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Plantar pressure analysis is a pivotal tool for assessing foot function, diagnosing
deformities, and characterizing gait patterns. Traditional proportion-based
segmentation methods are often limited, particularly for atypical foot
structures and low-quality data. Although recent advances in machine
learning (ML) offer opportunities for automated and robust segmentation
across diverse datasets, existing models primarily rely on data from single
laboratories, limiting their applicability to multicenter datasets. Furthermore,
the prediction of relevant landmarks on the plantar pressure profile has not
been explored. This study addresses these gaps by exploring ML-based
approaches for anatomical zone segmentation and landmark detection in
plantar pressure analysis, including 758 plantar pressure samples from
460 individuals (197 females, 263 males) collected from multiple centers
during static and dynamic conditions using two distinct systems. The datasets
were further standardized and augmented. The plantar surface was segmented
into four regions (hallux, metatarsal area 1, metatarsal areas 2–5, and the heel)
using a U-Net model, and deep learning regression models predicted the key
points, such as interdigital space coordinates and the center of metatarsal area 1.
The results underscore the U-Net’s capacity to attain an accuracy comparable to
that of experts (Median Dice Scores ≥ 0.88), particularly in regions with well-
defined plantar pressure boundaries. Metatarsal area 1 exhibited unique
characteristics because of its ambiguous boundaries, with expert reviews
playing a valuable role in enhancing accuracy in critical cases. Using a
regression model (Median Euclidean distance = 7.72) or an ensemble model
(Median Euclidean distance = 5.26) did not improve calculating the center of
metatarsal area 1 directly from the segmentation model (Median Euclidean
distance = 4.47). Furthermore, regression-based approaches generated higher
errors in key point detection of the interdigital space 2–3 (Median Euclidean
distance = 10.06) than in metatarsal area 1 center (Median Euclidean distance =
7.72). These findings emphasize the robustness of the proposed segmentation
and key point prediction models across diverse datasets and hardware setups.
Overall, the proposed methods facilitate the efficient processing of large,
multicenter datasets across diverse hardware setups, significantly reducing the
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reliance on extensive human labeling, lowering costs, and minimizing subjective
bias through ML-driven standardization. Leveraging these strengths, this work
introduces a novel framework that integrates multicenter plantar pressure data
for both segmentation and landmark detection, offering practical value in clinical
and research settings by enabling standardized, automated analyses across varying
hardware configurations.

KEYWORDS

artificial intelligence, deep learning, image segmentation, zoning, intelligent systems,
biomechanics, U-net, hallux angle

1 Introduction

Foot deformities represent a common problem among the
different age groups and sexes in Western societies (Spahn et al.,
2004; Bogut et al., 2019; Chua et al., 2021) and can cause injuries to
the lower limbs or even back pain (Chuter and Janse de Jonge, 2012;
Michaud, 2012; Neal et al., 2014). Plantar pressure analysis plays a
crucial role in the evaluation, diagnosis, and characterization of gait
patterns in patients (Zulkifli and Loh, 2020) and provides valuable
insights into foot function. Widely used in clinical practice, it
measures the distribution of pressure across different areas of the
foot during various activities, such as standing, walking, and running
(Ramirez-Bautista et al., 2018). Numerous studies have emphasized
its importance, particularly in clinical settings, where plantar
pressure data aid in assessing conditions such as diabetic foot
ulcers (Fernando et al., 2016; Lockhart et al., 2024), foot
misalignments as in flatfoot (Han et al., 2011; Khan et al., 2023),
musculoskeletal disorders of the lower extremities, (Orlin and
McPoil, 2000; Detels et al., 2024), and diseases of the central
nervous centrum (Detels et al., 2024). Notably, pressure
measuring systems have been developed to enhance ergonomic
footwear design (Zulkifli and Loh, 2020).

Many tasks related to plantar pressure analysis rely heavily on
the segmentation (also called zoning) of pressure profiles into
specific areas of interest, such as the medial and lateral zones, to
compare pressure distributions (e.g., pronation vs. supination).
Comparative studies have demonstrated the diagnostic value of
these segmented areas, particularly in identifying abnormal
pressure patterns that may indicate underlying conditions
(Periyasamy et al., 2011; Periyasamy and Anand, 2013; Cimolin
et al., 2016). Segmentation approaches for plantar pressure data can
be broadly categorized into two groups: (a) proportion-based and (b)
data-driven approaches. Proportion-basedmethods (a) typically rely
on predefined regions determined by foot length and width ratios.
Various approaches can be found in the scientific literature
(Cavanagh and Rodgers, 1987; Nyska et al., 1995; Deschamps
et al., 2013; Wafai et al., 2015; Ramirez-Bautista et al., 2018). In
the context of clinical assessment of the foot, the arch index
proposed by Cavanagh and Rodgers (1987) is a widely used
objective method for classifying foot type (high, normal, or flat
arch), whereby the foot is divided into three parts, excluding the toes,
to determine the ratio of the midfoot area to the area of the entire
foot. Nyska et al. (1995) defined seven areas of interest (heel;
midfoot; lateral, intermediate, and medial forefoot; toes 2–5; and
the hallux), whereas Deschamps et al. (2013), Han et al. (2023) and
Wafai et al. (2015) chose 10 areas of interest (medial and lateral heel,

midfoot, each metatarsal, toes 2–5, hallux). Pauk et al. (2010)
followed by classifying into five areas (toes, metatarsal heads
(i.e., metatarsal areas), navicular bone, cuboid bone, and the
heel). Ramirez-Bautista et al. (2018) proposed dividing the foot
into 14 areas, marking every toe and metatarsal. These regions serve
as templates and are scaled to fit the individual foot dimensions.
Proportion-based approaches perform well when the data quality is
high and the foot structure is relatively standard. However, in cases
where the foot exhibits unique characteristics or the data quality is
compromised, the segmentation results often require manual
correction. This manual process is time-consuming, prone to
subjective error, and becomes impractical when dealing with the
large datasets generated by modern technologies, such as pressure
plates integrated into treadmills.

