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Introduction: Biomechanical changes due to aging increase the oxygen
consumption of walking by over 30%. When this is coupled with reduced
oxygen uptake capacity, the ability to sustain walking becomes compromised.
This reduced physical activity and mobility can lead to further physical
degeneration and mortality. Unfortunately, the underlying reasons for the
increased metabolic cost are still inadequately understood. While motion
capture systems can measure signals with high temporal resolution, it is
impossible to directly characterize the fluctuation of metabolic cost
throughout the gait cycle.

Methods: To address this issue, this research focuses on computing the
metabolic cost time series from the mean value using two neural-network-
based approaches: autoencoders (AEs) and expanders. For the AEs, the encoders
are designed to compress the input time series down to their mean value, and the
decoder expands those values into the time series. After training, the decoder is
extracted and applied to mean metabolic cost values to compute the time series.
A second approach leverages an expander to map the mean values to the time
series without an encoder. The networks are trained using ten different metabolic
cost models generated by a computational walking model that simulates the gait
cycle subjected to 35 different robotic perturbations without using experimental
input data. The networks are validated using the estimatedmetabolic costs for the
unperturbed gait cycle.

Results: The investigation found that AEs without tied weights and the expanders
performed best using nonlinear activation functions, while the AEs with tied
weights performed best with linear activation functions. Unexpectedly, the results
show that the expanders outperform the AEs.

Discussion: A limitation of this research is the reliance on time series for the initial
training. Future efforts will focus on developing methods that overcome this
issue. Improved methods for estimating within-stride fluctuations in metabolic
cost have the potential of improving rehabilitation and assistive devices by
targeting the gait phases with increased metabolic cost. This research could
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also be applied to expand sparse measurements to locations or times that were not
measured explicitly. This application would reduce the number of measurement
points required to capture the response of a system.
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1 Introduction

Impairments such as stroke, cerebral palsy, or even normal aging
increase the oxygen consumption of walking (Rose et al., 1990; Platts
et al., 2006). For example, on average, older adults have a 30%
greater metabolic cost (Martin et al., 1992; Mian et al., 2006). When
coupled with reduced oxygen uptake capacity, the ability to sustain
walking becomes compromised, leading to reduced independence
and quality of life (Morris and Hardman, 1997). The underlying
reasons for the increased metabolic cost are inadequately
understood. For example, certain training interventions (Franz,
2016) and assisting lateral balance (Ortega et al., 2008) have been
ineffective in reducing metabolic costs. One potential explanation is
that we cannot measure when these interventions help or hinder
metabolic efficiency during the gait cycle.

Although motion capture systems can measure numerous
signals with high temporal resolutions, we cannot directly
measure the fluctuation of metabolic cost throughout the gait
cycle. By this, we mean the fluctuation in “cost,” not
“consumption.” Changes in oxygen “consumption” are slow: For
example, studies show a delay with a time constant of about 40 s after
an abrupt change in exercise intensity (e.g., a transition from rest to
exercise) (Whipp et al., 1982; Whipp and Ward, 1990; Selinger and
Donelan, 2014). Although these changes are much slower than a
stride cycle (i.e., about 1 s), this does not imply that phases of the gait
cycle cannot contribute by different amounts.

We define these contributions of parts of the gait cycles as
“costs”. There is a consensus that different gait cycle phases have
different costs (Marsh et al., 2004; Gottschall and Kram, 2005; Doke
et al., 2007; Umberger, 2010; Gonabadi et al., 2020). Our current
knowledge is based on indirect estimations (e.g., estimating the cost
of swinging a leg while standing (Doke et al., 2007). While these
estimations agree on the broad strokes (e.g., swing costs less than
stance), there are large inconsistencies (Gonabadi et al., 2020;
Dzewaltowski et al., 2024). This inability to estimate the cost of
different phases hinders interventions: e.g., if exercise interventions
or orthoses reduce metabolic cost during one phase but increase cost
in another phase, we fail to understand how to improve these
interventions. The present manuscript focuses on new methods
for estimating the cost of different gait cycle phases.

There are several model-based methods; however, there are large
differences between the used approaches, and they sometimes do not
agree very well. One common approach is using musculoskeletal
models and muscle metabolic rate equations. Umberger et al. (2003)
developed widely used equations that estimate metabolic cost from
muscle fiber work and heat energy losses associated with shortening-
lengthening and activation of muscle fibers. Umberger applied his
equations to a forward dynamics model with 12 muscles per side to
produce the first estimation of the time series of metabolic rate
during the gait cycle. Different groups developed alternative models

and equations. Kim and Roberts, 2015; Roberts et al., 2016 argue that
musculoskeletal models only simulate a subset of muscles, and
interactions between muscles and other tissues are complex. They
developed equations to estimate metabolic rate as a function of joint
moments and angular velocity and produced a different time series
of metabolic cost. Other estimations from Pimental et al. (2021) or
Gonabadi et al. (2020) negatively correlate with the most cited time
series estimation from (Umberger, 2010), which predicts that the
push-off phase has the lowest cost. Some inconsistencies could be
due to differences in participants, walking conditions, and
measurement errors; however, it is unlikely that this explains the
entire inconsistency. Reviews by Umberger and Rubenson (2011)
and Hicks et al. (2015) state a need for “novel approaches.” One
limitation is that no validation of the phase-specific metabolic cost
has been attempted. While valuable work compared metabolic cost
equations to indirect calorimetry measurements of stride mean
metabolic cost (Miller, 2014; Koelewijn et al., 2019), estimations
of the time series are given without validation (Umberger, 2010;
Gonabadi et al., 2020; Pimentel et al., 2021).

