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With a rapidly global population, there is a critical need to enhance food
production and waste management. This necessity is driving opportunities for
sustainable integrated food chains committed to biovalorization and circular
bioeconomic practices. One approach that aligns with this vision relies on
sustainable tissue engineering, which offers opportunities to leverage food
systems in the search for natural biomaterials from agricultural waste. In this
perspective, we propose utilizing commonmeat waste sources, often associated
with a high environmental footprint, to develop tissue graftmodels. Thesemodels
reduce agricultural waste, decrease the reliance on animal testing, and support
both biovalorization and medical innovation. Specifically, we explore a unique
approach to generate corneal transplantationmodels completely from discarded
components of the meat food chain, using the eyes and bladders. This strategy
involves creating keratoplasty models by reseeding the decellularized
extracellular matrix (dECM), encompassing three major corneal regions: the
epithelium, stroma, and endothelium. Interestingly, these scaffolds can be
recellularized with cellular lineages derived from stem niches harvested from
urine. This approach integrates waste management with regenerative medicine,
fostering sustainable advancements in tissue engineering.
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Introduction

Agri-food systems utilize various extraction, processing, storage, and distribution
practices to support human consumption. Unfortunately, the recent pandemic, rapid
population growth, climate change, ecological disasters, and political tensions
emphasize a need for reassessments (McGreevy et al., 2022). These reassessments
emphasize sustainability and waste management to help avert future disasters and conflicts.

These approaches aim to enhance food production through better-integrated food
chains committed to biovalorization and circular bioeconomic practices. Several studies
have outlined how sustainable integrated food chains can, in general, drive the conversion of
organic waste and biomass into valuable products and consumption cycles (Ashokkumar
et al., 2022) and specifically advance tissue engineering that supports cultured meat
(Mancini et al., 2022; Manning et al., 2023; Perreault et al., 2023; Ramachandraiah,
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2021; Hong et al., 2021) and biomaterials research (Khan et al., 2023;
Tarafdar et al., 2021; Limeneh et al., 2022; Shibru et al., 2024).

Within the past decade, it was stated that roughly 10% of the
285 million vision-impaired people worldwide suffer from corneal
opacities (He et al., 2020). Furthermore, roughly 2 million of the
world’s 39.3 million population who are visually impaired can trace
their cause of ailment to a corneal opacity (Wang E. Y. et al., 2023).
The increasing prevenance of diseases, fungal, bacterial, viral, and
metabolic conditions also contribute to chronic and end-stage
conditions.

For instance, the rapid increase in the prevalence of diabetes
mellitus has led to more cases of keratopathy and corneal
neuropathy. Paradoxically, the SARS-CoV-2/COVID-
19 vaccination presented adverse corneal events such as native
corneal fiber neuropathy in COVID-19 patients (Yin et al., 2022).
Such identified health issues underscore the necessity for further
research to address corneal impairment.

As a means to simultaneously find novel solutions to these
pressing issues, in this perspective, we propose utilizing common
meat waste sources, often associated with a high environmental
footprint, to develop tissue graft models. These models aim to reduce
agricultural waste, decrease the reliance on animal testing, and
support both biovalorization and medical innovation as we strive
to address the global shortage of transplantable corneal tissues.

The role of biomaterials in addressing
the corneal transplantation shortage

Biomaterials research involves the development of novel
components and cutting-edge synthesis and fabrication
technologies for industrial and clinical applications. A major
clinical application is the development of transplantable organs
and tissues, such as the cornea, to help the estimated
12.7 million worldwide who need keratoplasty (Liu et al., 2022).

Recent evidence suggests the potential to improve xenografting
technologies and models. Such models can be generated from
repurposed human and animal ocular tissues, offering a novel
pathway to utilize discarded by-products of the food industry for
therapeutic purposes (Pantic et al., 2023; Wang et al., 2022; Wang
et al., 2023a; Shibru et al., 2023), as illustrated in Figure 1.