As an alternative, machine learning (ML)-based approaches
have emerged as potential solutions for plantar pressure
segmentation. These methods excel in handling lower-quality
data and nonstandard foot structures. Although several studies
have demonstrated the potential of ML in this field, a significant
research gap remains. To the best of our knowledge, only three
studies have used deep learning techniques for automated foot
segmentation into anatomically relevant zones (Wang et al.,
2019; Wang et al., 2020; Han et al., 2021). A fully convolutional
network was adopted byWang et al. (2019) to extract vital regions of
interest. Their model demonstrated superior performance compared
to other algorithms, achieving a low error in regions of interest
relative to expert ratings while also outperforming in terms of
computational efficiency. However, the authors reported that they
used data from 10 subjects with standardized measurements from
only one laboratory. In addition, Wang et al. (2020) used a fully
convolutional network to segment the plantar pressure images into
anatomical structures, concluding that their research has high
potential for future studies by showing good segmentation results
using data from 60 subjects from a single laboratory. Finally, Han
et al. (2021) used ML-segmentation to predict functional foot zones
with high accuracy using a deep self-organizing map neural network.
Collectively, these studies highlight both the high potential and
critical need for continued research in this domain. In summary, the
literature has shown that in general:

(i) Developing an ML segmentation model is possible. However,
previous studies have thus far only focused on relatively few
data samples from the same data source, laboratory, and
measurement system although variations in hardware
setups can lead to differences in the resolution of plantar
pressure profiles. To the best of our knowledge, no analysis has
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been conducted on whether ML-based segmentation models
for plantar pressure data are sufficiently robust to handle these
variations, which is an important factor for multicenter data
collection and application while also a critical requirement for
making ML effective in biomechanics (Halilaj et al., 2018).

(ii) Although plantar pressure data have been used to distinguish
between normal and abnormal hallux angles (Wu et al., 2020;
Rozaqi et al., 2023), estimating the hallux angle using ML is
underexplored. In this context, a significant gap in the
literature exists on research in detecting the center of
metatarsal area 1 although identifying this anatomical
landmark can aid in diagnosing conditions such as hallux
valgus by providing a more precise calculation of the hallux
angle from the base. Mask-based segmentation is a common
approach used in image-based ML research (Yu et al., 2023),
and key point prediction techniques have also been applied
in other contexts to identify specific coordinates (Khaki et al.,
2020). In metatarsal area 1 center prediction, it is yet to be
determined whether calculating from segmentation masks or
directly predicting key coordinates such as estimating the
hallux angle produces more accurate results.

(iii) Another issue lies in the calculation of the foot angle or the
separation of the foot into lateral and medial zones based on
anatomical landmarks rather than simple proportional
divisions. Ardhianto et al. (2022) investigated the foot
progression angle (FPA), defined as the angle formed
between the direction of walking and the longitudinal axis
of the foot, to indicate the orientation of the longitudinal axis
of the foot during walking. Other studies, such as that by
Chae et al. (2020), defined the foot rotation angle as the inner
line connecting the outermost points of the foot. However,
from an anatomical perspective, the longitudinal line
through the foot, defined as the line between the heel base
and second and third metatarsals, is commonly used and
provides a more anatomically accurate representation of foot
rotation (Ludwig, 2022). This approach avoids the influence
of the first metatarsal and offers a more precise reflection of
the anatomical axis. Consequently, this method can serve as a
more anatomically justified separation line for defining the
medial and lateral foot zones.

However, manual identification of landmarks in plantar
pressure data by experts remains challenging, as toes are not
always fully visible in plantar pressure data for drawing the
described line. To the best of our knowledge, the potential of ML
in this context has not yet been extensively explored. Because of the
difficulty in visually pinpointing exact landmark locations, it is
unclear whether predicting a shifted point along the line from
the interdigital space to the heel center is more effective than
directly predicting the interdigital space itself. This approach
could leverage the better-defined characteristics of the pressure
distribution because a shifted point may be more reliably
associated with the data than less visible features, such as poorly
defined toes or indistinct landmarks.

To address these research gaps, the current study aims to
investigate the effectiveness of ML-based approaches for plantar
pressure segmentation, specifically focusing on the following
research questions:

(i) Can ML-based models achieve expert-level accuracy in foot
segmentation into hallux, metatarsal area 1, metatarsal areas
2–5, and the heel based on multicenter data sources from
different hardware configurations?

(ii) Does mask-based segmentation offer more accurate results in
determining the center of metatarsal area 1 than key point
prediction or an ensemble approach that calculates the mean
of both methods?

(iii) Regarding the identification of landmarks for drawing an
anatomical medial-lateral separation line, is predicting the
shifted position of the interdigital space of the second and
third toes more accurate than predicting a point directly
within the interdigital space between the second and
third toes?

2 Materials and methods

2.1 Workflow overview

The workflow of this study is illustrated in Figure 1, which also
provides a visual overview of the segmentation regions and
predicted key points. Two distinct modeling approaches were
used to address these research questions. The input data for all
models consisted of preprocessed plantar pressure distribution
maps. All models were trained in a supervised manner using
plantar pressure data labeled by multiple experts (see Section 2.3).

The segmentation task employed a U-Net model to answer
research question (i), by segmenting the plantar surface into four
regions: the hallux, metatarsal area 1, metatarsal areas 2–5, and the
heel. For the regression tasks that addressed research questions (ii)
and (iii), three individually trained MLmodels were used (Models 1,
2, and 3). These models predicted the location of the interdigital
space between toes 2 and 3 along with its shifted position and the
center of metatarsal area 1 as the key points. Additionally, the center
of metatarsal area 1, derived from the predicted segmentation of the
U-Net model (illustrated by a horizontal arrow in Figure 1), was
compared with the regression-based prediction of the same key
point. Detailed descriptions of these regions and their key
characteristics are provided in Table 1.

All predictions were evaluated against expert-labeled data,
which served as the ground truth for this study.

