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Background: In vivo confocal microscopy (IVCM) is a crucial imagingmodality for
assessing corneal diseases, yet distinguishing pathological features from normal
variations remains challenging due to the complex multi-layered corneal
structure. Existing anomaly detection methods often struggle to generalize
across diverse disease manifestations. To address these limitations, we
propose a Transformer-based unsupervised anomaly detection method for
IVCM images, capable of identifying corneal abnormalities without prior
knowledge of specific disease features.

Methods: Our method consists of three submodules: an EfficientNet network, a
Multi-Scale Feature Fusion Network, and a Transformer Network. A total of
7,063 IVCM images (95 eyes) were included for analysis. The model was
trained exclusively on normal IVCM images to capture and differentiate
structural variations across four distinct corneal layers: epithelium, sub-basal
nerve plexus, stroma, and endothelium. During inference, anomaly scores were
computed to distinguish pathological from normal images. The model’s
performance was evaluated on both internal and external datasets, and
comparative analyses were conducted against existing anomaly detection
methods, including generative adversarial networks (AnoGAN), generate to
detect anomaly model (G2D), and discriminatively trained reconstruction
anomaly embedding model (DRAEM). Additionally, explainable anomaly maps
were generated to enhance the interpretability of model decisions.

Results: The proposed method achieved an the areas under the receiver
operating characteristic curve of 0.933 on internal validation and 0.917 on an
external test dataset, outperforming AnoGAN, G2D, and DRAEM in both accuracy
and generalizability. The model effectively distinguished normal and pathological
images, demonstrating statistically significant differences in anomaly scores (p <
0.001). Furthermore, visualization results indicated that the detected anomalous
regions corresponded to morphological deviations, highlighting potential
imaging biomarkers for corneal diseases.
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Conclusion: This study presents an efficient and interpretable unsupervised
anomaly detection model for IVCM images, effectively identifying corneal
abnormalities without requiring labeled pathological samples. The proposed
method enhances screening efficiency, reduces annotation costs, and holds
great potential for scalable intelligent diagnosis of corneal diseases.

KEYWORDS

corneal disease screening, in vivo confocal microscopy (IVCM), unsupervised anomaly
detection, deep learning (DL), explainable artificial intelligence

1 Introduction

Corneal diseases are a leading cause of blindness worldwide,
affecting more than 12 million people (Wang et al., 2023; Wang
et al., 2014; Gain et al., 2016). These conditions arise from a variety
of causes, including infectious and non-infectious keratitis, corneal
degeneration, dystrophies, trauma, and other pathologies. If left
undiagnosed or untreated, they can lead to significant vision
impairment and irreversible blindness. Early detection is critical
to reduce the burden of these diseases, highlighting the urgent need
for the development of fast and reliable diagnostic methods in
clinical practice and public health.

In vivo confocal microscopy (IVCM) is a vital noninvasive
imaging modality for diagnosing corneal diseases, capable of
visualizing cellular components with a resolution of up to
1 micron (μm) (Chiang et al., 2023). For each eye, sequential
scanning of the corneal layers generates hundreds of images,
creating a substantial amount of data for analysis. While the
high-resolution visualization offered by IVCM is invaluable for
understanding the corneal microstructure in vivo, it also presents
challenges: the sheer volume of data demands sophisticated,
accurate, and efficient analytical methods. Manual analysis of
IVCM images is not only labor-intensive and time-consuming
but also requires a high level of expertise and is prone to
subjectivity. These limitations underscore the urgent need for
efficient and objective approaches to interpret the data.
Artificial intelligence (AI) has emerged as a promising tool to
address these challenges, offering potential solutions for
automating IVCM image analysis and enhancing both accuracy
and efficiency.

While AI shows great potential for automating IVCM image
analysis, its current applications struggle to address the diverse and
complex nature of corneal diseases. Existing models are often
constrained to recognizing specific disease types that they have
been trained on, rendering them ineffective when faced with
novel or untrained pathologies. This limitation significantly
undermines their clinical utility, especially in scenarios involving
rare or atypical diseases. Moreover, these shortcomings are
exacerbated by the reliance on large, annotated datasets for
training. The preparation of such datasets is not only labor-
intensive and time-consuming but also highly impractical for rare
conditions where sufficient data is inherently scarce. These issues
stem from the predominant use of supervised learning frameworks
(Lv et al., 2020; Xu et al., 2021; Tang et al., 2023; Tang et al., 2023; Xu
et al., 2021), which inherently depend on predefined categories and
extensive labeled data, limiting their adaptability and scalability in
real-world applications.