There has been increased interest in data-driven methods that
do not rely on musculoskeletal simulation. With the advent of
methods and sensors that collect large human movement
datasets, machine learning methods have become popular for
predicting outcomes (Halilaj et al., 2018). Machine learning has
already achieved very high performance in areas like interpreting
histological images or estimating pressure risks (Zhang et al.,
2025). Still, it is also starting to be used to estimate metabolic cost.
Several regression-based and advanced machine-learning
methods allowed estimating steady-state metabolic costs over
shorter and shorter timescales (Selinger and Donelan, 2014).
Many commercially available wearable devices (e.g.,
smartwatches, rings) incorporate algorithms to estimate
average metabolic rate. Additionally, various research studies
have developed similar algorithms for applications such as
managing exercise intensity and nutritional planning. For
example, a recent study uses a multi-modal algorithm based
on a combination of neural networks to estimate the
metabolic rate of treadmill walking in a contactless fashion
using image-based sensors (Huang et al., 2024). Selinger and
Donelan (2014) developed a technique that fits an exponential
function to breath data to reduce the time required to predict the
steady-state metabolic cost to about 2 min. Other groups
developed sensor fusion methods to estimate at an even
shorter timescale; Ingraham et al. (2019) evaluated different
wearable sensors (respiratory, EMG, accelerometers, heart rate,
and skin temperature sensors) to estimate metabolic costs. They
trained different statistical models using regression and found it
possible to estimate steady-state metabolic cost with a root mean
square error of around 1 W kg-1 using 4-5 sensor modalities. In
Slade et al. (2019) regression and neural network models were
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used to estimate steady-state metabolic cost from EMG and
treadmill ground reaction forces. They could estimate the
metabolic cost in a very short time (~1 s) with an error of 8.0%.

Autoencoders (AE) are neural networks that work with machine
learning and artificial intelligence. Many data science studies discuss
optimization of their use, training, and performance (Vincent et al.,
2010; Xie et al., 2015; Yang et al., 2016; Chai et al., 2019). In medical
research, AEs are used for image processing and classification.
Myronenko (2018) used an autoencoder for MRI image
processing and segmentation. Ma et al. (2022) employ an
enhanced edge-attention-autoencoder to improve image
segmentation. Ding et al. (2019) show how image segmentation
for cancer diagnosis proved reliable and faster than radiologists. AEs
have also been applied in biomechanics. For example, Portnova-
Fahreeva et al. (2023) employed an AE controller to perform
dimensionality reduction to control a high-dimensional
prosthetic hand. Huang and Zhang (2023) employed a variational
AE to generate three-dimensional models of the lumbar spine for
use in disease analysis and population modeling. Finally, Diethelm
et al. (2024) implemented a long-short-term memory AE to detect
anomalies in kinematic movement data. Dindorf et al. (2024)
employed a variational AE to generate synthetic posture data for
signal denoising.

The present study aims to investigate the usability of neural
networks for estimating within-stride time series (such as within-
stride metabolic cost) using only stride mean data as inputs. The
underlying motivation is that the stride mean metabolic cost can be
measured using indirect calorimetry (Margaria, 1968; Beaver et al.,
1973); consequently, developing methods that estimate time series
from single scalars could be useful for estimating within-stride
metabolic cost. We evaluate this in a dataset with simulated
walking experiments in which the metabolic cost time series can
be known for training and validation. In Section 2, we discuss the
datasets and models for metabolic cost and the two approaches for
estimating within-stride metabolic costs. Section 3 investigates the
performance of different architectures. Section 4 presents the results
of the optimized networks, while Section 5 concludes with an overall
discussion.

2 Methods

In the present study, we compare two general approaches for
estimating the metabolic cost time series from the measurable mean
metabolic cost: an autoencoder approach - which is implemented in
two ways - and an expander approach. We trained the two
autoencoders and the decoder using data from 10 model-based
metabolic cost timeseries from simulated perturbed walking
experiments. After training, we extracted the autoencoders and
decoders to reconstruct the metabolic cost time series from an
unperturbed walking condition that was left out of the training.