2.2 Subjects and data

Only individuals of legal age were eligible to participate. The
participants were informed of the study procedures and applicable
data protection regulations, after which they provided informed
consent. The study adhered to the principles outlined in the
Declaration of Helsinki and was approved by the institutional
ethics committees. Data collection was performed at multiple
centers using two different measurement systems: RSscan
resistive pressure sensor plates (RSscan Lab Ltd., Ipswich,
England) and fused deposition modeling (FDM) capacitive
pressure sensor plate (Zebris Medical GmbH, Isny, Germany).
The plantar pressure data for the left and right feet of each
participant were recorded. The measurements were conducted
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barefoot with instructions to ensure compliance. Recordings were
conducted under both static (53%) and dynamic conditions (47%).
For static trials, participants stood barefoot in an upright position on
the pressure platform for 10 s (sampling rate: 50 Hz). After a 60 s

habituation period on a treadmill, dynamic trials comprised three
overground walking passes at each participant’s self-selected speed
(sampling rate: 100 Hz). For the dynamic recordings, a summarized
plantar pressure profile was created using data from a valid stride

FIGURE 1
Workflow overview of the study. The segmentation areas and regression key points are listed and described in more detail in Table 1.
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and peak pressure values, as commonly reported in the literature
(Arzehgar et al., 2025). All plantar pressure profiles were aligned
along the long axis, with toes oriented at the top and heel at the
bottom of the image. Duplicate or erroneous entries were identified
and removed prior to analysis. Outliers caused by factors such as
wearing shoes or measurement errors were manually reviewed by an
expert who determined their inclusion or exclusion. This resulted in
a final dataset of 758 plantar pressure foot samples from
460 participants (197 females, 263 males). We limited data
collection to essential variables to align with the study’s focus on
model development and evaluation rather than biomechanical
subject characterization or exploration. Therefore, additional
anthropometric or descriptive participant data were not collected,
to minimize data and ensure participant privacy. This approach
ensured compliance with the principle of data minimization [GDPR
Art. 5 (1) (c)] (European Union, 2016), which stipulates that
personal data must be “adequate, relevant, and limited to what is
necessary” for the intended processing purposes.

2.3 Data labeling

Raw plantar pressure data, originally available at various
resolutions from different hardware setups, were standardized for
visual labeling through a series of preprocessing steps. First, the data
were uniformly upsampled via bilinear interpolation to ensure a
consistent base resolution. To preserve the original proportions of
the foot pressure distribution, each pressure map was resized while
maintaining its original aspect ratio. This was achieved by scaling
both height and width proportionally to fit within a target resolution

of 300 × 100 pixels. Following this aspect ratio–preserving
upsampling, the resized maps were symmetrically padded with
zero values to reach a final standardized size of 310 × 110 pixels.
The additional padding was intentionally added to provide a narrow
margin of empty space around the pressure areas, which facilitated
more comfortable and precise annotation in the labeling software.
The choice of the resolution was informed by a preliminary
evaluation in the labeling software tool, where three clinical
experts—each with multiple years of experience in plantar
pressure analysis—were presented with several upsampled pixel
sizes. All three experts independently selected the selected
resolution as the most suitable for accurate and consistent
data labeling.

To enhance the visual interpretability of the pressure maps, a
smoothing operation was implicitly incorporated during
upsampling to reduce artifacts and improve clarity. Additionally,
a custom color map was applied to the processed data. This
colormap was derived from matplotlib’s “jet” colormap (Hunter,
2007) and modified to display minimum values (zero pressure
regions) in white, to enhance the contrast between regions of no
activity and areas of varying pressure intensity. This representation
aligns with the established practices in plantar pressure analysis
(Kirtley, 2006) and facilitates interpretation for domain experts
familiar with similar visualizations.

The processed data were then exported as high-resolution
images in portable network graphics (PNG) format.
Visualizations excluded axes and color bars to reduce
distractions, emphasizing the spatial patterns in pressure data.
These standardized, high-quality visualizations were then
randomly assigned to three experts, who performed the labeling

TABLE 1 Description of the segmentation areas and regression key points of the current prediction study. In case of no other references for the directly
labeled regions, we referred to the regions shown in Bennetts et al. (2013), Han et al. (2023) and Wang et al. (2020).

Type of
determination

Type Target name Description

Directly labeled Segmentation
Mask

Hallux The hallux refers to the big toe, the first and largest toe

Segmentation
Mask

Heel The heel is the rear part of the foot, primarily made up of the calcaneus bone

Segmentation
Mask

Metatarsal Areas 1–5 This region includes the metatarsals for the second through fifth toe, spanning across
the midfoot. An isolated analysis of metatarsals (except metatarsal area 1) was not
conducted because of the low separation accuracy between the individual metatarsals
from plantar pressure images

Segmentation
Mask

Metatarsal Area 1 This area encompasses the first metatarsal bone, which is located at the base of the
hallux

Coordinates Interdigital Space 2–3 This refers to the area between the second and third toes, where soft tissue and small
spaces exist between the metatarsal bones. The middle of the second toe was used as the
height reference to overcome differences in foot forms (Waldt and Wörtler, 2014)

Determined based on labeling Coordinates Key Point Center Metatarsal
Area 1

This point is calculated using the center of the labeled hallux segment. The center is
determined by computing the median of the x- and y-coordinates of the pixels within
the hallux region to ensure robust center estimation, even in the presence of irregular
shapes

Coordinates Key Point Shifted Interdigital
Space 2–3

The coordinates for this point are derived by using the original labeled point of the
interdigital space 2–3 and the labeled heel segment (Waldt andWörtler, 2014). First, the
center of the heel segment is calculated similar to the center of metatarsal area 1. A line is
then drawn from the interdigital space 2–3 to the heel center. The point along this line
that corresponds to the highest possible location within the metatarsal area (covering
metatarsals 1–5) is selected as the shifted coordinate

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Dindorf et al. 10.3389/fbioe.2025.1579072

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1579072


using the open-source Python tool Labelme (Wada, 2018). During
this process, the labels described in Section 2.1 were identified. The
labels were then reviewed by another expert, with particular
attention paid to labels that potentially contained human errors
in placement. These samples were re-evaluated and necessary
adjustments were made through a collaborative dialogue
involving at least two experts. After labeling, the center of
metatarsal area 1 and shifted interdigital space 2–3 were
determined based on the procedure described in Section 2.1.