Given these challenges, there is a critical need for an efficient and
scalable approach to analyze the vast volume of IVCM data.
Unsupervised anomaly detection presents a promising solution
by learning the characteristics of normal images and identifying
deviations that indicate potential abnormalities (Bergmann et al.,
2021). Unlike supervised methods, this approach relies solely on
normal samples for training, thereby reducing the dependence on
extensive labeled datasets. More importantly, it enables the detection
of a significantly broader spectrum of abnormalities, including rare
and previously unseen conditions, effectively minimizing the risk of
missed diagnoses. By identifying deviations from normal patterns, it
not only addresses the heterogeneity of corneal pathologies but also
helps clinicians swiftly focus on key abnormal images within large
datasets. This capability simplifies data preparation, enhances
diagnostic efficiency, and expands the scope of detectable
conditions, making it a highly adaptable and scalable tool for
real-world applications in corneal disease diagnosis.

Despite the promising potential of unsupervised anomaly
detection, its application in ophthalmic imaging remains limited,
with most studies focusing on retinal imaging. For instance, Jebril
et al. (2024) utilized a deep learning-based anomaly detection model
to identify abnormal retinal perfusion in optical coherence
tomography angiography (OCTA). Luo et al. (2024) developed
multi-resolution auto-encoder models to detect unknown retinal
diseases using OCT and fundus images, while Ezhei et al. (2022)
employed a restricted Boltzmann machine to enhance and analyze
retinal OCT images for improved diagnosis. Among the few studies
addressing corneal imaging, Yousefi et al. (2018) applied an
unsupervised clustering algorithm to corneal OCT images,
successfully identifying and monitoring keratoconus stages.

However, research on unsupervised anomaly detection in
corneal in vivo confocal microscopy (IVCM) image analysis
remains largely unexplored. Unlike the above images, IVCM
images present unique challenges due to the structural
heterogeneity of the cornea. Each corneal layer—epithelium,
subepithelial nerve plexus, stroma, and endothelium—exhibits
distinct normal morphological characteristics (Cañadas et al.,
2022). This diversity within normal images complicates the
learning process for unsupervised models, which must effectively
capture the normal features of multiple classes to identify
abnormalities. Addressing these challenges is critical for
advancing the accuracy and applicability of anomaly detection in
IVCM images, highlighting the need for further research in
this domain.

In this study, we propose an innovative unsupervised anomaly
detection approach for IVCM images, leveraging transformer-based
architectures and image reconstruction techniques. Our method
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utilizes only normal datasets during training, addressing the
challenge of limited annotated data. We hypothesized that this
approach could effectively learn the distinctive characteristics of
multiple normal corneal layers within a unified framework, enabling
themodel to detect a broad spectrum of abnormalities across various
corneal layers and lesion types. To evaluate the performance of the
proposed model, we conducted experiments on datasets containing
diverse normal and pathological images and compared its
performance with state-of-the-art unsupervised anomaly
detection models, including anomaly detection with generative
adversarial networks (AnoGAN), generate to detect anomaly
model (G2D), and discriminatively trained reconstruction
anomaly embedding model (DRAEM). Subsequently, we
performed a quantitative analysis of anomaly scores and
generated explainable anomaly maps to visualize the anomalous
regions identified by the model. We present this article in
accordance with the STARD reporting checklist.

2 Materials and methods

2.1 Data preparation

2.1.1 Data sets
The data for this study were retrospectively collected.

Retrospective data, collected between January 2022 and June
2023, were used to construct the training and internal validation
sets. Prospective data, collected between January and July 2024, were
used to construct the external test set. All data were collected from
the Department of Ophthalmology at Guangxi Zhuang
Autonomous Region People’s Hospital.

