-E

formation water samples collected in sampling phases 1, 2 and
3 were 8.5, 8.3 and 8.3 respectively, and the total dissolved solids
were observed as 2,743 mg/L, 2,568 mg/L and 2,677 mg/L
respectively. The electrical conductivity of the samples from
sampling phases 1, 2 and 3 was found to be 5237 μS/cm,
5498 μS/cm,and 5373 μS/cm respectively. The medium-basic
pH range has been considered optimal for methanogenesis (K.
Wang et al., 2014). pH is a key factor that affects the production
of VFA during the fermentation step. Y. Chen et al. (2013)
determined that pH around 8.0 is optimal for VFA production
during co-fermentation of food waste. Jin et al. (2019) studied the
effect of pH anaerobic fermentation by monitoring the VFA
composition and concentrations under variable pH and analyzing
the changes in the microbial community via 16s rRNA sequencing.

FIGURE 6
Stacked bar plot representing the percentage abundance assessed by 16S rRNA-gene amplicon sequencing at phylum-level.
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Slightly alkaline pH and thermophilic conditions may lead to higher
accumulation of acetic acid, a crucial substrate in the
methanogenesis step.

The physicochemical characterization of the coal, which
includes the proximate and ultimate analysis, was previously
performed (Chawla et al., 2023). The coal rank was found to be
high volatile ‘A’ bituminous (HVAB) as per ASTM standard. High
volatile bituminous coal can also be considered to produce biogenic
methane which indicates the presence of potential biogenic
consortia when stimulated with optimized nutrient formulation
(Fallgren et al., 2013).

3.2.2 CBM gas and water production trends
The gas and water production of the wells was observed for

6 months after the implementation of the bio-stimulation process.
The wells were dewatered before observation. Jones et al. (Jones
et al., 2013) hypothesized that dewatering the well is important as it
increases the desorption of methane gas from coal seams by
decreasing the hydrostatic pressure, thereby improving the gas
flow rate. The results of this study performed in the Powder
River Basin supported the idea that coal bed dewatering may also
promote biogenic methanogenesis by partially oxidizing the
structural organics in coal after the anerobic conditions are
restored. Real-time data acquisition of important well parameters
such as CBM gas production, temperature and pressure was
performed via a digital platform connected to an online gas
flowmeter placed on the well pad. Figure 3 shows the production
trends observed in the studied wells post-injection. A significant

increase in the gas production from the well was observed. The
average gas production of Well-B, Well-C and Well-E during the
initial 6 months after the incubation period was 461.38 standard
cubic meters per day (scmd), 670.22 scmd, and 385.19 scmd
respectively, while the average gas production in 3 months,
which was earlier established as the baseline before nutrient
injection, was observed as 117.04 scmd, 514.225 scmd, and
210.193 scmd respectively. The average water production in
Well-B during the initial 6 months after the incubation period
was observed as 8 cubic meters per day (cmd) with a maximum
of 15 cmd. The average water production in Well-C andWell-E was
observed as 19 cmd with a maximum of 32 cmd, and 11 cmd with a
maximum of 14 cmd, respectively. A strong correlation between the
production and evolution of coalbed water and the daily variation in
gas production has been previously observed by Zhao et al., in 2023
(Zhao et al., 2023). The study also concluded that Total dissolved
solids (TDS) in coalbed water rise in tandem with every increase in
gas output. A similar pattern has been observed in our study, where
the TDS recorded post-injection was higher than the TDS recorded
by Chawla et al. (Chawla et al., 2023) in the feasibility studies
performed pre-injection.

3.3 Feasibility assessment of the technology

Microbially enhanced coalbed methane production via
biostimulation of indigenous microbial diversity through
nutrient addition is a strategy with promising results in
various coal seams. By performing coal-to-methane conversion
for cleaner energy production, methane producing
microorganisms can reduce the emission of contaminated
gases and partially replace the direct use of coal as traditional
fossil fuel, thereby providing an advantage of environmental
protection (Niu et al., 2024). This optimized technology can
be a cost-effective alternative to conventional CBM extraction
methods (Bhatt and Tao, 2020), with lower energy requirements,
and capability to prevent the formation of by-products toxic to
the microbial community, as opposed to the chemical treatment
methods (Aworanti et al., 2023). In the current study, the volume
of nutrients injected in the CBM wells was 250 m3 per well, based
upon the coal seam thickness of the reservoir (6.5 m3/m of coal
seam). The cost of the nutrient media was Rs 20/L (0.23 USD/
Litre). The total operational cost of the field application was
recovered in a short payback period of 3 months, with
substantially enhanced gas production, making it an
economically feasible and sustainable process.