To address potential uncertainties arising from human labeling
variability, an exploratory analysis of inter-rater reliability was
performed on a randomly selected subset of 30 plantar pressure
samples. As described in Section 2.7, three independent raters—each
with several years of experience in plantar pressure
analysis—manually annotated the subset. For comparability, the
manually annotated data were subsequently resized to match the
input shape used in the modeling pipeline (see Section 2.4). Inter-
rater reliability was quantified using the same evaluation metrics
(Intersection over Union, Dice coefficient, Euclidean distance)
employed for assessing model performance (see Section 2.7). For
each image, pairwise comparisons between raters were aggregated
by calculating the mean.

This methodological choice was motivated by the limitations of
traditional agreement metrics such as Fleiss’ Kappa, which are
primarily designed for categorical data and are known to be
sensitive to class imbalance. In image segmentation tasks, especially
those involvingmasks with large background areas, such sensitivity can
distort the assessment of agreement. In contrast, overlap-based metrics
are more appropriate for evaluating segmentation reliability, as they are
less affected by the predominance of background pixels and better
reflect the spatial congruence of annotated regions (Taha andHanbury,
2015). Moreover, applying the same evaluation metrics to both human
annotations andmodel outputs facilitates direct comparison, providing
a more interpretable benchmark of model performance relative to
expert human raters.

2.4 Data preprocessing

To train the ML models, the raw plantar pressure maps (note
that this refers to the unprocessed data, not the preprocessed data
used for labeling) were normalized using min-max scaling to a range
between [0, 1]. This normalization preserved the relative intensity
variations in the pressure data while ensuring uniform scaling across
samples. The normalized pressure maps were then resized to 256 ×
256 pixels using bilinear interpolation for the images and nearest-
neighbor interpolation for the segmentation masks created via
labeling. To determine whether 256 × 256, which is commonly
use as input size for U-Nets (Nazeri et al., 2018; Li, 2024), we
compared it to two alternative resolutions: 128 × 128 and 512 × 512.
Training at 128 × 128 reduced epoch time by approximately 30%,
but resulted in a 10% drop in validation set segmentation
performance, based on the median Dice score (see Section 2.7).
In contrast, using 512 × 512 increased computational cost by over
100%, while still causing a 4% decrease in the median Dice score.
Therefore, 256 × 256 was selected for all subsequent experiments.
The coordinates of the key points obtained during labeling were
further rescaled to the resized pressure maps. Both the pressure

maps and segmentation masks were preprocessed using OpenCV
(Bradski G., 2000).

Segmentation masks were processed using one-hot encoding,
and categorical representations were converted into a binary format
along separate channels. This resulted in a final target feature set
with dimensions of n × 256 × 256 × 4, where n is the number of
samples, 256 × 256 is the spatial resolution, and the four channels
correspond to the segmented areas of interest.

2.5 Segmentation model

Among segmentation models, the U-Net architecture has
emerged as one of the most widely used and effective
approaches. The U-Net model is a convolutional neural network
designed specifically for image segmentation. It comprises two main
parts: contracting (downsampling) and expansive (upsampling).
The contracting path captures context by applying successive
convolutional layers and pooling operations to reduce the spatial
dimensions while increasing the number of feature channels,
thereby effectively extracting high-level features from the input
image. The expansive path reconstructs the output segmentation
map by upsampling the feature maps and concatenating them with
the corresponding feature maps from the contracting path. This skip
connection helps retain the spatial information lost during
downsampling. The final output is a pixel-wise classification map
that allows the precise delineation of target objects within the input
image (Ronneberger et al., 2015).

Studies have demonstrated the effectiveness of the U-Net model
in outperforming traditional segmentation methods in various
medical fields, including tumor detection, organ segmentation,
and orthopedic assessments (Jain et al., 2021; Ghulam et al.,
2023; Kasliwal et al., 2024; Tiribilli and Bocchi, 2024). The U-Net
architecture is particularly effective for tasks with limited training
data because of its ability to simultaneously learn from context and
spatial information (Ronneberger et al., 2015; Azad et al., 2022).
U-Net models have been successfully applied in the domain of ML-
based plantar pressure segmentation (Bai et al., 2021). While
alternative architectures such as Mask R-CNN (He et al., 2017)
and Vision Transformers adapted for segmentation (e.g.,
Hatamizadeh et al., 2022) have shown promise, their reliance on
large-scale datasets for optimal performance (Al-Hammuri et al.,
2023) renders them less suitable for this study. In contrast, the
U-Net architecture excels in scenarios with limited data, leveraging
its unique design to preserve intricate anatomical features (Isensee
et al., 2021). Considering these advantages, the U-Net architecture
was selected as the foundation for this study.

Data augmentation was applied during the training of the U-Net
model to increase data diversity, help the model learn more robust
features, and improve its accuracy on unseen data. The transformations
simulate real-world variations to improve the generalizability of the
model. The augmentation pipeline used the Keras ImageDataGenerator
package (Chollet, 2015), applying the following transformations to both
the images and corresponding masks:

• Rotation: Random rotations within a range of 20°.
• Zoom: Random zoom within a range of 10%.
• Shift: Random width and height shifts within a range of 10%.
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• Flip: Horizontal flipping of the images and masks.
• Shear: Random shear within a range of 5°.
• Fill mode: Set to ‘nearest’ to avoid zero-filling when
transforming the images and masks.

