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Objective: This study developed a hybrid neural network integrating multi-modal
data to predict anterior cruciate ligament (ACL) forces during rehabilitation in
martial artists using a novel resistive knee brace after ACL reconstruction. The
goal was to leverage time-series biomechanical parameters and static clinical
features to optimize postoperative recovery strategies.

Methods: A prospective cohort of 44martial artists post-ACL reconstruction was
randomized into an experimental group (EG, n = 22) using a resistive brace and a
control group (CG, n = 22) using a traditional brace. Baseline demographics
(height, weight), joint range of motion (ROM), and muscle strength were
measured preoperatively (T0) and at 15 days (T1), 30 days (T2), and 60 days
(T3) postoperatively. High-resolution kinematic and kinetic data were collected at
T3, while ACL forces were computed at T3 using OpenSim musculoskeletal
modeling. A feature-embedded temporal convolutional neural network (TCN)
fused time-series gait data (T3) with static features (T0-T3) to predict ACL forces.

Results: The hybrid TCNmodel achieved superior ACL force prediction accuracy,
with a mean R2 = 0.63 (EG), R2 = 0.58 (CG), and R2 = 0.62 (combined cohort) in
three-fold cross-validation. Comparative analyses demonstrated significant
advantages over standalone TCN (R2 = 0.54) and long short-term memory
(R2 = 0.51) models.

Conclusion: The integration of temporal biomechanical data and static clinical
features enables accurate ACL force prediction, particularly for patients using
resistive braces. This approach provides a novel tool to personalize rehabilitation
protocols and validates the efficacy of resistive braces in modulating ACL loads,
supporting their clinical adoption for athletes recovering from ACL injuries.
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1 Introduction

After anterior cruciate ligament (ACL) reconstruction, the ligament mechanical
environment is complex, and overloading may lead to graft failure, while underloading
delays functional recovery (Musahl et al., 2022). ACL injuries are common injuries in high-
intensity sports populations such as martial arts athletes, and the effectiveness of
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postoperative rehabilitation has a direct impact on the ability to
return to sport (Dawkins et al., 2023). The key to postoperative
rehabilitation after ACL reconstruction lies in the balancing of
early functional training and ligament protection, but the
Traditional rehabilitation programs rely on empirical
adjustments and lack precise quantification of ligament forces,
which may lead to overloading or inadequate rehabilitation
(Garmasheva et al., 2021).

In recent years, resistance braces have been proposed to
regulate joint loading through external resistance and
theoretically reduce ACL stress by enhancing synergistic
muscle contraction (Jalali et al., 2018). Studies have shown that
resistance braces may improve gait symmetry (Focke et al., 2020)
and reduce knee instability (Ewing et al., 2016), but the specific
mechanism of their effect on ACL stress is unclear. Existing
studies are mostly limited to mechanical simulation or short-
term observation (Goerger et al., 2014), lacking the support of
long-term dynamic monitoring data. For example, previous
studies have found that functional braces can change knee
kinematics, but have not quantified their effect on ACL loading
(Palm et al., 2012); while another study pointed out that the
biomechanical effects of different brace designs vary significantly,
but lacked a predictive model to guide clinical selection (Rocchi
et al., 2020). Therefore, an objective assessment method
incorporating multimodal data is urgently needed to validate
the mechanical efficacy of resistive braces and optimize their
application. In addition, although the functional braces
commonly used in clinical practice can limit the range of joint
motion, they are unable to monitor the mechanical status of ACL
in real time, resulting in a lack of individualized adjustment basis
for the rehabilitation program (Mohseni et al., 2009). Therefore,
the development of a method that can dynamically predict ACL
forces is crucial for optimizing postoperative rehabilitation
strategies.