Advances in corneal substitutes

The cornea is a thin, transparent tissue for ophthalmic
protection and light transmission. Prolonged exposure to natural
elements, combined with the increasing prevalence of diseases, can
cause irreversible complications, such as clouding, distortion,
scarring, and eventual blindness. Current treatments for corneal
repair include eye drops, ointments, oral medications, intraocular
ring implantations, and, ultimately, transplantation. Although
transplantation is the ideal correction for end-stage conditions,
the limited availability of graft tissues necessitates new
treatment avenues.

Significant advances in regenerative medicine have led to the
development of corneal substitutes from bovine, caprine, ovine,
porcine, and human cadaveric tissues through techniques like
additive manufacturing (Jia et al., 2023), decellularized
extracellular matrix (dECM) (Nara et al., 2016; Polisetti et al.,
2021), and stem cell technologies (El Zarif et al., 2020). Recently,
the potential of non-invasively sourced stem cells, including
menstrual, adipose, and urine-derived cells (UCs), has been
investigated for regenerative applications. UCs are highly
proliferative and represent an unlimited and utterly non-invasive
resource. These cells can be reprogrammed into iPSCs and
differentiated into various cell lineages for corneal tissue
engineering and regeneration (Jing et al., 2019).

Repurposing slaughterhouse waste for
sustainable keratoplasty models

The cornea serves a dual role: it transmits light to the rod and
cone cells and is a barrier against debris, bacteria, and other foreign
bodies. Structurally, the cornea consists of three main layers-the
epithelium, stroma, and endothelium - and two interfaces, namely,
the Bowman’s layer and Descemet’s membrane, as shown in

FIGURE 1
Repurposing Meat Waste to Drive Circular Bioeconomic
Practices. Cyclic innovation can potentially arise from the collection of
meat waste, including corneas and bladders, from local
slaughterhouses. This process continues within the laboratory
environment, where corneal tissue extraction and decellularization
occur to generate viable scaffolds. These scaffolds can then be
recellularized with cells generated from urine-derived cells.
Ultimately, this process can be translated to clinical settings, where
discarded human corneal tissues and patient-specific urine can be
collected to generate viable keratoplasty grafts.

FIGURE 2
A schematic of the major corneal layers. The epithelium protects
the cornea, enhancing its refractive power and triggering an immune
response. Following this is the stroma, which offers crucial mechanical
support and boasts the most potent refractive capability. The
endothelium, the final layer, regulates water removal to maintain the
cornea’s clarity. Additionally, the Bowman’s and Descemet’s
membranes are between these three primary layers.
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Figure 2. The epithelium, the outermost layer, through its inner basal
cells, middle wing cells, and superficial squamous cells, enhances the
eye’s barrier and refractive abilities (Yam et al., 2020). Additionally,
this multilayered compartment accommodates bone marrow-
derived ocular surface Langerhans antigen-presenting cells that
regulate immunoreception and immunodefense.

Since the cornea is the eye’s outermost layer, it is especially
prone to injuries. Trauma to the cornea can present as abrasions and
keratitis, with more advanced damage causing corneal clouding,
distortion, scarring, and eventual blindness. While it heals from
minor injuries with the migration, proliferation, and differentiation
of healthy peripheral epithelial cells, keratinocytes, and endothelial
cells, its avascular nature limits innate wound healing due to the
decreased access to nutrients and immune cells necessary for repair.
Consequently, more severe injuries require external treatment like
eye drops containing antibiotics, steroids, oral medications,
phototherapeutic keratectomy, and keratoplasty.

Corneal bioengineering: generating
scaffolds from discarded eyes and
reprogramming waste-derived
stem cells

The dECM for corneal scaffolding

Advances in tissue engineering and regenerative medicine have
led to studies investigating the use of the dECM as a tissue scaffold,
as shown in Figure 3. Theoretically, these scaffolds maintain the
ideal structural environment of the tissue and maintain the levels
of endogenous cytokines and growth factors. The interaction
between these elements of the ECM matrix with the
surrounding cells plays a significant role in tissue
differentiation, migration, adhesion, and proliferation (Chan
and Leong, 2008; Chen et al., 2024). Furthermore, hydrogels
that mimic ECM were shown to promote the proper
proliferation and differentiation of ocular stem cells (Lu et al.,
2024). Heparin sulfate is a vital component of the ocular ECM that
promotes cell migration and proliferation. Other
glycosaminoglycans, as well as different collagen types, have
also been indicated to contribute to the ECM’s ability to
promote cell differentiation (Yang et al., 2025). Analogs of
heparin sulfate have shown promising clinical applications in
restoring damaged ECM and, hence, restoring vision in patients
suffering from corneal damage (Mahdavi et al., 2020). Providing an

ECM-based scaffold with the required differentiation factors could
play a vital role in advancing corneal repair and transplantation.