The training set comprised only normal IVCM images, while the
validation and test sets included both normal and anomalous
images. For the anomaly detection task, the anomalous class,
defined as pathological images exhibiting deviations from the
normal corneal structure, was designated as the positive class,
while normal images were categorized as the negative class. The
inclusion criteria for normal samples were as follows: 1) no ocular
discomfort or visual symptoms; slit-lamp examination revealed no
corneal abnormalities, including negative fluorescein staining and
keratic precipitates; 2) no history of corneal disease, eyelid disorders,
glaucoma, or ocular inflammation; and 3) no history of ocular
trauma or surgery. The inclusion criteria for anomalous samples
required a confirmed diagnosis of corneal abnormalities, including
infectious or non-infectious keratitis, corneal degeneration, corneal
dystrophy, chemical injury, or corneal leukoma. Among them, cases
of infectious keratitis were supported by microbiological evidence,
including smears and/or cultures from corneal scrapings, as well as
metagenomic next-generation sequencing (mNGS) for pathogen
detection when clinically indicated. Images with poor quality
or unclear features were excluded to ensure clarity and
representativeness.

To avoid dataset contamination and artificially inflated
evaluation metrics, images were allocated by eye to ensure that
data from the same eye did not appear in multiple datasets. For
retrospective data, 85% of normal images were allocated to the
training set, and 15% to the internal validation set. All pathological
images from retrospective data were included in the internal

validation set, which was used for hyperparameter tuning. The
prospective data were designated as the external test set to assess
the model’s generalization capability, with the number of samples in
the external test set approximately matching that of the internal
validation set in a 1:1 ratio. Additionally, the external test set
included pathological image types that corresponded to those in
the internal validation set, ensuring a consistent representation of
lesion types across datasets.

All images were acquired using in vivo confocal microscopy
(HRT III/RCM, Heidelberg Engineering, Germany). The study was
conducted in accordance with the Declaration of Helsinki (as revised
in 2013). The study was approved by the Ethics Committee of the
People’s Hospital of Guangxi Zhuang Autonomous Region (No. KY-
KJT-2021–70) and the requirement for informed consent was
waived for this retrospective study.

2.1.2 Data annotation and preprocessing
In this study, all images were subjected to binary classification to

determine whether they belonged to the “anomalous” or “normal”
category. Each image was independently evaluated by two board-
certified ophthalmologists specializing in corneal diseases, each
with over 5 years of clinical experience and expertise in
interpreting corneal confocal microscopy images. Images with
conflicting assessments or unclear evaluations from different
specialists were excluded, while those with unanimous agreement
among the specialists were assigned a definitive ground-truth
classification label.

All identifying information was anonymized prior to analysis to
ensure patient confidentiality. The original grayscale IVCM images
were converted to RGB format by duplicating the single grayscale
channel across the three RGB channels, as the model requires input
in RGB format. All images were fed into the model at their original
resolution of 384 × 384 pixels, after removing peripheral borders and
overlaid text.

2.2 Transformer-based anomaly
detection model

2.2.1 Model structure
This study employs a transformer-based unified method for

multi-class anomaly detection. On one hand, the model is trained
using normal samples from multiple categories, enabling multi-
level analysis of the cornea. On the other hand, it detects various
types of diseases by identifying morphological deviations from
normality. The anomaly detection is based on a reconstruction
framework (Shi et al., 2021; You et al., 2022). For a query image,
the model performs reconstruction during the prediction
process and calculates the reconstruction error by comparing
the original image with its reconstructed counterpart.
Theoretically, a reconstruction model trained on normal
images should succeed in reconstructing normal images but
fail in abnormal images. Therefore, if the reconstruction error
exceeds a predefined threshold, the original image is
considered anomalous.

The model architecture, as illustrated in Figure 1, consists of
three sequential modules: a fixed EfficientNet-B3 network (Tan and
Le, 2019) pre-trained on ImageNet (Deng et al., 2009), a Multi-Scale
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Feature Fusion Network (MFFN), and a Transformer network
(Vaswani et al., 2017).

The Multi-Scale Feature Fusion Network (MFFN) consists of
four embedding layers and a fully connected subnetwork designed to
integrate multi-scale feature representations. Four input features are
processed through separate Embedding Layers (EL) to transform
them into a common-dimensional space. And then fed into a Fully
Connected Network (FCN) comprising three fully connected layers,
enabling hierarchical feature fusion and enhancing the model’s
ability to capture complex patterns in original input images.