Traditional ACL force prediction mainly relies on laboratory
biomechanical models, which require high-precision motion
capture and force table data, and is difficult to be applied to
daily rehabilitation scenarios (Wu et al., 2001). While prediction
models based on a single data source (e.g., LSTM dealing with gait
time series) can capture dynamic features, they ignore the long-term
effects of static clinical parameters (e.g., ROM, muscle strength)
(Sinclair et al., 2019). In addition, static regression models (e.g.,
linear regression) cannot resolve the nonlinear relationship between
gait dynamics and ACL forces (Valle et al., 2024). To address these
issues, this study proposes a hybrid feature-time series neural
network (TCN + static feature embedding) to achieve high-
precision prediction of ACL force by fusing multimodal data
(static features + dynamic gait) from preoperative to 60 days
postoperatively.

The aim of this study was to develop a neural network model
(TCN) combining static features and time-series data for the
prediction of ligament forces in postoperative ACL patients using a
resistive brace. The model innovatively integrates preoperative clinical
data and postoperative gait characteristics to predict ACL loads in real
time and guide the adjustment of rehabilitation programs. It provides
data support for personalized rehabilitation. This study promotes the
development of ACL postoperative rehabilitation in the direction of
intelligence and precision.

2 Methods

2.1 Participants

This study recruited 44 professionally trained martial artists (age
range: 18–30 years) following anterior cruciate ligament (ACL)
reconstructive surgery as study participants.

2.1.1 Inclusion criteria
1. Diagnosis of unilateral ACL insufficiency without concomitant

intra-articular pathologies.
2. Surgical procedure: Anatomic ACL reconstruction utilizing

autologous semitendinosus-gracilis double-bundle graft.
3. Demonstrated adherence to postoperative evaluation protocols

and therapeutic regimens.
4. Restoration of functional knee mobility (0°–120° arc) with

absence of mechanical locking or inflammatory effusion.

2.1.2 Exclusion criteria
1. Complex knee trauma involving meniscal/capsuloligamentous

structures.
2. Comorbid systemic conditions impairing neuromuscular

performance (e.g., cerebrovascular accidents, class III/IV
cardiac insufficiency).

3. Prior surgical interventions affecting bilateral knee joints.

To mitigate neural network training constraints associated with
limited sample size, biomechanical parameters from 10 consecutive
gait cycles per participant were systematically extracted, yielding
440 temporally resolved data streams for predictive modeling.

2.2 Study design

This longitudinal cohort investigation investigated ACL force
prediction using a hybrid neural network. Forty-four martial artists
post-ACL reconstruction were randomly divided into two groups
Figure 1.

• Experimental Group (EG, n = 22): Utilized a resistive knee brace
(RehaBrace, Italy) providing 2.5 kg resistance. To establish a
biomechanical dataset under resistance loading for training the
neural network to predict ACL forces under active intervention.

• Control Group (CG, n = 22): Wore a traditional functional
brace (DA334-7, China) with 0°–120° ROM. To validate model
generalizability by predicting ACL forces under standard
rehabilitation protocols without external resistance.

Both groups maintained brace-locked knee extension for the
first 15 postoperative days, followed by progressive motion training.

2.2.1 Intervention protocol
All participants received standardized rehabilitation.

1. Physical Therapy: 5 sessions/week (8 weeks) including passive
mobilization and electrical stimulation.

2. Gait Training: 2–3 sessions/week (Weeks 3–8) on a treadmill at
1 m/s with interval pacing.
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2.2.2 Neural network inputs
Multi-source data were collected at four stages.

1. T0 (Pre-op): Baseline demographics (height, weight, BMI) and
knee range of motion (ROM).

2. T1 (15 days): Muscle strength and ROM assessments.
3. T2 (30 days): Muscle strength and ROM assessments.
4. T3 (60 days): High-resolution kinematic and kinetic time-

series data. ACL forces derived frommusculoskeletal modeling
as prediction labels.

The model integrated.

1. Static Features: T0-T2 variables (e.g., BMI, baseline ROM).
2. Time Series: T3 kinematics (hip/knee/angle trajectories) and

kinetics (vertical GRF profiles).
3. Output: T3 normalized ACL force (BW).

2.3 Data collection and analysis

2.3.1 Range of motion assessment
Knee flexion-extension angles during natural gait were

measured using a high-precision electrogoniometer aligned with
thigh/calf anatomical axes. Measurements were synchronized with
force platform data (GRF threshold: 10 N for heel-strike detection).