For instance, repurposing tissue waste from bovine animals has
proven a worthy avenue to explore. In recent studies, corneas are
collected from discarded sheep eyes (Pantic et al., 2023; Ali et al.,
2024; Wang et al., 2023b), where they are subsequently
decellularized to remove innate cellular components from the
scaffolds. Then, the samples are immersed in glycerol to restore
the opacity of the cornea. The scaffolds were tested and shown to
have preserved ocular transparency, transmittance, and ECM
microstructures necessary for proper corneal function. The result
is a successfully decellularized corneal scaffold that maintains its
microscopic integrity (Ahearne et al., 2020a). The unique value
behind decellularized scaffolds is that they furnish an anatomical
environment equipped with suitable cues for cell proliferation,
differentiation, and organization (García-Gareta et al., 2020).
Comparable studies involving human tissues have also provided
evidence to support effective corneal decellularization/
recellularization (Polisetti et al., 2021).

Urine-derived cells (UCs) and their potential

One can argue that the ideal stem cells to repair corneal damage
are the limbal epithelial stem cells and corneal stromal stem cells
(Nurković et al., 2020). However, the limited availability, high costs,
and challenges with cell isolation probe us to find other alternatives.
In the past, biomaterials such as menstrual blood have been used to
isolate stem cells; hence, we considered a more available and
comparably radical biomaterial (Sanchez-Mata and Gonzalez-
Muñoz, 2021). Urine, a non-invasive and potentially unlimited
resource, contains several cells that can be reprogrammed to
induce pluripotency and potentially support differentiation into
cells of all three corneal germ layers (Jing et al., 2019).

Urine-derived cells primarily originate from the renal, bladder,
and urethral epithelial linings and collectively comprise various cell
types, including renal, blood, and immune cells. They also include an
adult form of stem cells, whose differentiation potential is generally
considered less than that of pluripotent stem cells (Sato et al., 2019).

UC isolation, characterization and utilization

From a clinical perspective, such samples can be obtained
from a prospective recipient to isolate the target cells. For this

FIGURE 3
Utilizing the dECM for corneal scaffolding. An extracted cornea undergoes decellularization to create a dECM model. The dECM can then be
repopulated with various patient-derived lineages to create a keratograft.
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process, samples can be collected from routine urination or using
a clean catch method to prevent the transmission of germs from
the genitals (Diviney and Jaswon, 2021). For this latter process, it
is advised to clean the genitals effectively, allow a small amount of
initial urine to flow into the toilet, and then stop the flow and
place the sterile collection tube to collect from the second stream
of urine. The sterilized containers should contain antibiotics to
inhibit bacterial growth (Burdeyron et al., 2020). The samples can
be centrifuged at room temperature. Afterward, the supernatant
can be aspirated and discarded to isolate the cell pellets. The
pellets can be gently responded with sterile PBS and centrifuged
again to remove loosely bound debris in the subsequent
supernatant. The final pellet can then be cultured for
downstream application, such as expansion, multi-/
pluripotency verification, and differentiation with collagen- or
gelatin-coated dishes/flasks, as extensively outlined in our
previous work (Corridon et al., 2025).

Notably, within 7–8 days, urine-derived cell colonies can be
formed in the plate (Lang et al., 2013). Once the UCs are
reprogrammed into IPSCs, presented in Figure 4, they must be
assessed for their pluripotency, which can be done using
immunostaining techniques for various biomarkers, including
crucial transcription factors like Sox2, Klf4, Nanog, Oct4, and
C-myc, as well as surface antigens such as SSEA3/-4, Tra-1-60,
and Tra-1-81 (Baghbaderani et al., 2016), as outlined in Figure 5.
After isolation and characterization, established differentiation
protocols can be applied to derive epithelial, stromal, and
endothelial lineages. These methods aligned with existing stem
cell and corneal regeneration literature protocols (Corridon et al.,
2025). Beyond this, colony expansion follows.