The Transformer network consists of multiple Neighbor
Masked Encoders (NME) and Layer-wise Query Decoders (LQD)
(You et al., 2022). In this architecture, both NME and LQD are
repeated multiple times, and their interactions play a crucial role in
refining the feature representations throughout the reconstruction
process. The NME follows the standard architecture of a basic
Transformer encoder, where each layer consists of an attention
module and a Feed-Forward Network (FFN). In place of the
traditional attention mechanism, the Neighborhood Masked
Attention (NMA) is employed to prevent information leakage
between neighboring regions. This modification enhances the
model’s ability to focus on relevant features while maintaining
spatial integrity during feature encoding. To improve the model’s
expressive power, we use the LQD to strengthen the use of query
embeddings. In addition, the learnable position embeddings
(Kenton and Toutanova, 2019; Dosovitskiy et al., 2021) are
added in attention modules to inform the spatial information.

The computation flow begins with the EfficientNet-B3 network,
which is used for feature extraction from the input image. Features
are selected from stage-2 to stage-5, which capture a range of spatial
and semantic information at various scales. These extracted features
are then passed into the MFFN, where they are fused into a unified

feature map, denoted as forg. Subsequently, the feature map forg is
fed into the Transformer network. The NME processes this input
to generate encoder embeddings, which encapsulate the spatial
and contextual relationships of the image features. In each LQD,
the encoder embeddings are used as inputs along with the outputs
from the previous LQD layer (self-fusion for the first LQD layer).
This process iteratively refines the feature representations, and the
final output of the last LQD is treated as the reconstructed image
feature, denoted as frec. The reconstruction error between forg

and frec is then computed to assess the anomaly of the
input image.

2.2.2 Training and prediction
During training, only normal samples are used, and the objective

function is defined as the Mean Squared Error (MSE) loss between
the original feature map forg and the reconstructed feature map
frec. The loss is calculated as:

Loss � 1
H × W

f org − f rec
�����

�����22
where H and W are the dimensions of the feature map.

For prediction, the model processes new images by computing
the L2 norm of the pixel-wise differences between forg and frec,
then averaging these values across all pixels to obtain the
reconstruction error for the image:

S � avg f org − f rec
�����

�����2( )

A image is classified as anomalous when the reconstruction error
S for the given image exceeds a predefined threshold.

The key hyperparameters of the proposed method are
summarized in Table 1.

FIGURE 1
The Architecture of anomaly detectionmodel. El, Embedding Layers; FCN, Fully Connected Network; NME, Neighbor Masked Encoder; LQD, Layer-
wiseQuery Decoders. forg is a concatenated featuremap formed bymerging the extracted features along the channel dimension; frec is the reconstructed
image feature obtained from the final output of the last LQD.
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2.3 Baseline algorithms

The proposed method is compared with several state-of-the-art
baseline algorithms, including AnoGAN (Schlegl et al., 2017), G2D
(Pourreza et al., 2021), and DRAEM (Zavrtanik et al., 2021), all of
which follow a reconstruction-based anomaly detection approach.

AnoGAN consists of two main components: a generator and a
discriminator. The generator is a convolutional decoder that maps
random noise to normal images, utilizing a series of convolutional
layers, leaky rectified linear units (LeakyReLU) activations, and
batch normalization. The discriminator, which is a convolutional
neural network, distinguishes between real images from the training
set and the synthetic images generated by the generator. The model
is trained adversarially, where the generator tries to create images
that resemble normal samples, while the discriminator learns to
differentiate between real and generated images. The key advantage
of AnoGAN is its ability to successfully reconstruct normal images,
with the reconstruction error increasing when applied to anomalous
images, thus enabling anomaly detection.

G2D focuses on detecting irregularities by modeling the
diversity of anomalies. It proposes that irregular samples can be
viewed as deviations from regular instances in the training data.
G2D introduces three main modules: the Irregularity Generator
Network (I), Critic Network, and Detector Network (D). The
irregularity generator (I) is trained on normal samples and is
used to generate abnormal samples by introducing random
deviations from the normal data. These generated anomalies are
then used to optimize the parameters of the detector network (D),
which distinguishes between normal and anomalous samples using a
binary classification approach.

DRAEM integrates reconstructive and discriminative sub-
networks for anomaly detection. The reconstructive sub-network
focuses on detecting and reconstructing anomalies with
semantically plausible content, while preserving non-anomalous
regions. Simultaneously, the discriminative sub-network learns a
joint reconstruction-anomaly embedding, which produces anomaly
segmentation maps. DRAEM generates anomalous training examples
by simulating anomalies on anomaly-free images, simulating diverse
anomalous samples with pixel-perfect segmentation maps,
eliminating the need for real anomalous samples.