The model architecture and hyperparameter tuning were
manually optimized based on validation Mean Intersection over
Union (MIoU) (threshold = 0.5; see Section 2.7) across the target
masks. Hyperparameter search was done with 3 × 3 kernels with
various filter depths (16–256), and three to five encoder–decoder
stages. Dropout rates ranging from 0.3 to 0.6 were evaluated at
various positions, including the option of applying no dropout. We
also compared different loss functions (e.g., binary cross-entropy vs.
Dice loss) and initial learning rates (1e-2 to 1e-5). Parameter ranges
were informed by established biomedical U-Net designs
(Ronneberger et al., 2015; Isensee et al., 2021; Azad et al., 2022;
Ghulam et al., 2023). Manual tuning was preferred over automated
searches, as domain expertise allowed for targeted exploration of
promising configurations and early exclusion of suboptimal ones.
The resulting model configuration is shown in Figure 2. The final
model was compiled using the adaptive moment estimation (Adam)
optimizer with an initial learning rate of 0.0001 and a binary cross-
entropy loss function as the segmentation task involving multiple
classes with overlapping regions (between metatarsal area 1 and
metatarsal areas 1–5).

Training was conducted in epochs, each consisting of
150 steps, with plantar pressure data and corresponding masks
loaded in batches of size 16. To enhance the training efficiency, an
adaptive learning rate strategy was implemented such that if the
validation performance did not improve for five consecutive
epochs, the learning rate was reduced by a factor of 0.5. Early
stopping was also employed to mitigate overfitting and halt
training if the validation metric failed to improve after five
epochs. During the training, the segmentation quality was
assessed using MIoU across the four classes (threshold = 0.5;
see Section 2.7).

2.6 Regression models

The effectiveness of regression-based approaches for tasks
involving spatial predictions such as coordinate points has been
previously presented (Jiang, 2019). In this study, a hybrid model
that combines a pretrained U-Net for segmentation with a regression
head for 2D spatial coordinate prediction is proposed. By utilizing the
latent features from the pretrained U-Net model, this architecture
integrates U-Net’s robust feature extraction capabilities with a
lightweight, trainable regression head specifically optimized for
accurate coordinate prediction.

The U-Net was loaded with frozen weights to retain its feature
extraction capability without further updates during training. For the
regression model, a manual hyperparameter search (e.g., variations in
learning rates, dropout rates, batch sizes, number of dense units, and
presence or absence of residual connections)—similar to the procedure
used for the U-Net model—was conducted based on the average
validation Euclidean distance of the predicted coordinate points
across the three tasks. The details of the regression head are as follows:

• Latent Feature Processing:
o Conv2D Layer 1: 3 × 33, 128 filters, ReLU activation,

same padding
o Batch Normalization Layer: Applied after Conv2D Layer 1
o Dropout Layer: Dropout probability = 0.2
o Conv2D Layer 2: 3 × 33, 64 filters, ReLU activation,

same padding
o Batch Normalization Layer: Applied after Conv2D Layer 2

• Dimensionality Reduction:
o Global Average Pooling Layer: Reduces spatial dimensions
into a compact feature vector

• Feature Refinement with Residual Block:
o Dense Layer 1: 128 units, ReLU activation
o Batch Normalization Layer: Applied after Dense Layer 1

• Residual Block:
o Dense Layer 2: 128 units, ReLU activation

FIGURE 2
U-Net model used in the current study. The architecture consists of an encoder and decoder with skip connections. Each convolutional layer uses a
3 × 3 kernel, followed by batch normalization and LeakyReLU activation. The encoder progressively downsamples the input image through Conv2D and
MaxPooling2D layers, while the decoder upsamples the featuremaps using UpSampling2D and concatenates the corresponding encoder layers. Dropout
is applied in the bottleneck layer to prevent overfitting. The final output layer has four channels with a sigmoid activation function.
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o Batch Normalization Layer: Applied after Dense Layer 2
o Dense Layer 3: 128 units
o Add Layer (Shortcut): Combines input to the residual block
with an output of Dense Layer 3

• Output Layer:
oDense Layer: Two units (linear activation) predict the x- and
y-coordinates.

The model was compiled using the Adam optimizer (initial
learning rate: 0.001) and Huber loss. The Huber loss was selected
because it is robust to outliers (Terven et al., 2023) arising from
human errors during labeling. Such errors are expected to some
extent, given the challenges that human experts face in accurately
and visually identifying key points of interest. The training was
enhanced using callbacks, including learning rate adjustment
(reducing learning rate by half after five epochs without
improvement), model checkpointing (the best model saved based
on validation performance), and early stopping (training stopped
after eight epochs of no improvement, restoring best weights). The
Euclidean distance was computed as a validation metric.

To ensure a fair performance comparison and attribute the
differences in model performance to the task itself, model
hyperparameters were standardized across the three models to
predict the key points of the center metatarsal area 1, interdigital
space 2–3, and adjusted interdigital space 2–3. Notably, while the
hyperparameters remained consistent, a separate model was trained
for each target.

2.7 Evaluation

To ensure a robust model evaluation, a grouped k-fold cross-
validation strategy was employed with five splits. This method
accounts for participant-based grouping, where each participant
contributes multiple data samples (e.g., dynamic and static
conditions, as well as left- and right-foot data). The grouped
k-fold ensured that the data included were not from a single
participant in either the training or test sets, minimizing the
risk of overfitting to participant-specific characteristics. For
each fold, the dataset was partitioned into approximately 70%
training, 10% validation, and 20% testing data, preserving group
information across the splits.

For the segmentation task, the Intersection over Union (IoU)
and Dice coefficient (Dice score) were calculated for each
segmented area after applying a threshold of 0.5 to minimize
unintended mask areas in the U-Net outputs. The IoU
measures the overlap between the predicted and ground-truth
segmentation masks and is calculated by dividing the intersection
of the predicted and true regions by their union. The IoU ranges
from 0 to 1, where 0 indicates no overlap and 1 indicates perfect
overlap. This metric is particularly useful for evaluating
segmentation performance when dealing with imbalanced
classes (Rahman and Wang, 2016). The Dice coefficient is
another metric that is used to evaluate the overlap between two
binary sets. Similar to the IoU, it is generally more sensitive to
small differences between the predicted and ground-truth regions.
The Dice score ranges from 0 to 1, where 1 represents perfect
agreement and 0 indicates no overlap (Bertels et al., 2019).