The autoencoder approaches produce a network that maps a
mean value to the corresponding time series, such that the
instantaneous metabolic cost can be computed directly from the
mean cost. The autoencoder (Figure 1a) takes the time series as
input, encodes the mean values as the latent space, and then recovers
the original time series from the latent space. After training, the
decoder is extracted from the autoencoder and used separately to
predict metabolic time series directly from their measured means.
Our underlying reason for using this approach is the assumption
that using a method that has had access to the complete timeseries as
inputs could perhaps be more suitable for reconstructing timeseries
than methods that never have access to timeseries as inputs. In this
manuscript, we investigate this assumption by comparing the
performance of autoencoder algorithms to decoder-only
algorithms. We also investigated the performance of the
autoencoder with both untied and tied weights between the
encoder and decoder (Nowlan and Hinton, 1992). We abbreviate
the untied autoencoders as UAE and the autoencoders with tied
weights and bias as TAE. The expander approach leverages a single
network to map a mean value to its corresponding time series, as
shown in Figure 1b. In practice, the second approach is comparable
to training only the decoder in the autoencoder however, we call this
network an expander instead of a decoder to avoid confusion when
discussing the two approaches.

Both approaches require existing time series and their mean
values for training, and we rely on data from simulated walking
experiments to satisfy this need. We previously generated data from

FIGURE 1
Main algorithm structures. (a) An autoencoder is trained to produce a time series from 1 to 100 percent of a gait cycle (e.g., the within-stride
metabolic cost time series according to (Umberger, 2010)). The decoder is extracted from the autoencoder, such that it produces the estimated time
series using a single value as the input (e.g., the mean metabolic cost of a gait cycle). (b) In a second approach, an expander network is trained directly to
expand a single value to a corresponding time series (e.g., the mean metabolic cost to the corresponding within-stride metabolic cost time series).
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simulated walking experiments (Dzewaltowski et al., 2024) using a
neuromuscular simulation (Song and Geyer, 2015; Song and Geyer,
2018). The simulated walking experiments included both normal
walking and 35 different cases of walking with perturbations from a
robotic waist tether (Antonellis et al., 2022). The simulated data was
used to compute instantaneous metabolic costs using a range of
models from the literature (cf. Section 2.2), providing the necessary
time series for training the two approaches. We trained the networks
to reproduce the model-based within-stride metabolic costs time
series using the perturbed walking conditions. We evaluated the
performance of the two approaches by assessing their capability to
reproduce the time series for unperturbed walking conditions
(i.e., normal walking), which was not part of the training dataset.

2.1 Datasets

We used a neuromechanical simulation from Song and Geyer to
generate data simulating walking under forced perturbations from a
waist tether (Song and Geyer, 2015; Song and Geyer, 2018).
Specifically, we ran a two-dimensional variant of the model that
restricts motion to the sagittal plane in Simscape First Generation
Multibody (MathWorks, Natick, MA). The model contained seven
rigid segments simulating the legs and a trunk and 9 Hill-type
muscles per leg controlled by a set of 71 muscle-reflex parameters.
The 71 control parameters were optimized for each walking
condition by running an optimization (Hansen, 2006) that
minimized a physiologically-inspired cost function that strives to
make the model walk without falling and with a minimal muscle
activation sum (Dzewaltowski et al., 2024). In this framework, we
simulated the effects of forward force perturbations at the hip. We
simulated 32 sinusoidal force profiles with peak timings covering the
entire gait cycle and peak forces ranging from 0% to 24% percent of
body weight, three constant force profiles, and an unperturbed
walking condition for a total of 36 conditions. After optimizing
the control parameters for each walking condition, we extracted the
time series to constitute the dataset for the present study. The dataset
generated by this experiment is similar to the type of data that one
could obtain from human motion capture experiments. For the
estimation algorithm, we only used signals that are available from
human motion capture experiments, such as’ strideaverage
metabolic cost, joint kinematics and kinetics and muscle activations.

2.2 Model-based metabolic cost

We trained and evaluated our networks using 10 different model-
based metabolic costs. Since the actual within-stride metabolic cost is
not available, we evaluated our method “in silico” using simulated-
within-stride metabolic cost based on methods proposed in the
literature. We selected a relatively large range of model-based
methods to maximize confidence in the evaluation.

We used the model-based metabolic cost methods from
Bhargava, Houdijk, Lichtwark, and Umberger to generate
metabolic cost time series based on force, length, and velocity
time series from the muscles from the neuromuscular simulation
(Bhargava et al., 2004; Lichtwark and Wilson, 2005; Houdijk et al.,
2006; Umberger, 2010). Eachmethod generates metabolic cost based

on the sum of mechanical work from the muscles and energy losses
from heat using slightly different proposed equations. The within-
stride metabolic cost time series is produced by taking the sum of all
the leg muscles. The method fromMargaria estimates metabolic cost
time series based on the positive and negative work (Margaria,
1968). We also used additional model-based methods from Kim and
Roberts, Beck, Margaria, andMinetti to generate metabolic cost time
series based on purely kinetic and kinematic data from the
neuromuscular simulation (Margaria, 1968; Minetti and
Alexander, 1997; Kim and Roberts, 2015; Beck et al., 2019). The
method from Kim and Roberts uses joint moments and angular
velocity, and we refer to themetabolic cost estimated with this model
as the Kim Joint. The method from Beck uses the sum of EMG
signals, which we refer to as the EMG Sum. The equation derived
from Margaria was applied to joint powers and center-of-mass
power similar to its implementation in (Caputo and Collins,
2014). We refer to these as Margaria Joint and Maragaria COM.
The method from Minetti and Alexander estimates metabolic cost
using joint moments and angular velocity, and we refer to this as
Minetti Joint. Detailed explanations of the implementations are in
Supplementary Material of Dzewaltowski et al. (2024).