All models were developed in Python programming language
(Python Language Reference, version 3.7, Python Software
Foundation) by PyCharm software (PyCharm Community
Edition 2020.3.1, JetBrains). The training and testing were
performed on an NVIDIA Tesla T4 GPU.

2.4 Data analysis

2.4.1 Performance measurement
The performance of all four models was evaluated by plotting

receiver operating characteristic (ROC) curves, which illustrate the
relationship between the false positive rate (1-specificity) and the
true positive rate (sensitivity). The areas under the ROC curves
(AUCs) were calculated to assess the discriminatory power of each
model for both internal and external validation datasets. The AUCs
were statistically tested against the chance level (AUC = 0.5), with
significance defined as p-value <0.05. The 95% confidence intervals
(CIs) of the AUC values were reported for robust evaluation. Pair-
wise comparisons of ROC between the models were made by
MedCalc software according to the method proposed by DeLong
et al. (1988).

Further performance metrics, including accuracy, sensitivity
(recall), specificity, precision, and the Youden Index, were
calculated for all models based on their respective confusion
matrices. In this study, the optimal thresholds for each model
were determined by identifying the point at which the Youden
Index was maximized, thereby achieving a balance between
sensitivity and specificity.

2.4.2 Anomaly score analysis
The anomaly score generated by the model quantifies the extent

to which a test sample deviates from the normal class. For the
external validation dataset, the mean anomaly scores for the
anomalous class (positive class) and the normal class (negative
class) were calculated, and the 95% CI of the anomaly scores
were reported. A Mann-Whitney U test was conducted to
compare the anomaly scores between these two classes, given
that the scores did not follow a normal distribution. Statistical
analyses were conducted using SPSS (version 27.0, IBM Corp.,
Armonk, NY, USA), with a p-value <0.05 considered indicative
of statistical significance.

The raw anomaly scores ranged from 0 to 255. For more
intuitive interpretation, these scores were normalized to a range
of [0,1] using the following formula:

Normalized score � Smax − S
Smax − Smin

TABLE 1 The hyperparameters of Proposed Method.

Efficientnet_B3

Pretrained TRUE

MFCN†

Outstrides 16

Transformer

Number of hidden dimension 768

Number of attention head 8

Number of encoder layer 7

Number of decoder layer 7

Dropout 0.1

Activation relu

Optimizer AdamW

Learning rate 0.0001

Weight decay 0.001

Batch size 8

Criterion FeatureMSELoss

Size of neighbor mask [9,9]

MFCN, Multi-Scale Feature Concatenation N.
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Where S represents the raw anomaly score of one image, Smax

and Smin denote the maximum and minimum value of the raw
anomaly scores in the internal validation set, respectively. In this
study Smax is 70 and Smin is 5. To visualize the distribution of
normalized anomaly scores, a grouped scatter plot was created for
the external test dataset.

2.4.3 Explainable anomaly map
To enhance the interpretability of the anomaly detection model,

we visualize the reconstruction error to highlight regions identified as
anomalous. Specifically, a difference feature map fdif representing
pixel-wise reconstruction errors is first scaled to match the
dimensions of the original input image. Next, a heatmap based on
fdif is generated using a color gradient, where areas with higher
reconstruction errors are displayed in red, indicating potential
anomalies, and areas with lower errors are shown in blue,
representing normal regions. Finally, the heatmap is overlaid onto
the original input image, providing an intuitive visualization of the
specific regions where anomalies are detected. This approach offers an
accessible way to identify abnormal areas within the image.

3 Result

3.1 Clinical characteristics

A total of 9357 IVCM images were initially collected, comprising
7,049 images from healthy eyes and 2,308 images from pathological
eyes. After excluding 2,294 images, 7,063 images were included in
the study, consisting of 5,788 normal images from 69 healthy eyes
and 1,275 anomalous images from 26 pathological eyes. Figure 2
shows the workflow for dataset development. The included
pathological eyes represented the following conditions: infectious
keratitis (fungal keratitis: four eyes, bacterial keratitis: four eyes, viral
keratitis: four eyes, acanthamoeba keratitis: two eyes), non-
infectious keratitis (filamentary keratitis: two eyes), corneal
dystrophy (Fuchs endothelial dystrophy: two eyes), corneal
degeneration (keratoconus: two eyes), corneal chemical burns

(alkali burn: two eyes, acid burn: two eyes), and corneal leucoma
(2 eyes). The training set included 4,250 normal images from
51 healthy eyes, the internal validation set included 751 normal
images from nine healthy eyes and 638 anomalous images from
13 pathological eyes, and the external test set included 787 normal
images from nine healthy eyes and 637 anomalous images from
13 pathological eyes. The characteristics of the samples are
summarised in Table 2. No significant differences were found in
age and gender among the training, internal validation and external
testing sets (both p > 0.05).