To predict the x and y coordinates of key points, the Euclidean
distance was computed. Because the images have a consistent scale,
the Euclidean distance provides a meaningful and reliable measure
of prediction accuracy without the need for normalization.
Evaluation metrics are reported as the median with median
absolute deviation (MAD) across the cross-validation folds as
the median and MAD are less influenced by outliers and
skewed data distributions. Additionally, a bootstrap 95%
confidence interval (CI) of the median is calculated based on
1,000 samples.

3 Results

3.1 General foot segmentation results

The results of the U-Net model evaluation of the cross-
validation procedure indicate strong alignment between the
expert-based and U-Net-generated segmentations (Table 2). The
highest overlap, as measured by both IoU and Dice score, is observed
in the Heel segment, followed by the Metatarsal areas 1-5 and the
Hallux. The lowest overlap is noted in Metatarsal area 1.

The U-Net-based segmentation for a single participant’s foot
shown in Figure 3 includes thresholding. The results demonstrate
that applying a threshold of 0.5 minimizes unintended mask areas in
the U-Net outputs. Additional examples are shown in Figure 4,
where excellent alignment between expert-based and predicted
segmentation is observed.

3.2 Key point prediction task

The results of the key point-prediction tasks are presented in
Table 3. Using the segmentation mask of metatarsal area 1 generated
by the developed U-Net models yielded higher spatial accuracy than
directly predicting the coordinates with the regression model or
ensemble predictions.

Regarding the prediction of a reference point for anatomical foot
separation into lateral and medial sections, shifting the key point
location of the interdigital space 2–3 led to an improvement in
spatial accuracy compared to directly predicting the coordinates of
the interdigital space 2–3. Therefore, the spatial accuracy of the
shifted interdigital space prediction was lower than that of the
metatarsal area 1 center prediction. Example predictions of the
key points are compared with the ground truth in Figure 4. When
focusing on the best-performing approaches (center metatarsal area
1 via segmentation and shifted interdigital space 2–3), both the
median spatial error and error deviation were higher for the shifted
interdigital space 2–3. The distribution of errors derived from all test
samples is shown in Figure 5 to facilitate a visual comparison of the
errors in relation to foot size.

3.3 Exploratory analysis of inter-rater
reliability

Figure 6 illustrates examples of spatial agreement among the
three human raters. Quantitative metrics describing overlap for each
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anatomic segment are summarized in Table 4. For the interdigital
space 2–3, the Euclidean distance between corresponding landmark
coordinates yielded a median of 13.69 (95% CI: 12.51–17.37) with a
MAD of 3.63.

4 Discussion

The segmentation models demonstrated high alignment
between expert-based and U-Net-generated segmentation. Among
the segmented areas, the overlap between expert and ML-based
segmentation areas was the highest for the heel, followed by
metatarsal areas 1–5, the hallux, and metatarsal area 1. These
findings indicate that ML-based models, particularly U-Net
architectures, can achieve near-expert-level accuracy in foot
segmentation, particularly in the heel, metatarsal areas 1–5,
and hallux.

The overlap between the predicted and expert-labeled areas was
the lowest for metatarsal area 1. A likely explanation is that U-Net

models excel at segmenting areas with clear, visually separable borders
but perform less effectively in regions defined primarily by relative
positions without distinct boundaries (Kumar et al., 2024; Xu et al.,
2025). Metatarsal area 1, which is less distinct in terms of plantar
pressure, exemplifies this limitation. The experts noted thatmetatarsal
area 1 was the most difficult to segment, suggesting that this area may
exhibit inherently higher variability and subjectivity—both for human
annotators and ML models. The level of accuracy required from such
models is highly dependent on the intended application: for
exploratory, data-driven research, the current segmentation
performance may be sufficient and justifiable—especially when the
goal is to efficiently analyze large datasets. In contrast, clinical
scenarios such as diagnostics or surgical planning demand more
precise and interpretable outputs. In these cases, segmentation
models should be considered as automated preprocessing tools
that assist, but do not replace, clinical expertise (“doctor-in-the-
loop” approach (Kieseberg et al., 2015; Kieseberg et al., 2016)).
This distinction becomes particularly relevant for metatarsal area 1,
where we observed comparatively higher segmentation errors.

TABLE 2 Test set performances separate for each targeted segmentation area during 5-fold cross-validation. MAD (median absolute deviation) is reported
as a robust measure of variability. Values are reported with corresponding 95% bootstrap confidence intervals based on 1,000 resamples.

Segment Dice score Intersection over union

Median [95% CI] MAD Median [95% CI] MAD

Heel 0.96 [0.92, 0.99] 0.01 0.92 [0.90, 0.94] 0.02

Metatarsal Areas 1–5 0.95 [0.91, 0.98] 0.01 0.91 [0.89, 0.92] 0.02

Hallux 0.92 [0.89, 0.96] 0.03 0.85 [0.80, 0.88] 0.05

Metatarsal Area 1 0.88 [0.83, 0.90] 0.04 0.78 [0.72, 0.82] 0.06

FIGURE 3
Example of U-Net-based segmentation for a single participant’s foot. Shown are model-generated predictions for each output channel,
representing different segmentation areas, are shown before (upper panels) and after (lower panels) applying a threshold of 0.5. The colorbar represents
the predicted probability values of the mask, ranging from 0 to 1, with higher values indicating stronger confidence in the predicted segmentation. Note
that only model-based annotations are shown in this figure. For a visual comparison of expert annotations and thresholded model predictions
overlaid on normalized and rescaled plantar pressure profiles, refer to Figure 4 (upper example).
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The model demonstrated robust performance across various
measurement devices despite having been trained on data from
different pressure plates. Preprocessing steps, such as size
normalization and scaling of raw plantar pressure profiles,
possibly contributed to reducing discrepancies between data
sources, thus enabling the model to effectively handle data from
diverse hardware setups. Additionally, the relatively low variance
observed during cross-validation indicates consistent results and
robustness to variations in the training data. Nonetheless, despite
encouraging cross-validation performance, the model’s

generalizability to completely unseen hardware configurations has
not been empirically tested, and prior work shows that domain shift
across imaging devices can substantially impact segmentation
accuracy (Yan et al., 2019). Future work should include
validation on additional hardware from new centers and
investigate domain adaptation strategies, such as unsupervised
domain adaptation (Perone et al., 2019), to further enhance
robustness across device-specific variability.