Corneal decellularization and
recellularization

Several approaches, as summarized in Table 1, have been defined
throughout the literature to generate dECM scaffolds (Wang et al.,
2023b; Procházková et al., 2024; Ahearne et al., 2020b; Fernández-
Pérez and Ahearne, 2020; Isidan et al., 2019; Murtaza et al., 2024).
These methods generally combine chemical and mechanical
treatments, whereby extracted corneas can be agitated in a given
agent, and swelling, a natural consequence of the decellularization
process, can be limited using osmotic agents (like dextrans and
glycerol) to preserve ultrastructural tissue properties. After which,
structural and functional assays, like histology and spectroscopy, can
be respectfully employed to gauge corneal structure and
optical function.

In comparison, for scaffold recellularization, various
additional aspects must be considered, including cell seeding
density, incubation periods, and compartment-specific reseeding
of epithelial, stromal, and endothelial layers. Various approaches
have been evaluated, and novel ones are being considered;
however, as we have previously postulated, we believe a
combination of approaches will be needed to support the
regeneration of dedicated epithelial and endothelial layers
while simultaneously facilitating sparse yet widespread cell

FIGURE 4
An overview of the UC extraction and reprogramming process.
(a) The urine sample that can be aspirated from the bladder is mixed
with antibiotics to sterilize the sample (b) then centrifuged to create a
cell pellet. (c) The cell pellet is resuspended and plated. (d) The
plates are incubated to culture urine-derived cells. (e) The urine-
derived cells can be infected with retrovirus-producing Sox2, Klf4,
Nanog, Oct4, and C-myc, reprograming the cells into (f) induced
pluripotent stem cells (Schmidt and Plath, 2012; Aguirre et al., 2023).

FIGURE 5
Generation of keratoplasty models from the dECM andUCs. After
collecting and initial cellular reprogramming, iPSCs are characterized
and cultured for further use. Various assays and tests are employed to
characterize and confirm the pluripotency of the iPSCs.
Simultaneously, corneas from either human or animal sources are
collected and decellularized to create the dECM. The dECM is then
tested for structural integrity and acellularity. The iPSCs are guided to
differentiate into epithelial, corneal, and stromal stem cells by
withdrawing pluripotency factors and adding signaling molecules and
culture conditions that mimic the developmental cues for the desired
cell lineages. Finally, the various compartments of the dECM are
seeded with their appropriate differentiated lineages. Once seeded,
the seeded dECM is ultimately tested to evaluate functional integrity
via assays, including optical clarity, light transmissivity, refractive
capacity, barrier function, and biocompatibility. The differentiated
corneal cells can then be used for corneal tissue engineering and
keratografting.
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populations in the stroma. Specifically, various cell plating- and
injection-based reseeding techniques can be applied to
reintroduce the various cell lineages into their respective
compartments. Chemotactic assays to gauge and support
cellular migration in regions like the stroma (Kabak et al.,
2020), and retraction methods within the endothelium and
epithelium to effectively control cell adhesion and localization
within the compartments (De Pieri et al., 2021). Interestingly, it is
also important to highlight the use of computational modeling to
guide and validate compartment-specific reseeding and
cell migration.

Evaluations of ocular function and
biomarker-based assessments

Tracking cellular differentiation using
biomarkers

To observe the transitions of iPSCs into the specific corneal cell
phenotype, we can track the cell-specific markers expressed by each
cell type. Corneal epithelial cell markers include cytokeratin 3 (K3),
cytokeratin 12 (k12), lumican, and aldehyde dehydrogenase
(ALDH) (Harkin et al., 2015; Hashmani et al., 2013; Català et al.,
2021). Corneal stromal cell markers include CD34, keratocans, and
lumican (Li et al., 2021). Finally, corneal endothelial cell markers
include N-cadherin, zona occludens-1, and Na/K-ATPase (Ju et al.,
2012; He et al., 2016; Thériault et al., 2018). These markers can be
identified through Western blotting or immunofluorescence.
Biomarkers can be used to test the structural integrity of the
graft and ensure that appropriate cells are being expressed in
their locations.