2.3.2 Muscle strength testing
Isokinetic quadriceps strength was assessed using a Biodex

System Pro3 dynamometer (Biodex Corp., USA).

2.3.2.1 Protocol
o Warm-up: 5 min submaximal exercise at 60°/s.
o Testing: Concentric peak torque measured at 30°/s, 60°/s (slow),
180°/s (medium), and 330°/s (high).

o Positioning: Seated with 70° hip flexion and 90° knee flexion,
dynamometer axis aligned to knee joint.

2.3.2.2 Execution
o Three maximal repetitions per speed with 5-min rest intervals.
o Randomized limb testing order with visual feedback.

2.3.3 Motion capture
A three - dimensional motion capture system (qualisys

system) was used to collect the kinematic data of the lower
limb joints of the subjects during natural gait walking.
The system is equipped with 8 infrared cameras, and the
sampling frequency is 200 Hz. 48 reflective markers were
precisely pasted on the skin of the subjects. The pasting
positions include the left and right acromioclavicular joints,
iliac crests, greater trochanters, medial and lateral epicondyles
of the knee joint, medial and lateral malleoli, and the first and
fifth metatarsal heads. In addition, there are the anterior
superior iliac spine, posterior superior iliac spine, a rigid
plate with four markers connected to the thoracic spine,
bilateral thighs, and the lower legs with elastic Velcro straps,
as well as three marker - rigid plates connected to the heels. The
kinematic data reduction was calculated using Visual 3D
software. The original kinematic and kinetic data were
filtered using a fourth - order, zero - lag recursive
Butterworth filter with a cut - off frequency of 20 Hz.

FIGURE 1
Study design flowchart.
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2.3.4 ACL force computation
Ground reaction forces (1,000 Hz, Kistler platform) and motion

data informed a scaled OpenSim musculoskeletal model (23 DOF,
92 muscles) Figure 2. Following residual reduction optimization,
ACL forces were derived using the validated sagittal plane model by
Kernozek and Ragan (Hachmann et al., 2021).

2.4 Neural network model construction

This study constructed a hybrid neural network model for
regression analysis using Python 3.8 and the Tensorflow
framework Figure 3. The model consists of an input layer, hidden
layers, and an output layer. The input layer receives two types of
variables. Time-series data are fed into the model through a Temporal
Convolutional Network (TCN). The processing of data in the TCN
can be described by mathematical formulas. For the 1D convolutional
layer, the operation formula is y � σ(W*x + b), where y is the output
of the convolutional operation, σ is the activation function, W
represents the weights of the convolutional kernel, * denotes the
convolution operation, x is the input, and b is the bias term. In the
TCN, data go through operations such as normalization, causal
convolution, and dropout layers, and are processed using uniform
TCN blocks before being transmitted to the concentrate layer.

The other type of variables, feature vectors, are processed by a fully
connected layer with the formula y � σ(Wx + b) and then input into
the concentrate layer, where they are fused with the time-series data
processed by the TCN. The fused data then pass throughmultiple fully
connected layers and dropout layers, and finally, the output layer with
only one neuron performs regression analysis and outputs the results.

The model training employs the Adam optimizer, which
adaptively adjusts the learning rate for each parameter to
accelerate model convergence. The update formulas of Adam
optimizer are mt � β1mt−1 + (1 − β1)gt, vt � β2vt−1 + (1 − β2)g2

t ,

FIGURE 2
Acl force calculation schematic.

FIGURE 3
Architecture of neural networks.
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m̂t � mt

1−βt1, v̂t �
vt

1−βt2, θt+1 � θt − αm̂t��̂
vt

√
+ϵ, where mt and vt are the first-

order and second-order moment estimates of the gradient
respectively, β1 and β2 are the exponential decay rates of the
moment estimates, gt is the current gradient, α is the learning
rate, and ϵ is a small constant for numerical stability.
Hyperparameters of the model, such as the learning rate, dilation
rate of the convolutional layer, and dropout rate, are optimized using
the grid search method. After determining the optimal combination
of hyperparameters, the model will be trained for 1,000 epochs with
a batch size of 32 each time.