2.3 Network training procedure

For both types of network approaches, the training data consists
of a set of within-stride metabolic cost time series, X, and their
corresponding mean metabolic cost values, �X, but the two methods
use this data set in different ways. For the autoencoder approach
(Figure 2a), the set of within-stride metabolic cost time series,X, are
passed into the encoder as input, which then compresses them down
to a set of scalars for the latent space, Z. The latent space values are
stored for computing a loss function and are passed to the decoder.
The decoder expands the latent space into a new time series, ~X, that
approximates the original time series. The autoencoder is trained by
minimizing the following loss function

LAE � ∑N
j�1

�Xj − Zj( )2 + 1
100

∑100
i�1

Xji − ~Xji( )2⎡⎣ ⎤⎦, (1)

whereN is the number of time series in the training set (Equation 1).
Note that each time series has a length of 100 units representing the
gait cycle from 1% to 100% completion. The first term in the loss
function computes the square error between the stride mean value
and the latent space scalar, such that this causes the encoder to
compress the time series to its mean value. The second term is the
mean-square error computed between the original and reproduced
time series, which works to make the decoder output the original
time series. In the next section, we investigate the effect of network
architecture, activation functions, and training epochs on the
performance of the autoencoders. As mentioned previously, we
evaluate the performance of the autoencoder without and with
tied weights between the encoder and decoder. In both cases,
autoencoders are trained using the Adam optimization algorithm,
which is a stochastic gradient descent method that uses adaptive
estimates of the first- and second-order moments (Kingma and Ba,
2014). Probably should say what the default values are, and what
package/library/code language was used to make the AI models.
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For the expander (Figure 2b), the set of mean values, �X, are
passed into the expander as input and expanded into a new time
series, ~X. The loss function is

LE � 1
100

∑N
j�1
∑100
i�1

Xji − ~Xji( )2, (2)

which is the mean-square error between the original and reproduced
time series where N is the number of time series in the training set
(Equation 2). The minimization of the loss, LE, causes the expander

to output time series that are representative of those provided in the
training set. The expander is also trained using the Adam
optimization algorithm (Kingma and Ba, 2014).

2.4 Network application procedure for
estimating the within-stride time series

The three networks (two autoencoders and one expander) were
trained using the 10 metabolic cost models computed from the

FIGURE 2
Training Process. (a) The training process used for the autoencoder with the loss function used. (b) The training process used for the expander
approach with the loss function.

FIGURE 3
Application Process. In the application step, the stride mean value of an unknown time series (e.g., within-stridemetabolic cost) is passed as input to
the decoder or expander to estimate the corresponding time series. Note that the decoders and expanders are applied separately using the same
input data.
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simulated walking data for only the perturbed walking conditions.
The metabolic costs for the unperturbed walking condition were
reserved for validation of the trained networks. After training, the
decoders were extracted from the autoencoders to identify the
metabolic time series from a given stride mean value. The
expander was used in the same way as the extracted decoders.
Figure 3 presents the application process of the two methods, which
shows how themean value is used as the only input to either network
to identify the corresponding time series. After the training is
completed, both approaches can estimate within-stride metabolic
cost time series without needing time series as inputs.

2.5 Tuning of network architecture

We evaluated different architectures and compared their
performance by computing the Pearson correlation coefficient, r,
between the actual within-stride metabolic cost and the one
estimated by the network. For our data, p< 0.05 when r> 0.1966,
such that a high correlation coefficient corresponds to a significant
finding. As a result, the correlation coefficient is sufficient for
making decisions on the performance of each model. We first
consider the effect of the number of layers on the performance
of each network for up to three hidden layers, as listed in Table 1.We
use an arithmetic sequence to reduce the number of neurons from
100 (the length of the metabolic cost time series) to 1 neuron (the
length of the mean metabolic cost) for the encoders, and the
decoders and expanders use the reverse sequence. Note that the
encoders also have an input layer with 100 neurons (not included in
Table 1). We set all activation functions to linear for this study, the
number of epochs to 2000, and repeat the training process 50 times
for each architecture. We only consider three layers at most because
the results for higher layer counts will be the same as three layers due
to the use of linear activation functions. The number of epochs was
chosen based on preliminary experiments with the networks, and a
study on the effect of the number of epochs was performed after
determining the final network architecture. Repeating the training
process 50 times using new networks each time allows us to
investigate the repeatability of the results. At the start of each
iteration, the networks from the previous iteration are deleted,
and new networks are created to ensure that they start with new
initial weights and biases. At the end of each iteration, we save the
networks and their training history, compute and store r for each
metabolic cost, and then delete the networks. After training each
network, we compute the average r value for each of the
10 metabolic costs across the 50 cases and use that as the metric

for comparison. The networks are trained using the dataset of the
perturbed walking conditions and then applied to the data from the
unperturbed walking condition for evaluation.