The segmentation results revealed that metatarsal area 1 was the
most challenging region for segmentation. This may be linked to the

FIGURE 4
Exemplary normalized and rescaled plantar pressure profile with overlaid segmentation masks: expert annotation (left) and model-predicted,
thresholded mask (right; see Figure 3 for thresholding details). True and predicted key points generated using different approaches are also shown (see
Section 3.2 for methodological details).
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anatomical structures of different feet, especially the foot arch
(Xiong et al., 2010), which leads to higher pressure on the
metatarsal heads (Periyasamy and Anand, 2013) and therefore to
a mis-segmentation due to shifted peak values aside from metatarsal
area 1. Notably, using a regression model to detect the center of
metatarsal area 1 did not directly improve the calculations using the
segmentation model. Furthermore, an ensemble approach that
combined coordinates from both regression- and segmentation-
based methods via mean calculation did not enhance the accuracy of
center detection. Consequently, this study advocates the use of a
U-Net segmentation model over coordinate prediction using deep
regression models, to identify the center of the first metatarsal area.
When determining the hallux angle and considering the spatial error
distribution in relation to the actual foot size (Figure 5), modeling
results must be interpreted within the context of their application.
For instance, in clinical applications where precise measurements of

the foot structure are required, even small errors can have a
significant impact. By contrast, for gait analysis in sports science,
such deviations may be less consequential. Potential errors
stemming from the labeling process, which can affect both model
training and evaluation, must be carefully considered and are
discussed further in this section.

The results revealed higher errors for key point detection of the
interdigital space 2–3 compared to detecting the center of metatarsal
area 1. Notably, shifting the key point location of interdigital space
2–3 to a potentially more detectable anatomical position led to a small
improvement in spatial accuracy. This outcome suggests that the
hypothesized improvement expected from shifting the key points is
supported by the present study although the observed effect size was
small. Summarizing these findings, the results indicate that ML-based
detection of the interdigital space 2–3 has the potential to enhance the
anatomical separation of the foot into medial and lateral zones, thereby
facilitating the determination of the overall foot angle. However, the
accuracy achieved in this study still leaves room for improvement
because the observed errors highlight the need for manual evaluation
and adjustment by experts. Consequently, the model, in its current
state, should primarily serve as a preparatory step for identifying key
points from a practical perspective. Several strategies may improve the
accuracy: Exploring other shifted locations for the interdigital key point
spaces 2–3 can help identify the anatomical separation line.
Additionally, given that a higher accuracy was achieved for the
coordinate detection of metatarsal area 1 center using mask-based
segmentation, defining a segment for a representative area, such as toes
2 and 3 may be worthwhile in deriving a key point from the predicted
segment. Furthermore, several optimization opportunities remain to be
explored. For instance, tailoring model configurations to each specific

TABLE 3 Key point prediction results, including the median and MAD
(median absolute deviation; robust measure of variability), of the Euclidean
distance between the true and predicted coordinates. Values are reported
with corresponding 95% bootstrap confidence intervals based on
1,000 resamples.

Center/Key point Median [95% CI] MAD

Center Metatarsal Area 1 via Segmentation 4.47 [4.08, 4.75] 2.24

Center Metatarsal Area 1 via Regression 7.72 [7.24, 8.10] 3.34

Ensemble 5.26 [4.98, 5.61] 2.27

Interdigital Space 2–3 10.06 [9.38, 10.60] 4.60

Shifted Interdigital Space 2–3 8.34 [7.88, 8.90] 3.85

FIGURE 5
Euclidean distance differences between predicted and actual points across all samples are used to estimate the Gaussian kernel density for the
center of metatarsal area 1 via segmentation and shifted interdigital space 2–3. The kernel density contours represent the probability density of these
errors. An example of plantar pressure distribution is shown to facilitate error comparison relative to foot size. A customized colormap for the plantar
pressure distribution was used to improve visibility of the kernel density contours.
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regression task—rather than using a shared configuration for
comparability—could improve task-specific performance.
Additionally, applying augmentation techniques or experimenting
with different input representations can help more effective model
generalization to challenging key point locations. Another promising
direction is the unification of segmentation and regression tasks within
a multi-task learning architecture, which could enhance both
performance and training efficiency.

Several limitations and key aspects must be considered when
interpreting the results. The annotation process faced significant
challenges, particularly in labeling the metatarsal area 1 and
interdigital space 2–3. Experts reported difficulties in these

regions arising from a lack of distinct key points, which hindered
precise labeling. This aligns with the findings in the literature,
acknowledging such ambiguities as potential sources of error
(Guldemond et al., 2006). These challenges may also be reflected
in model performance, indicating that the observed errors can be
attributed to the inherent difficulty in interpreting plantar pressure
profiles in these areas or potential labeling errors in human-
generated labels, which can adversely impact model training.

When comparing inter-rater agreement to the model’s
performance against the expert-defined ground truth, two key
observations emerge. First, the three human raters exhibit slightly
lower overlap scores across segmented regions than the model.

FIGURE 6
Exemplary inter-rater reliability of three raters annotating the anatomical landmarks. Semi-transparent filled polygons represent individual
annotations, with overlapping regions visualized through increased color density. Solid borders highlight individual outlines. Note: The annotations
shown reflect the original shapes as provided by the raters prior to resizing to the model’s input shape, preserving the spatial characteristics of the raw
labeling process.