3.4 Molecular and stable carbon
isotope analysis

The Geochemical analysis of the post microbial stimulation job
gas samples collected from the studied wells in the Raniganj field was
performed via stable carbon isotope study. The source of the gas can
be identified by analyzing the carbon isotopic fingerprints
(δ13C-CH4) generated by thermogenic and biogenic CH4

(Prinzhofer and Battani, 2003). The levels of thermogenic CH4

carbon stable isotopes range from −50% to −20%, while those of

FIGURE 7
Alpha diversity evaluation at genus level: Chao1 diversity index.
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biogenic CH4 can have δ13C values between −110% and 40%
(Whiticar, 1999). The molecular and isotopic compositions of the
gas produced after nutrient treatment indicate mixed origin
(Table 4) as the δ13C1 value of the gas observed in Well-B, Well-
C, andWell-E is 50.4%, 51.6%, and 45.1% respectively. The gas is dry
in nature in all wells. Methane makes up the majority of microbial
gas, with trace amounts of ethane and Propane. The ratio of methane
to the sum of ethane and propane (C1/C2+C3), also known as gas

dryness index, is one of the most widely used diagnostic geochemical
parameters for differentiating gas origin (Golding et al., 2013). The
dryness ratio of gas sampled from Well-B, Well-C, and Well-E is
9036.5, 5075, and 1,026.1 respectively. Dryness ratios above 103 are
generally regarded to be indicative of microbial methane, whereas
values below 102 are indicative of thermogenic methane (Bernard
et al., 1978). The Bernard plot based on this ratio (Figure 4) has been
widely used as a classification diagram of the genetic origin of

FIGURE 8
Pie chart depicting microbial diversity at the genus level in the formation water analyzed post-injection in (a) Well-B, (b) Well-E, and (c) Well-C.
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natural gas (Bernard et al., 1976; Milkov and Etiope, 2018; Ni et al.,
2021; Westerholm et al., 2016). The presence of isotopically heavier
carbon dioxide in the studied gases also corroborates mixed origin as
microbes preferentially consume 12C over 13C (Kinnon et al., 2010).
A cross plot of δ13C1 and δ13CO2 (Figure 5) provides carbon isotope
fractionation value(α), where α=(1,000+δ13C-CO2)/(1,000+
δ13C-CH4). α values between 1.03 and 1.06 denote acetate and

methyl-based fermentation, while α values between 1.06 and
1.09 denote CO2 reduction pathway of methanogenesis
(Bishanga and Qiang, 2021). α values of 1.0628, 1.0622, and
1.0568 of the CBM well samples from Well-B, We-C and Well-E
respectively, show secondary altercation of gases, indicating the
occurrence of secondary microbial gas via CO2 reduction
(Milkov, 2011; Whiticar, 1999).

FIGURE 9
Relative abundance of bacteria vs. archaea in samples post-injection, analyzed on the platform Metagenassist.

FIGURE 10
Relative function abundance predictions of microbial communities in post-injection CBM wells.
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3.5 Cultivation-independent assessment of
the microbial community of post-injection
formation water

The approach to the process of CBM enhancement that has been
studied the most is biostimulation through nutrient amendment. A
thriving indigenous consortium of microbes with the ability to
degrade coal and produce methane must exist in order to apply
biostimulation techniques in-situ. Therefore, the microbial diversity
of the candidate CBM wells in the Raniganj coal-seam reservoir was
studied prior to the implementation of the biostimulation process
(Chawla et al., 2023), and a suitable nutrient media was formulated.
Several studies focused on biostimulation have utilized
methanogenic substrates such as acetate, CO2, and H2 (Harris
et al., 2008; Jones et al., 2013). While adding these substrates
could encourage methanogens to generate methane, the main
objective of microbial stimulation is to stimulate coal-dependent
methanogenesis. In order to break down coal and provide
intermediate products that methanogens may use to convert it to
methane, it has been proposed that MeCBM injections should target
the colonisers and degraders of coal (also known as “first biters”),
rather than just the methanogens (Schlegel et al., 2013). This has
been recently achieved in a field study by Barnhart et al., in 2022
(Barnhart et al., 2022). Yeast extract was injected into the reservoir
for in-situ biostimulation, and the isotopic study results indicated
that it potentially stimulated the primary and secondary coal-
degrading microbes that provided co-metabolites to methanogens.