The results of the network architecture study are presented in
Figures 4a–c for the UAE, TAE, and expander, respectively, for the
ten metabolic costs. The results show that the UAE and expander
networks converge to the same result when two or more hidden
layers are included as expected. The TAE networks appear to
converge to the same values regardless of the number of layers,
but there are small variations in the r values that are not visible on
the scale used in the figures. However, those variations are small
enough to conclude that the TAE produces nearly the same results
regardless of the number of layers. This suggests that tying the
parameters leads to a more efficient deconstruction and
reconstruction of the time series. The UAE and expander
networks perform the worst for the EMG Sum metabolic cost,
and all three networks perform relatively poorly for the
Umberger metabolic cost. Figure 4d presents the mean r across
the ten metabolic costs for each network, which shows that the TAE
performs better than the expander and UAE on average under these
conditions. Furthermore, this figure demonstrates that all three
networks converge at two or fewer layers.

We proceeded with studying the effect of the activation
functions on each network’s performance to improve the results
for the EMG Sum and Umberger metabolic costs while maintaining
the results for the others. We consider six nonlinear activation
functions: relu, elu, sigmoid, silu, mish, and tanh. We start with
networks with two layers and change the activation function in the
layer with 50 neurons. The reason we modify this layer is that the
networks need to end with a linear activation function to ensure that
the output is scaled appropriately for each metabolic cost.
Additionally, some of the metabolic cost models (e.g., Margaria)
had negative values for some portions of the gait cycle, which cannot
be captured using nonlinear activation functions selected as they
converge to fixed values for negative inputs. Just as in the study of
the number of layers, we set the number of epochs to 2000, repeat the
training process 50 times for each activation function, and then
compute the mean r value for each metabolic cost across
the 50 trials.

We depict the results for two layers in Figures 5a–c for the UAEs,
TAEs, and expanders. We also present the average r value across the
ten metabolic costs for each network in Figure 5d. Regardless of the
nonlinear activation function chosen, all three networks perform
significantly worse than when only linear activation
functions were used.

Based on these results, we switch to the three-layer networks and
modify the layer’s activation function with 66 neurons, such that the
nonlinear activation function is sandwiched between two layers with
linear activation functions. We perform the same study as with the
two-layer network with 2000 epochs and 50 trials and present the
results in Figures 6a–c for the UAEs, TAEs, and expanders. We also
include the performance of the case where a linear activation
function is used in the layer with 66 neurons. Figure 6d presents
the mean r values across all ten metabolic costs for each network and
provides an estimation of the overall performance of each network
for each nonlinear activation function.

For the UAEs, the nonlinear activation functions have the
biggest effect on model fit for EMG Sum and Kim Joint

TABLE 1 Network Architectures. The architectures listed in the table are
used to study the effect of the number of layers on the performance of each
network.

Hidden
Layers

UAE and TAE neurons Expander
Neurons

Encoder Decoder

1 100, 1 1, 100 1,100

2 100, 50, 1 1, 50, 100 1, 50, 100

3 100, 66, 33, 1 1, 33, 66, 100 1, 33, 66, 100

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Mustafa et al. 10.3389/fbioe.2025.1579085

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1579085


metabolic costs but have a relatively small effect on the others,
including the Umberger metabolic cost that we want to improve.
The tanh activation function results in the best overall performance,
as seen in Figure 6d. For the TAEs, the nonlinear activation
functions have the largest influence on the EMG Sum and Kim
Joint metabolic costs, just like the UAEs. An interesting pattern
appears where nonlinear activation functions that worsen the EMG
Sum, Kim Joint, and the Umberger metabolic costs improve the
results for the other metabolic costs, and vice versa. However, the
improvement gained for the EMG Sum, Kim Joint, and Umberger
metabolic costs is substantially larger than the decrease seen for the
other metabolic costs. From Figure 6d, the TAEs perform the best
when only linear activation functions are used. For the expanders,
we find that all nonlinear activation functions improve the
performance of the networks overall compared to the linear
activation functions. The EMG Sum and Umberger metabolic
costs peak for the elu activation function, and only a small
decrease in performance for the Kim Joint is observed for this
function. Indeed, Figure 6d shows that using the elu activation
function results in the best performance for the expanders.