3.2 Anomaly detection performance

The ROC curves and AUC values for the proposed Transformer-
basedmodel, DRAEM, G2D, andAnoGAN are shown in Figure 3. The
proposed model achieved the highest AUC values, with 0.933 (95% CI:
0.921–0.946, p < 0.001) for internal validation and 0.917 (95% CI:
0.902–0.931, p < 0.001) for external testing, demonstrating its superior
discriminatory performance compared to the baseline models. In both
validation stages, DRAEM followed as the second-best model, with
G2D andAnoGAN showing progressively lower AUC values. The 95%
confidence intervals (CIs) of the AUC values for the proposed model
did not overlap with those of the baseline models. Furthermore,
DeLong’s test revealed that all pairwise comparisons between the
proposed model and each baseline model yielded p-values <0.001,
indicating statistically significant differences in performance. These
results underscore the effectiveness of the proposed method in
distinguishing between normal and anomalous images,
outperforming all other models in terms of discriminatory power.

Performance metrics, including accuracy, sensitivity, specificity,
precision, and the Youden Index, are summarized in Table 3, with
confusion matrices displayed in Figure 4. The proposed method
outperformed all baseline models across all metrics, achieving an
accuracy of 0.869, a sensitivity (recall) of 0.846, a specificity of 0.887,
a precision of 0.858, and Youden Index value of 0.733. DRAEM
ranked second, followed by G2D and AnoGAN, consistent with the
trends observed in the AUC results.

FIGURE 2
The workflow of this study.
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3.3 Anomaly score analysis

For our proposed model, the mean anomaly score for the
anomalous class (positive class) in the external test dataset was
24.53 (95% CI: 24.27–24.80), while the mean score for the normal
class (negative class) was 20.08 (95% CI: 19.95–20.22). The
difference in mean anomaly scores between the two classes was
statistically significant (p < 0.001), indicating that our proposed
model effectively distinguished between normal and pathological
images based on anomaly scores.

The grouped scatter plot (Figure 5) illustrates the distribution of
normalized anomaly scores for the external test dataset. Samples
from the anomalous class exhibited higher normalized anomaly
scores compared to those from the normal class, with minimal
overlap between the two groups.

3.4 Explainable anomaly map

Explainable anomaly maps were generated for our proposed
model on the external test dataset to visualize the regions identified
as anomalous (Figure 6). The maps effectively highlighted areas with
structural deviations in images from diseased corneas, while

showing minimal activation in healthy samples. Across various
pathological conditions, the anomaly maps consistently outlined
regions corresponding to morphological abnormalities,
demonstrating our proposed model’s ability to localize potential
anomalies without prior knowledge of specific disease types.

4 Discussion

In this study, we developed a Transformer-based unsupervised
anomaly detection method for IVCM images, achieving an AUC of
0.933 during internal validation and 0.917 on an external test
dataset. Our model outperformed existing methods, such as
AnoGAN, G2D, and DRAEM, in terms of both performance and
generalizability. It effectively distinguished normal corneal images
from pathological ones, with statistically significant differences in
anomaly scores between the two classes. Additionally, we
incorporated visual interpretability to enhance understanding of
the model’s decision-making process, further demonstrating its
robustness.

A key innovation of this study is the development of a unified
anomaly detection model capable of addressing the challenges posed
by diverse disease manifestations. As an initial diagnostic step, our

TABLE 2 Characteristics of included samples.