2.5 Model validation

To evaluate the model performance more reliably, a three-fold
cross-validation method is adopted. First, the preprocessed dataset is
randomly divided into three non-overlapping subsets, denoted as A,
B, and C. In the first round of validation, subset A is used as the test
set, and subsets B and C are combined as the training set. The model

is trained on the training set and then evaluated on the test set A, and
evaluation metrics such as R2 and RMSE are recorded. The formulas

for R2 and RMSE are R2 � 1 − ∑n

i�1 (yi−ŷi)2∑n

i�1 (yi−�y)2 and

RMSE �
�������������
1
n∑n

i�1 (yi − ŷi)2
√

, where n is the number of samples, yi

is the true value, ŷi is the predicted value, and �y is the mean of the
true values. Then, in the second round of validation, subset B is used
as the test set, and subsets A and C form the training set, repeating
the training and evaluation process. Finally, in the third round of
validation, subset C is used as the test set, and subsets A and B are
used as the training set for training and evaluation again. After
completing the three rounds of validation, the average values
of R2 and RMSE obtained from the three rounds are calculated
as the final performance evaluation results of the model. This
method effectively avoids the influence of specific data divisions
on the model performance and ensures the robustness and
reliability of the evaluation results. To benchmark predictive
efficacy, the proposed model was rigorously compared against
standalone TCN and Long Short-Term Memory (LSTM)
architectures.

3 Results

Demographic details are presented in Table 1.
As demonstrated in Tables 2–4, the TCN-based hybrid model

incorporating feature embeddings achieved robust predictive

TABLE 1 Demographic information of participants.

EG CG

Gender 50% female 45% female

Age (years) 24.3 ± 3.2 25.3 ± 3.9

Height (cm) 171.3 ± 7.4 172.3 ± 7.7

Weight (kg) 66.5 ± 8.7 65.5 ± 9.1

Training Experience (years) 13.7 ± 4.6 14.2 ± 5.7

Knee range of motion (°)

T0 45.6 ± 6.9 43.2 ± 6.2

T1 13.2 ± 8.8 16.1 ± 9.0

T2 34.4 ± 6.6 25.4 ± 7.4

T3 47.1 ± 7.3 37.7 ± 8.8

FACL 0.51 ± 0.13 0.63 ± 0.17

Note: The ACL, Force (FACL) was standardized according to the body weight (BW) of the subjects.

TABLE 2 Results of Three - fold Cross - Validation for Predicting ACL Forces
in the Experimental Group.

Train R2 Test R2 Average test R2

Fold 1 0.77 0.61 0.63

Fold 2 0.75 0.65

Fold 3 0.76 0.64

TABLE 3 Results of Three - fold Cross - Validation for Predicting ACL Forces
in the Control Group.

Train R2 Test R2 Average test R2

Fold 1 0.61 0.56 0.58

Fold 2 0.62 0.61

Fold 3 0.66 0.59

TABLE 4 Results of Three - fold Cross - Validation for Predicting ACL Forces
in All Group.

Train R2 Test R2 Average test R2

Fold 1 0.71 0.61 0.62

Fold 2 0.65 0.64

Fold 3 0.72 0.61
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accuracy for ACL force estimation across the experimental group,
control group, and combined cohort. Notably, the experimental
group exhibited the highest performance, with a mean coefficient of
determination (R2) of 0.63 in three-fold cross-validation (see
Figures 4–6).

Comparative analyses (Figure 7) revealed that the TCN +
feature embedding architecture demonstrated superior
predictive accuracy compared to standalone TCN (R2 = 0.54) and
LSTM (R2 = 0.51) models, underscoring the efficacy of multimodal
feature fusion in biomechanical force modeling.

FIGURE 4
Scatter plot of the test set of the experimental group in the three-fold cross-validation for predicting ACL forces.

FIGURE 5
Scatter plot of the test set of the control group in the three-fold cross-validation for predicting ACL forces.