Based on these results, we fix the number of layers to three
and set the activation function in the layer with 66 neurons to
tanh, linear, and elu for the UAEs, TAEs, and expanders,
respectively. We then proceed with investigating the effect of
the number of epochs on the performance of each network using
50 trials just as in the previous studies. We consider the
performance of the networks for epochs ranging from 250 to
3,000 with a step size of 250 and also from 3,500 to 10,000 with a
step size of 500. We present the results for the UAEs, TAEs, and
expanders in Figures 7a–c, respectively, and the mean r values
across all metabolic costs are presented in Figure 7d. For the
UAEs, we find that the performance for most of the metabolic
cost models improves before plateauing as the number of
epochs increases, except for the EMG Sum model. The UAEs
perform poorly for the Umberger model regardless of the
number of epochs. For the EMG Sum model, the UAEs
perform well up to 1,000 epochs before dropping in
performance and spiking up again at 6,000 epochs. The best
performance for the UAEs occurs for 1,000 epochs as seen in
Figure 7d. The TAEs depict relative independence with respect

FIGURE 4
Network Architecture Results. The mean r values for each metabolic cost for (a) the UAEs, (b) the TAEs, and (c) the expanders. (d) The mean r value
across all metabolic costs for the three networks.
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to the number of epochs due to the use of only linear activation
functions and converge to their optimal results after 500 epochs.
The performance of the expanders increases with the number of
epochs except for the EMG Sum model, where the performance
initially increases before decreasing. The expanders exhibit
optimal performance when the number of epochs is set to
2,750, but at this value the performance for the EMG Sum is
relatively weak compared to lower values. For example, using
2000 epochs, the overall results are comparable with those for
2,750, but the EMG Sum performance is significantly better.
Interestingly, expanders perform better than the other two for
fewer epochs. The UAE and TAE perform similarly for their
optimal number of epochs, which suggests that there is an upper
limit on the performance of an autoencoder for this problem.
Based on these results, we conclude that the optimal networks
are three layers where the middle layer uses tanh, linear, and elu
for the activation functions with the numbers of epochs set to
1,000, 500, and 2000 for the UAE, TAE, and expanders,
respectively.

3 Results

Using the best-performing network configurations as discussed
in the previous section, we trained each network using the perturbed
datasets and then estimated the metabolic cost time series for the
unperturbed dataset using the corresponding mean metabolic costs
as input. We present the exact and estimated metabolic cost time
series for Umberger, Houdijk, Margaria, Bhargava, Lichtwark, and
Kim Joint models in Figure 8. We present the remaining models
(Margaria COM, EMG Sum, Margaria Joint, and Minetti Joint) in
Figure 9. The EMG Sum is provided twice: once with the predictions
from all networks and a second time with only the estimation from
the expander, which shows that only the expander can reproduce the
EMG Sum model. We provide the r values for each network and
metabolic cost model in Table 2. We find that none of the networks
can accurately reproduce the Umberger metabolic cost, whereas all
three do a good job reproducing the Bhargava, Lichtwark, Kim Joint,
and Margaria Joint models. The expander performs better than the
other two networks for the Umberger, Houdijk, Lichtwark,

FIGURE 5
Activation Function Results for Two Hidden Layers. The mean r values for each metabolic cost for different activation functions and two hidden
layers for (a) the UAEs, (b) the TAEs, and (c) the expanders. (d) The mean r value across all metabolic costs for the three networks for different activation
functions and two hidden layers.
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Margaria, EMG Sum, Margaria Joint, Margaria COM, and the
Minetti Joint models. Importantly, the expander is the only
network that reproduces both the shape and the amplitude of the
EMG Sum model, which confirms that the process used to
determine the number of layers, activation functions, and
number of epochs was successful.

Next, we consider the mapping from mean metabolic cost to
instantaneous cost produced by each network by plotting their
outputs as surfaces in Figures 10a–c for the UAE, TAE, and
expander, respectively. The surface outputs are computed for
mean metabolic costs varying from 0 to 300 W. The surface
profile produced by the UAE reveals that the output clusters to
three regimes that are connected by step-ups in amplitude.
Interestingly, the increases in amplitude occur for all portions of
the stride at the same mean metabolic costs, though the amounts of
increase vary. To investigate these results, we trained five different
UAE networks and compared their surface profiles (not shown
here). We found that the stepped-surface profile is a generic result
for the UAEs, though the locations and widths of the steps varied for

each network. Furthermore, we found that all parts of the profile
increased at the same mean metabolic cost values just as seen in
Figure 10a, such that this is also a generic result for the UAE.