Dataset

Characteristics

Training set Internal validation set External test set

n of image (n of eye) 4,250 (51) 1,389 (22) 1,424 (22)

Category, n of image (n of eye)

Normal 4,250 (51) 751 (9) 787 (9)

Abnormal — 638 (13) 637 (13)

Fungal keratitis — 123 (2) 128 (2)

Bacterial keratitis — 118 (2) 126 (2)

Viral keratitis — 130 (2) 119 (2)

Acanthamoeba keratitis — 51 (1) 44 (1)

Filamentary keratitis — 49 (1) 45 (1)

Fuchs endothelial dystrophy — 31 (1) 27 (1)

Keratoconus — 33 (1) 40 (1)

Alkali burn — 41 (1) 34 (1)

Acid burn — 36 (1) 44 (1)

Corneal leucoma — 26 (1) 30 (1)

Patient characteristics

Age, median (IQR) 31.0 (12.5) 43.5 (16.5) 46.5 (18.5)

Gender, n (%)

Male 27 (52.9) 12 (54.5) 10 (45.5)

Female 24 (47.1) 10 (45.5) 12 (54.5)

IQR, interquartile range.
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model efficiently identifies images with potential lesions from large
datasets, allowing ophthalmologists to prioritize high-risk patients.
Unlike traditional methods, it can identify a wide range of
diseases—including previously unseen types during
training—without requiring prior knowledge of their features,
thereby improving the efficiency of automated image analysis
while reducing computational overhead. This unified approach
reduces the need for separate models for each disease, mitigating
the risk of missed diagnoses and providing a scalable solution for
clinical applications.

Another distinctive feature of our study is the ability to train a
unified model to handle the morphological diversity within normal
samples. While transformer-based techniques have been explored
for anomaly detection in other imaging modalities such as OCT and
retinal images, our study tackles a significantly different challenge.
In OCT and retinal images, the normal class typically has a relatively
uniform morphology. However, in the case of IVCM images, the
normal class encompasses multiple subcategories with substantial
morphological variations. This complexity necessitates that the
model learns to discern the distinct features of these diverse
normal subcategories, thereby enabling it to effectively
distinguish abnormalities from the entire spectrum of normal

variations, rather than being confounded by the intra-class
variability among the normal subcategories.

Specifically, the cornea consists of the epithelium, Bowman’s
layer, stroma, Descemet’s membrane, and endothelium. Bowman’s
layer, characterized by the presence of a nerve plexus, was
categorized as the sub-basal nerve plexus layer in this study.
Descemet’s membrane, due to its scarcity and frequent overlap
with stromal or endothelial features, was integrated into these
categories to ensure robust learning. To accommodate this
diversity, we subdivided normal IVCM images into four
subclasses, enabling the model to learn and distinguish multiple
normal features simultaneously, thus overcoming the challenge of
multi-class normality representation.

As demonstrated in the results, the AnoGAN algorithm exhibits
the poorest performance, primarily due to its reliance on a relatively
shallow network architecture with only a few convolutional layers.
This architecture, while effective for simpler images, struggles to
extract complex features from IVCM images. The AUC values of
G2D and DRAEM are lower than those of the proposed method,
mainly because these models are designed to reconstruct normal
images with consistent features. However, IVCM images consist of
multiple distinct layers, which these models struggle to handle. As a

FIGURE 3
The Receiver operating characteristic (ROC) curves of four anomaly detection models in internal validation and external test. ROC, receiver
operating characteristic curve; AUC, the areas under the ROC curve; AnoGAN, generative adversarial networks; G2D, generate to detect anomalymodel;
DRAEM, discriminatively trained reconstruction anomaly embedding model.

TABLE 3 Performance of anomaly detection models in external validation.

Model AUC (95% CI) Accuracy Sensitivity (recall) Specificity Precision Youden Index

Proposed method 0.917 (0.902–0.931) 0.869 0.846 0.887 0.858 0.733

AnoGAN 0.706 (0.679–0.732) 0.647 0.700 0.604 0.588 0.304

G2D 0.848 (0.828–0.868) 0.782 0.865 0.714 0.710 0.579

DRAEM 0.880 (0.862–0.898) 0.799 0.827 0.776 0.750 0.604

AUC, The area under the ROC curve; CI, confidence intervals; AnoGAN:generative adversarial networks; G2D, generate to detect anomaly model; DRAEM, discriminatively trained

reconstruction anomaly embedding model.
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result, they tend to overfit to a specific layer (typically the layer with
the most data in the training set), which limits their ability to
generalize.