FIGURE 6
Scatter plot of the test set of all groups in the three-fold cross-validation for predicting ACL forces.
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4 Discussion

The hybrid TCN model developed in this study showed a
significant advantage in ACL force prediction (R2 = 0.63 for the
experimental group), a result that outperforms traditional
biomechanical models and single-modal prediction methods. In
contrast to medical diagnostic neural networks proposed in
previous studies (Kernozek and Ragan, 2008), our model
innovatively fuses static clinical features with dynamic gait data,
which is consistent with the theoretical findings of previous studies
on multimodal neural networks (Wang et al., 2023). However,
compared with previous studies that used only kinetic data to
predict ACL loads, our method significantly improved in
prediction accuracy (Shi et al., 2022), which validates the
important contribution of static features to long-term prediction.
Notably, our results are consistent with findings regarding the
importance of temporal features (Cordero-Sánchez et al., 2025),
but confirm for the first time that the synergistic effect of static and
dynamic features is even more critical under resistance brace
conditions. This study is of great value for the postoperative
rehabilitation of wushu athletes. By accurately predicting the
changes in ACL forces, it can help clinicians to develop
individualized rehabilitation programs to avoid secondary
ligament injuries during training (Zangene et al., 2021);
meanwhile, athletes can adjust their training intensity and
movement techniques according to the prediction results to
safely and efficiently regain their athletic abilities (Wilhelm
et al., 2024).

In addition, this study showed that the resistance brace
significantly improved ROM recovery (47.1° vs. 37.7°) and
reduced ACL loading (0.51 B W vs. 0.63 B W), a finding that is
consistent with previous studies (Palmieri-Smith et al., 2022), but
this study is the first to quantify the mechanical mechanism through
neural network modeling. Compared with the previously reported
effects of conventional braces, the resistance design showed unique
advantages in improving joint coordination (Wu et al., 2023). The
study provides a new basis for the optimal design of resistance
braces. These findings provide important guidance for the
rehabilitation training of wushu athletes: through real-time

monitoring of ACL force changes, athletes can adjust their
training intensity in a timely manner (Dutton et al., 2014), and
gradually resume difficult movements under the premise of ensuring
safety; and clinicians can formulate individualized brace use plans
for each athlete based on the prediction results to optimize the
rehabilitation process (Hiller and Beckenkamp, 2023).

The real-time prediction ability (R2 > 0.6) of this study is
significantly better than that of the traditional OpenSim
modeling approach, and our scheme extends the clinical
applicability significantly (from the laboratory environment to
routine rehabilitation scenarios) compared to earlier studies (Reis
et al., 2024). Although previous studies have proposed similar
concepts for personalized rehabilitation (Chidambaram et al.,
2022), this study is the first to achieve quantitative decision
support based on neural networks. Accurate ACL force data can
be obtained through a simple gait analysis device to develop a more
scientific rehabilitation program for athletes; at the same time,
athletes can understand the ligament loading during training in
real time, and adjust the amplitude and intensity of movements in a
timely manner, which ensures the rehabilitation effect as well as
avoids secondary injuries (Duhig and McKenzie, 2024).

Limitations of the study: this study has certain limitations.
Although the sample size meets the basic statistical requirements,
it may affect the applicability of the model in a wider population. In
addition, the data collection relied on laboratory equipment, which
has some limitations in clinical application. These factors need to be
further optimized in future studies.

5 Conclusion

The hybrid TCN model developed in this study successfully
achieved high-precision prediction of ACL forces (R2 = 0.63 for the
experimental group), confirming the key role of integrating dynamic
gait data with static clinical characteristics to enhance prediction.
The resistance brace significantly improved knee mobility and
reduced ACL loading, and its biomechanical benefits were
quantitatively validated by neural network modeling for the first
time. The predictive model breaks through the limitations of

FIGURE 7
Mean value of R-squared for cross-validation of different models.
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traditional laboratory methods and provides a practical and
personalized rehabilitation decision-making tool for clinical
practice, which supports the promotion of the use of resistive
braces in post-operative ACL rehabilitation. Future studies need
to expand the sample size and optimize the data collection method
to further enhance the generalizability of the model.
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