Assessing optical and structural properties
of the bioengineered cornea

The eye’s cornea has the unique property of being
transparent; we can measure light transmission to assess the
functionality of our transplanted stem cells. At a microscopic
scale, this characteristic is determined by the lack of scatter

caused by corneal cells or other structures that might induce
local alterations in the refractive index. On a nanoscopic level, it’s
characterized by the absence of pigments or blood vessels and by
the specific structure and arrangement of collagen fibrils within
the lamellae (Meek and Knupp, 2015; Corridon et al., 2006). We
can measure light transmission ex vivo and in vivo. The
keratografts post-decellularization (Pantic et al., 2023; Wang
et al., 2023b) and post-recellularization can be assessed for
transparency and optical transmittance (Polisetti et al., 2021).
These studies can provide insight into general ECM disruption
and specific collagen fiber disorganization. Fluorescent-based
microscopic evaluations and computational approaches can
provide insight into cellular migration, retraction, and fiber
orientation/alignment (Corridon et al., 2022; Shakeel and
Corridon, 2022; Zhang et al., 2023).

Challenges and future perspectives

After reseeding the dECM scaffold, the ideal result is a graft that
mimics the natural eye and nurtures a microenvironment
supporting long-term structure and function. However, a few
limitations exist with using a decellularized scaffold and IPSCs
for recellularization. Once the scaffold is seeded, it is hoped that
intrinsic bioactive factors retained within the ECM can direct cell
migration, proliferation, and differentiation. Although inducible
through factors and trackable through immunofluorescence, it
may be challenging to wholly control the migration and
differentiation of the IPSCs. Additionally, the integrity of the
ECM could be compromised via decellularization. However, the
structural and functional integrity of the scaffold can be monitored
and gauged through various well-known assays.

Moreover, the ECM scaffold must contain the correct tracts and
pathways to facilitate the migration of native cells, such as nerves or
immune cells, to reinnervate and populate our graft. A possible
complication of this would be excess angiogenesis in our graft. The
native cornea expresses certain factors that modulate and limit
vascularization. However, cells that populate our scaffold,
whether exogenous or native, risk expressing angiogenic factors
that will result in blood vessel growth in the cornea, ultimately
leading to reduced transparency.

TABLE 1 Summary of the corneal decellularization approaches. This table outlines commonly used classes of decellularization agents in corneal tissue
processing, providing representative examples, their functional roles, and practical considerations, particularly regarding extracellular matrix (ECM)
preservation and optical transparency.

Class of agent Type (examples) Role in corneal
decellularization

Outcome

Detergents Triton X-100, SDS, SDC, Tween-
20/80, CHAPS

Disrupt lipid membranes and lyse cells Non-ionic detergents (e.g., Triton X-100) preserve ECM; ionic
detergents (e.g., SDS) are harsher but more effective for nuclear
removal; and non-ionic zwitterionic detergents preserve ECM
and transparency

Enzymes and Chelators DNase I, RNase A, Trypsin,
EDTA, EGTA

Degrade nucleic acids and disrupt
cell–matrix or cell–cell adhesion

Often used after detergents to clean residual cell components;
chelators enhance enzymatic access

Osmotic Agents NaCl (hypertonic/hypotonic),
deionized water

Induce osmotic shock to rupture cells Used as pre-treatment, rinse, or in cycles with detergents

Chemical Disruptors
(Acids/Bases/Oxidizers)

Peracetic acid, HCl, acetic acid,
NH4OH, NaOH, H2O2

Additional lysis, sterilization, or nuclear
denaturation

Strong agents; use at low concentrations to avoid ECM and
transparency loss
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Conclusion

This approach relies on the dECM as a scaffold for xenografting,
which arguably provides one of the most suitable environments for
corneal regeneration. Likewise, with the bladders, the outline approach
builds on previous and source pluripotent-induced stem cells from the
urine to generate various cellular lineages to repopulate the three major
corneal regions: the epithelium, stroma, and endothelium. The
proposed pathway can potentially help develop patient-specific
approaches for disease modeling, drug discovery, and further
pathogenesis research while minimizing and valorizing agri-food waste.
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