Proteobacteria makes up the majority of the bacteria found in
the formation water sample taken from the bio-stimulated CBM
Well-B, Well-C and Well-E followed by other dominating phyla
such as Caldatribateriota, Synergistota, Firmicutes, Caldisericota,
and Aciderothermia. The presence of phyla including Bacteroidota,
Chloroflexi, Nitrospirota, Acidobacteriota, Desulfobacterota, and
Actinobacteriota is also seen in all CBM wells. (Figure 6). Niya
et al. (2024) assessed the microbiome composition in anaerobic
digestion systems and found that Caldatribacteriota, Synergistota,
Firmicutes, Bacteroidota, and Chloroflexi were the dominant phyla
found in a continuously stirred tank reactor (CSTR) in which the
methane output, metabolic transformation and microbial response
were studied in relation to the performance of anaerobic co-
digestion of organic compounds. Caldatribacteriota, found in
geothermal systems, petroleum reservoirs, wastewater treatment
facilities and anaerobic digestors, produces hydrogen and acetate
via fermentation (Dodsworth et al., 2013). Firmicutes are believed to
be responsible for the demethylation of aromatic compounds, a
crucial step in the cleavage of aromatic compounds (Strąpoć et al.,
2008), and were also seen in the formation water from the Jharia
basin in an investigation conducted by Singh et al. (2012). Similar to
the present investigation, Spirochaetes of the phylum Spirochaetota
predominate the Jharia coal reservoir, and the coal bed of the Illinois
basin (Strąpoć et al., 2008). In the Powder River Basin, Spirochaetes
were a part of the methanogenic consortia, as demonstrated by the
study done by Green et al. (2008). Firmicutes also dominated the
bacterial population in the coal bed methane wells in the Powder
River Basin. The archaeal community of the formation water
consists of Euryarchaeota, composed of physiologically diverse
groups, including methanogens, the most well-researched
group. The primary metabolic activities of this group include

oxidation of coal hydrocarbons and methanogenesis (Beckmann
et al., 2019).

The high abundance of microbial phyla observed suggests a
strong presence of microorganisms involved in early anaerobic
digestion stage, particularly hydrolysis and acidogenesis. The
diversity richness in the samples has been analyzed with the
Alpha diversity analysis using the Chao 1 diversity index (Figure 7).