Interestingly, time series estimated by the TAE appear to have
the same shape with only minor differences in amplitude. Several
possible explanations exist for this result: first, the TAE may not
have enough trainable parameters to adequately capture the
variations across the different metabolic cost models; second, the
use of linear activation functions causes the TAE to only be able to
identify a best approximation of all models; or third, the mapping of
instantaneous cost to mean cost is non-invertible and a different
model is required to map the mean cost to the instantaneous cost,
which cannot be achieved with the TAE due to the tied weights and
biases. For the first possible explanation, the TAE has
19310 trainable parameters for this configuration while the UAE
and expanders have 28021 and 9010, respectively. Thus, the TAE
clearly has enough trainable parameters to capture the variations
across the different models. To explore the second reason, we
replaced the nonlinear activation functions in the UAE and

FIGURE 6
Activation Function Results for Three Hidden Layers. The mean r values for each metabolic cost for different activation functions and three hidden
layers for (a) the UAEs, (b) the TAEs, and (c) the expanders. (d) The mean r value across all metabolic costs for the three networks for different activation
functions and three hidden layers.
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expander networks with a linear activation function, and then
computed their corresponding surface profiles (not shown here).
We found that both the UAE and expander networks increased
monotonically in instantaneous amplitude as the mean metabolic
cost increased, such that they were able to capture the variations in
metabolic cost unlike the TAE. Thus, the use of linear activation
functions is not the reason for the lack of variation in the TAE
surface profile. Instead, we conclude that the mapping from
instantaneous to mean metabolic cost is non-invertible and a
different mapping is needed to Convert from mean cost to
instantaneous cost. This is further supported by the fact that the
UAE can reproduce the metabolic cost models better than the TAE
across the range of mean costs.

Overall, the surface profile for the expander shows the greatest
variation including both increases and decreases in amplitudes as
the mean metabolic cost increases. Furthermore, the changes in
amplitude do not occur uniformly across the gait cycle unlike the
profile for the UAE. Thus, the use of the elu nonlinear activation
functions gives the expanders the ability to adapt their amplitudes at
different stages of the gait cycle independently for a given mean

metabolic cost input. These results suggest that learning the full time
series from its mean value is an easier problem to solve than
mapping the time series to a mean value then expanding that
learned mean back to the time series. This is interesting because
one would expect that incorporating the original time series into the
network as in the UAE and TAE would produce better results than
providing only the mean as the input as in the expander.
Furthermore, these results support the conclusion that training a
network to map instantaneous metabolic cost to mean produces a
model that is non-invertible, and a different model is needed to map
the mean cost back to the time series.

4 Discussion

This research investigated the performance of two approaches
for estimating the within-stride metabolic cost of the gait cycle
directly from the measurable mean metabolic cost. The first
approach employed autoencoders to train a decoder to map the
mean value to the corresponding time series. The second approach

FIGURE 7
Effect of Training Epochs. Correlation coefficients as a function of epochs. Results indicate that the optimal number of epochs is approximately
2000. (a) Untied autoencoder. (b) Tied Autoencoder. (c) Expander. (d) Mean correlations.
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FIGURE 8
Estimated versus Actual Metabolic Cost Time Series. Comparison of the exact and estimated metabolic cost time series for the Umberger, Houdijk,
Margaria, Bhargava, Lichtwark, and Kim Joint models.

FIGURE 9
Results. Comparison of the exact and estimated metabolic cost time series for the Margaria COM, EMG Sum, Margaria Joint, and Minetti
Joint models.

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Mustafa et al. 10.3389/fbioe.2025.1579085

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1579085


trained an expander network to directly produce the instantaneous
metabolic cost from the corresponding mean value. The networks
were applied to walking data generated using a neuromechanical
simulation under 35 different forced perturbations applied through
a waist tether and one unperturbed state. The networks were trained
using the perturbed walking datasets then applied to the
unperturbed data and the results were evaluated using the
Pearson correlation coefficient.

The networks were constructed using an arithmetic sequence
from 100 to 1 neuron for the encoders and expanders and the reverse
sequence was used for the decoders and expanders. The effect of the
number of layers (and number of neurons due to the arithmetic
sequence), activation functions, and the number of epochs on the
performance of each network were investigated using trials of
50 different networks in each study. The investigation concluded
that 3 layers with a nonlinear activation function sandwiched
between two linear layers produced the best results for the UAE
and expanders, while using only linear activation functions for the
TAE networks performed best. The best nonlinear activation
function for the UAE was determined to be the tanh function
while the elu function was best for the expanders. The optimal
number of epochs was found to be 1,000, 500, and 2000 for the
UAEs, TAEs, and expanders, respectively.

The results revealed that the UAE and expander were able to
reproduce a wider range of metabolic cost models whereas the TAE
converged to a single profile that best approximates all models losing
the ability to capture the variations of individual models. Looking
into the individual series models results, the UAE and TAE
performed poorly for the Umberger and EMG Sum models
failing to reconstruct the data with acceptable accuracy, whereas
the expander showed a more precise reproduction for the same

TABLE 2 Correlation coefficients. The r values for the results provided in
Figures 8, 9 (MC is metabolic cost models).