In contrast, the superior performance of the proposed method
can be attributed to its three-stage architecture, which not only
captures the multi-scale features of IVCM images but also uses the
transformer architecture for reconstruction. The fixed
EfficientNet-B3 network, pre-trained on ImageNet, serves as a
powerful feature extractor, leveraging its deep hierarchical
structure to capture both fine-grained and high-level
representations. Building upon these extracted features, the
Multi-Scale Feature Fusion Network (MFFN) aligns and
integrates multi-scale representations through separate
embedding layers and a fully connected network, ensuring that
diverse structural details from different spatial scales are
effectively combined. Furthermore, the Transformer network,
equipped with Neighbor Masked Encoders (NME) and Layer-
wise Query Decoders (LQD), progressively reconstructs the image

by refining feature representations at each stage. The use of
Neighborhood Masked Attention (NMA) is designed to prevent
the encoders and decoders from directly reconstructing the image,
thereby improving the model’s generalization ability and avoiding
overfitting to a specific layer of the IVCM image. This sequential
feature extraction, fusion, and reconstruction process allows the
model to fully exploit the structural complexity of IVCM images,
leading to improved anomaly detection performance.

Training exclusively on normal samples offers significant
practical advantages. By eliminating the need for abnormal
samples, this approach significantly simplifies data preparation
and circumvents the challenges associated with obtaining
sufficient annotated data for diseases. In real-world clinical
scenarios, disease samples are often scarce due to limited
availability and high annotation costs, particularly for rare
conditions. Training exclusively on normal samples not only
addresses these limitations but also ensures the model’s
applicability to a broad range of pathologies.

FIGURE 4
Confusion matrices of four anomaly detection models in external test. AnoGAN, generative adversarial networks; G2D, generate to detect anomaly
model; DRAEM, discriminatively trained reconstruction anomaly embedding model.

FIGURE 5
The grouped scatter plot of normalized anomaly scores for the external test dataset. Samples from the anomalous class exhibited higher normalized
anomaly scores compared to those from the normal class, with minimal overlap between the two groups.
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In this study, explainable anomaly maps were utilized
to visualize the regions identified as anomalous by the model,
providing critical insights into its decision-making process.
By highlighting areas of structural deviation in pathological
images, these maps often correspond to morphological

abnormalities, suggesting their potential as imaging
biomarkers for corneal diseases. This localized visualization
provides a foundation for understanding disease-specific
features while improving the model’s transparency and
clinical applicability.

FIGURE 6
Explainable anomaly maps for normal and abnormal corneal images. (A–D) Show the original images and their corresponding explainable anomaly
maps for healthy corneal layers, including the epithelium, subepithelial nerve plexus, stroma, and endothelium. (E–N) Display the original images and
explainable anomaly maps for various types of pathological corneal abnormalities.
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The limitations of this study warrant consideration. First, the
model was developed and validated using single-center data, which
may limit its ability to capture the variability in imaging conditions
and patient populations encountered in broader clinical settings.
Future studies incorporating multi-center data are warranted to
improve its generalizability. Second, while the model effectively
identifies anomalies, it does not classify specific abnormal findings.
This is consistent with its intended role as an initial screening tool in
the diagnostic workflow. By focusing on detecting deviations from
normal structures, the model enables rapid identification of potential
abnormalities, streamlining subsequent evaluations by clinicians or
specialized diagnostic models. Third, by analyzing the
misclassification cases, we found that false positives often involved
normal images with uncommon features such as thick stromal nerve
fibers or transitional zones between corneal layers with atypical
morphology. These clinically normal variations may fall outside the
learned distribution due to limited representation in the training set.
False negatives were typically early-stage anomalies with subtle
deviations resembling normal patterns, highlighting the model’s
limited sensitivity to minor pathological changes. Future
improvements will focus on expanding the diversity and
heterogeneity of normal training data to better capture the full
range of physiological variation. Finally, the visualization approach
identifies anomalies based on morphological deviations from normal
structures; however, these deviations may not always correspond to
clinically significant findings. Further research is needed to establish
the clinical relevance of the detected anomalies and enhance the
model’s ability to prioritize diagnostically meaningful abnormalities.

5 Conclusion

This study establishes a robust and interpretable unsupervised
anomaly detection method for IVCM images, effectively addressing
the complexity of corneal morphology. By training exclusively on
normal images, the model demonstrated high accuracy in detecting
various anomalies and reliably distinguishing pathological images
from normal ones. Its unified design enhances anomaly screening,
significantly improving diagnostic efficiency and offering broad
potential for clinical applications.
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