Figure 8 represents the microbial diversity at genus level in the
formation water samples collected post-injection. The microbial
diversity of pre-injection formation water was analyzed by Chawla
et al. (Chawla et al., 2023) as part of the feasibility study and
strategization for field-scale biostimulation for enhanced biogenic
methane production. The prevalence of Pseudomonas in post-
injection formation water samples of Well-B, Well-C and Well-E
as compared to its proportion in the pre-job formation water
samples is of utmost importance as it plays a vital role in coal
degradation, which is the foremost target of the biostimulation
process. Pseudomonas has the capability to break down alkanes,
alkenes, and polycyclic aromatic hydrocarbons (PAH) into formate,
lactate, acetate, ethanol, and CO2. Additionally, it can aid in the
breakdown of PAH by producing biosurfactants, which improve
solubility by reducing surface and interfacial tensions between coal
molecules (Colosimo et al., 2016; Davis and Gerlach, 2018; Singh
and Tripathi, 2013). Pseudomonas is also well known to play a
crucial role in the depolymerization of lignin (Rouches et al., 2021).
The prevalence of Pseudomonas has also been noted in the Erlian
Basin, China by Fu et al., in 2023 (Fu et al., 2023). Thauera
Syntrophobacter, Sulfurivermis, are also found to be in
dominance in the post-injection samples of Well-B and Well-C,
while their abundance in the pre-job sample was found to be
significantly low. Similarly, Azospira, which was found to be low
in abundance in pre-injection samples, is abundant in the post-
injection samples of Well-B. Particularly, Pseudomonas, Thauera,
and Azospira are regarded as key PAH degraders under nitrate
reducing conditions, while Syntrophobacter is a syntrophic
propionate-degrading bacteria, and Sulfurivermis degrades PAH
under sulfate-oxidizing conditions (Torres-Herrera et al., 2024).
A similar study performed by Beckmann et al. (Beckmann et al.,
2019) in a gas-free coal seam reservoir in New South Wales,
Australia, also involved the bio-stimulation of coal bed methane
via nutrient addition. It showed results resembling that of the
present study, as the abundance of hydrocarbon degrading
bacteria-affiliated with Pseudomonas, Thauera, Azospira, and
Syntrophobacter-increased after the nutrient amendment. These
lineages exhibit a global distribution, as evidenced by their
documented presence in coalbed seams across the Powder River
Basin, Ruhr Bain, Alberta Basin, Illinois Basin, Ishikari Basin,
Waikato coalfields, and deep-sea coalbeds (Barnhart et al., 2013;
Beckmann et al., 2011; Gründger et al., 2015; Inagaki et al., 2015;
Penner et al., 2010; Shimizu et al., 2007). The most prevalent
bacterial phyla in the western coalfields of Australia were
Firmicutes, Proteobacteria, Bacteroidetes, and Spirochaetes.

Genus JS1 of the candidate phylumAtribacteria, and genusD8A_2
belonging to phylum Firmicutes were also found to be abundant in the
post-injection samples of Well-B and Well-C. D8A_2 is a syntrophic
acetate-oxidizing bacteria (C. Li et al., 2022). JS1 is among the few
bacterial lineages that are typically found in deep surface environments
including oil reservoir formation water as well as stable hydrocarbon-
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degrading enrichment cultures that are derived from oil reservoirs (Y.-
F. Liu et al., 2019). The proliferation of JS1 after in-situ biostimulation
is highly significant as it has fermentative potential using a variety of
substrates and is involved in syntrophic acetate oxidation in
conjunction with H2 and CO2 utilizing methanogens (Lee et al.,
2018). Genus TTA_B15, a member of the class Caldisericia, which
was also previously found to be in insignificant proportion, is present
in the post-injection sample of Well-B, and is a known hydrocarbon-
degrading bacteria typically found in petroleum reservoirs (Tatar,
2018). It has also been found in Daqing oil field, China (F. Zhang
et al., 2010). Thermovirga, of class Synergistia, a fermentative
hydrocarbon-degrading bacterium (Mbadinga et al., 2011) has been
found to be more abundant in the post-injection samples of Well-B
andWell-C. Similarly, an increase in the abundance ofAminiphilus, an
amino acid degrading bacterium (Díaz et al., 2007), and
Aquabacterium, known to be involved in biodegradation of oil (Q.
Wang et al., 2019) has also been observed in the post-injection samples
of all three wells. Increased abundance of an unclassified member of
Acetothermia has been observed in Well-B. The presence of
Acetothermia has been previously detected in anaerobic digestors
(Nobu et al., 2015), suggesting that it may be specifically adapted to
this environmental niche, and contributes to the process of converting
organic matter into biogas (Hao et al., 2018).

The abundance of archaeal genus Methanothermobacter in the
post-injection formation water samples of all three CBM wells as
opposed to the pre-injection formation water samples is especially
noteworthy. It is a well-known thermophilic, CO2 reducing,
hydrogenotrophic methanogen, i.e., it exclusively utilizes H2+CO2

as a substrate in the process of methanogenesis (Smith et al., 1997). It
was also found as the dominant archaeal group in the Jharia coal basin
(Singh et al., 2012), and the Bokaro coal field (Sahu et al., 2024).
Investigations in the Powder River Basin, USA, and the coal reservoir
of the Ruhr Basin, Germany, which is a biogenic methane-producing
source, also revealed the presence of Methanothermobacter (Flores
et al., 2008). Abundance ofMethanothermobacter in the pre-injection
and post-injection samples and Methanobacterium in the pre-job
samples (Chawla et al., 2023) suggests that the hydrogeotrophic
methanogenesis pathway dominates in the Raniganj reservoir.