MC UAE TAE EX MC UAE TAE EX

Umberger 0.339 0.297 0.544 Kim Joint 0.874 0.863 0.783

Houdijk 0.722 0.697 0.741 EMG
Sum

0.493 0.852 0.963

Bhargava 0.963 0.889 0.940 Margaria
Joint

0.927 0.928 0.972

Licthwark 0.947 0.888 0.954 Margaria
COM

0.769 0.717 0.843

Margaria 0.919 0.849 0.937 Minetti
Joint

0.804 0.797 0.939

FIGURE 10
Surface Profiles. Surface profiles for (a) the UAE network, (b) the TAE network, and (c) the expander network.
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models and a noticeable enhancement for the EMG Sum estimation.
Of note, the Umberger model is one of the five models that calculate
metabolic cost based on kinetic and kinematic data from the internal
muscles of the model (Dzewaltowski et al., 2024). While internal
muscle data was used for evaluating the metabolic cost estimation, it
was not included as an input to the estimation (training) algorithms
to realistically reflect that internal muscle data would not be
available during human experiments. The fact that the algorithms
did not have access to the source data of the Umberger metabolic
cost model could explain the inadequate performance in
reconstructing the Umberger model series.

As for the rest of the metabolic cost models, namely, Kim Joint,
EMG Sum, Margaria Joint, Margaria COM, and Minetti Joint, these
metabolic cost models were based on motion capture and EMG
signals. The simulated data for such signals was used as inputs to the
estimation algorithms since it is typically available and measurable
in human experiments. This probably explains the relatively better
evaluation results, except for EMG Sum. We believe that the
relatively worse evaluation result for estimating the EMG Sum
based metabolic cost could probably be explained by the
relatively noisier nature of this metric.

Overall, the expanders performed consistently better than the
autoencoders, such that the expanders are recommended for use
over the autoencoders. The reasons behind that are related to the fact
that the autoencoders compression stage results in significant losses
of details in data series leading to a propagation of these losses in the
reconstruction stage. To achieve this compression, generally a
significant number of hidden layers have to be added into the
construction of the auto-encoder with careful selection of
activation functions to ensure the accuracy of the compression-
reconstruction (Osaulenko, 2021). Expanders on the other hand
work better when it comes to series reconstruction especially for
complex data series with subtle variations (Prabhu et al., 2017), as
seen in the metabolic cost times series. The major strength of the
approaches considered here, especially with the expander, is that the
networks can produce the instantaneous metabolic cost directly
from the mean metabolic cost, providing a window into how
different parts of the gait cycle can vary in cost. Once trained,
the application of the networks is fast, such that they could be used
for quick diagnostics or real time applications, such as energy
expenditure estimation during exercise.

One of the limitations of the employed approaches is that they
rely on simulated time series for training and optimizing the
network parameters. As such, the output of the networks cannot
be regarded as the true metabolic cost, but rather a representation of
the real cost based on a nonlinear combination of the models used in
the training. A related limitation is that this entire research study is
done on a simulated walking dataset. Even though this entire
research study is done on a simulated walking dataset(s), this
method offers an advantage for in silico validation research since
the ground truth metabolic cost is known because it is defined
during the generation of the simulation. We acknowledge the
importance of experimental validation, and to that end our group
is actively working on collecting data for human perturbation
experiments as well as the recently published walking dataset
(Antonellis et al., 2022; Dzewaltowski et al., 2024). Additionally,
creative validation approaches for testing whether estimation
methods can reproduce model-based metabolic costs

(Dzewaltowski et al., 2024) or evaluating whether the estimation
methods can detect induced changes like increased metabolic cost of
the swing phase.

Another limitation with the architecture tuning is that only linear
layerswere used.While the tuning did show some architectures performed
better than others the finding of no benefit of adding more than two
hidden layers could potentially be explained by this. The performance of
the networks could be improved by enriching the dataset with additional
models formetabolic cost aswell as newdatasets generated fromenhanced
computational models. However, this limitation does not prevent one
from applying the networks to study how different physical changes (e.g.,
aging or therapeutic devices) alter the instantaneousmetabolic costs aswell
as the costs incurred during specific phases of the gait cycle. Improving the
confidence and knowledge of the within-stride fluctuations in metabolic
cost could be useful for rehabilitation and assistive devices for clinical
populations. More specifically this knowledge could enable design
rehabilitation interventions that specifically target the costliest phase of
the gait cycle and assistive devices that focus assistance during the costliest
phase of the gait cycle. Another limitation is that the high performance of
the trained networks could be due to an already strong correlation and
similarity between the perturbed and unperturbed walking datasets. As
such, the results and performance of the networks could be improved by
providing a wider range of perturbed conditions using different physical
alterations (e.g., perturbing the ankle instead of the waist). Future efforts
are focused on creating methods that estimate within-stride metabolic
costs that do not rely on those datasets in the training process as well as on
the application of the networks discussed here for determining how
different physical conditions alter specific phases of the gait cycle.
Additionally, further work will focus on leveraging multiple methods
for estimating instantaneous metabolic cost to cross-validate the methods
while also identifying changes to the cost in specific phases of the gait cycle.
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