TABLE 4 Inter-rater reliability metrics for three experts across anatomical segmentation regions. Median [95% CI] and MAD are shown for Dice score and
Intersection over Union, with 95% confidence intervals obtained via 1,000 bootstrap resamples. (MAD =median absolute deviation). Metrics are computed
on annotations resized to match the model’s input shape, ensuring comparability with the evaluation of model performance.

Segment Dice score Intersection over union

Median [95% CI] MAD Median [95% CI] MAD

Heel 0.93 [0.92, 0.94] 0.01 0.87 [0.86, 0.88] 0.01

Metatarsal Areas 1–5 0.92 [0.92, 0.93] 0.01 0.86 [0.85, 0.86] 0.01

Hallux 0.86 [0.84, 0.88] 0.03 0.75 [0.73, 0.77] 0.03

Metatarsal Area 1 0.85 [0.84, 0.86] 0.02 0.72 [0.71, 0.74] 0.01
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Second, their point-to-point variability, particularly in the interdigital
space 2–3, exceeds that of the model relative to the reference
annotations. This discrepancy likely stems from the structured
approach used to generate the ground truth: (1) independent
annotations by three experts, (2) peer review by a fourth expert,
and (3) collaborative resolution of discrepancies. That the model’s
predictions align more closely with this refined consensus than the
individual expert annotations do with each other underscores two
important points: (a) residual variability persists in manual
annotation, even among trained experts, and (b) the model
successfully learns to replicate the collaboratively validated
standard. Thus, the model achieves—if not surpasses—human-level
agreement when evaluated against a consensus-based benchmark.

Underlying these observations are two primary sources of
uncertainty categorized into aleatoric uncertainty, which stems
from the inherent noise or variability in the data (e.g.,
measurement inaccuracies, sensor limitations, or inherent
biological variability), and epistemic uncertainty, which arises from
the lack of knowledge or gaps inmodel understanding, such as limited
training data, small labeling errors, or incomplete model architecture
(Shaker and Hüllermeier, 2020). Future research should investigate
the validity and reliability of human labeling in this context, including
systematic analysis of how the visualization and interface design
employed during labeling may influence rater consistency, to better
understand its impact on model training and evaluation. Such studies
can help clarify errors stemming from both data labeling and model
deficiencies, thereby informing strategies to optimize both annotation
protocols and model development.

This study relied on manual hyperparameter tuning, which may not
have exhaustively explored all potential parameter combinations. For a
fair comparison, model hyperparameters were standardized across tasks.
However, this approach may limit task-specific optimization. Therefore,
automated hyperparameter optimization methods (Yu and Zhu, 2020)
should be considered in future research to identify the most effective
parameter configurations for each task and reduce potential biases.
Finally, separate models were used for the segmentation and
regression tasks. Although this approach facilitates independent
performance evaluations, it may not fully exploit the synergy between
these tasks. Future studies should explore integrating segmentation and
regression into a single, unified model. Such an approach can enhance
computational efficiency and improve overall prediction accuracy by
leveraging shared features across tasks. Furthermore, should the dataset
size increase in future work, it would be valuable to evaluate and compare
the inclusion of additional input features (e.g., temporal plantar pressure
data), incorporation of physics-informed modeling approaches (e.g.,
embed biomechanical knowledge, including foot-ground contact
models) and the performance of alternative architectures—such as
Mask R-CNN (He et al., 2017) and Transformer-based models
(Hatamizadeh et al., 2022)—against the U-Net. These architectures,
while currently constrained by their dependence on large-scale
training data (Al-Hammuri et al., 2023), have demonstrated strong
potential in segmentation tasks and may outperform U-Net under
data-rich conditions. Finally, the segmentation and regression models
employed in this study function as black box systems because of the lack
of transparency in the decision-making processes and specific plantar
pressure regions prioritized for predictions. This lack of transparency
complicates error analysis, undermines trust in model outputs, and
conflicts with General Data Protection Regulation (GDPR)

compliance (European Union, 2016). To address this issue, recent
works have highlighted the growing importance of explainable
artificial intelligence (XAI) techniques in biomechanics (Dindorf et al.,
2025). Methods like Grad-CAM (Selvaraju et al., 2017) hold great
promise for enhanced explainability, while integrating experts in the
decision making and interpretation of the XAI justification (Kieseberg
et al., 2015; Kieseberg et al., 2016) may improve the clinical relevance.
Additionally, implementing these methods in real-time in the clinical
setting can help to improve the applicability of ML models in clinical
setting (Xiang et al., 2024) Therefore, future studies should incorporate
XAI methodologies to improve model transparency, elucidate prediction
errors, and enhance confidence in model applications, particularly in
clinical and diagnostic settings.

5 Conclusion and future directions

This study highlights the potential of ML-based segmentation
techniques for automating plantar pressure analysis, to enable the
efficient processing of large multicenter datasets across diverse
hardware setups. These methods have the potential to decrease costs
by reducing the reliance on extensive human labeling, thereby
minimizing subjective bias through ML-driven standardization. As a
practical use case, the proposed pipeline can be integrated with
clustering models (Deschamps et al., 2013; Bennetts et al., 2013) to
group similar pressure profiles, which can then help optimize
classification models to distinguish between healthy and pathological
groups (Chae et al., 2020; Han et al., 2023). This comprehensive
approach can potentially support clinical workflows by providing
actionable insights into foot orthopedics, that can help streamline
analysis and aid in diagnostic decision-making. Nevertheless, expert
reviews and adjustments in critical cases, particularly in regions such as
metatarsal area 1 and interdigital space 2–3, where higher modeling
errors were observed, are essential to ensure reliable and valid outcomes
in critical use-case scenarios. Therefore, the findings emphasize the
importance of integrating expert oversight into the system, following
paradigms such as the “doctor-in-the-loop” approach (Kieseberg et al.,
2015; Kieseberg et al., 2016).
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