Despite the crucial role of methanogenic archaea in
methanogenesis being widely known, the limited archaeal
abundance in the post-injection samples (Figure 9) is not
surprising as the nutrient stimulation was designed to target
hydrolytic and fermentative bacteria responsible for breakdown
of coal into simple organic substrates, a rate-limiting step in the
process of methanogenesis. The relative abundance of bacteria and
archaea assessed in various methane producing coal reservoirs has
shown that the archaeal abundance was significantly less than the
bacterial abundance (Davis et al., 2018; Green et al., 2008; Gründger
et al., 2015; B. Liu et al., 2022; J; Zhang et al., 2015).

While the metagenomic analysis provides a comprehensive
understanding of the microbial ecology of the selected Raniganj
CBM wells by predominantly representing the planktonic microbial
communities present in the formation water of the wells, it does not
take into account the biofilm-producing microorganisms on the coal
surface, which may exhibit functional profiles that are key in process
of degradation of organic compounds. Beckmann et al. (2019)
performed the characterization of the microbial communities in
the coal surface of a coal seam and the effect of in-situ

biostimulation, and found that methanogenic archaea made up
the major proportion of the biofilm producing communities on
coal surfaces. Post nutrient amendment results showed a high
abundance of Geobacter uraniireducens, and sulfate reducing
bacteria within the orders Desulfovibrionales and Desulfobacterales.

3.6 Predictive functional analysis of the
post-injection microbial abundance

Functional community profiles of the taxa identified by 16s rRNA
sequencingwere predicted to offer insights on themicrobialmetabolism
of themicrobial diversity enriched in the post-injection formation water
samples of the studied CBM wells in the Raniganj coal reservoir.
Understanding the metabolic indicators involved in the microbial
processes that particularly contribute to coal biodegradation and
biogenic methane generation was crucial to optimize the MeCBM
process. The heatmap of relative function abundance prediction
(Figure 10) shows high methanogenic activity, particularly in Well-B
and Well-E, confirmed by higher abundance of Methanothermobacter
in these wells. A higher abundance of aromatic hydrocarbon degrading
metabolisms was predicted in Well-B and Well-E. The presence of
atrazine metabolizing functions is abundant in all wells. Nitrogen
fixation, xylan degrading metabolisms and chitin degrading
metabolisms predicted a higher relative abundance in Well-C as
compared to Well-B and Well-E, similar to nitrate reducing and
sulfur reducing metabolisms.

4 Conclusion

A field trial of in-situ biostimulation via nutrient injection was
reported for the first time in CBM wells of the Raniganj coal-seam
reservoir in the Gondwana Basin, India. The formation water
analyzed bi-monthly post-injection showed a stable
physicochemical profile of the wells throughout the observation
period. Upto four-fold increase in the production of CBM gas
from the treated wells was observed, and the production levels
were maintained 6 months after the incubation period.
Establishing a control baseline gas production value based on the
production data of 3 months prior to the field trial allowed us to
definitively attribute the increase in gas production in the CBM wells
to the effects of the nutrient treatment. A favorable impact on the
indigenous microbiome of the formation water was observed upon
the assessment of changes in the microbial communities and their
abundance after in-situ biostimulation in comparison to themicrobial
diversity found in the formation water samples collected before the
implementation of the biostimulation process. The targeted
communities, particularly hydrocarbon-degrading bacteria,
proliferated after nutrient injection. A surge in the abundance of
key coal hydrocarbon degraders including Pseudomonas, Azospira,
Thauera, and Sulfurivermis, amongst other abundant genera in the
formation water samples was observed. The notable presence of
methanogenic archaea Methanothermobacter in all post-injection
formation water samples as opposed to its significantly low
abundance in the pre-injection formation water samples suggests
that hydrogenotrophic methanogenesis is the primary pathway of
biogenic methane production that occurred as a result of in-situ
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biostimulation. The successful implementation of the MeCBM
technology and the observed upsurge in the gas yield
demonstrates its potential on a large scale, which may help the oil
and gas industry contribute towards the nation’s vision of being a gas-
based economy and achieve the sustainable development goal (SDG-
7) of affordable and clean energy.
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