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Objectives: Accurate segmentation of craniomaxillofacial (CMF) structures and
individual teeth is essential for advancing computer-assisted CMF surgery. This
study developed CMF-ELSeg, a novel fully automatic multi-structure
segmentation model based on deep ensemble learning.

Methods: A total of 143 CMF computed tomography (CT) scans were
retrospectively collected and manually annotated by experts for model
training and validation. Three 3D U-Net–based deep learning models (V-Net,
nnU-Net, and 3D UX-Net) were benchmarked. CMF-ELSeg employed a coarse-
to-fine cascaded architecture and an ensemble approach to integrate the
strengths of these models. Segmentation performance was evaluated using
Dice score and Intersection over Union (IoU) by comparing model predictions
to ground truth annotations. Clinical feasibility was assessed through qualitative
and quantitative analyses.

Results: In coarse segmentation of the upper skull, mandible, cervical vertebra,
and pharyngeal cavity, 3D UX-Net and nnU-Net achieved Dice scores above
0.96 and IoU above 0.93. For fine segmentation and classification of individual
teeth, the cascaded 3D UX-Net performed best. CMF-ELSeg improved Dice
scores by 3%–5% over individual models for facial soft tissue, upper skull,
mandible, cervical vertebra, and pharyngeal cavity segmentation, and
maintained high accuracy Dice > 0.94 for most teeth. Clinical evaluation
confirmed that CMF-ELSeg performed reliably in patients with skeletal
malocclusion, fractures, and fibrous dysplasia.
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Conclusion: CMF-ELSeg provides high-precision segmentation of CMF structures
and teeth by leveraging multiple models, serving as a practical tool for clinical
applications and enhancing patient-specific treatment planning in CMF surgery.

KEYWORDS

deep learning, craniomaxillofacial surgery, virtual surgical planning, computed
tomography, segmentation

1 Introduction

Craniomaxillofacial (CMF) deformities include congenital and
acquired malformations such as dentofacial, post-traumatic, post-
tumor resection–related, and temporomandibular joint deformities,
which significantly compromise the facial aesthetics and
stomatognathic functions of patients (Xia et al., 2009). Surgical
correction of CMF deformities is challenging due to their complex
characteristics. To achieve favorable surgical outcomes, personalized
and precise surgical plans are necessary (Alkhayer et al., 2020; On
et al., 2024). Recently, virtual surgical planning (VSP) based on
three-dimensional (3D) imaging technologies, including 3D
preoperative treatment planning and simulation of surgical
outcome, has been increasingly utilized in CMF surgery,
facilitating deformity diagnosis, cephalometric analysis, surgical
simulation, and the fabrication of cutting guides and splints
(Naran et al., 2018). The initial step of the VSP workflows
involves the segmentation of CMF structures, followed by 3D
reconstruction of the composite dental-maxillofacial model from
computed tomography (CT) scans (Bao et al., 2024). Overall,
efficient and accurate segmentation approaches provide a robust
basis for advancing computer-assisted CMF surgery.

Manual segmentation by experienced clinicians acts as the gold
standard, but it is widely acknowledged that this process is considerably
time-consuming, labor-intensive, and error-prone with segmentation
performance varying among experts. In current clinical applications,
semi-automatic approaches like threshold-based, region-growing or
template-fitting methods (e.g., GrowCut, Canny Segmentation and
Robust Statistics Segmenter algorithms) integrate automated
segmentation with manual label annotation by experts, which have
been applied in digital planning software and alleviate the workload of
clinicians (Wallner et al., 2019; Zhang L. et al., 2023). However, instance
segmentation, which involves distinguishing and delineating each
unique structure within the CMF region, remains challenging due to
substantial interindividual morphological variations, intricate structural
connections, poor contrast in joints and tooth apices, and frequent
presence of artifacts (Priya et al., 2024; Xiang et al., 2024). Traditional
approaches still cannot achieve favorable segmentation results and need
manual adjustment for clinical use. Therefore, establishing a fully
automated, high-precision segmentation system holds considerable
clinical significance for CMF surgery.

With the rising clinical needs and the development of artificial
intelligence, deep learning has been applied across various aspects of
healthcare, including medical diagnosis, treatment planning,
surgical assistance, postoperative monitoring and rehabilitation
training (Jiang et al., 2017; Chen et al., 2022; Huang et al., 2024;
Wang et al., 2024). In the field of dentistry, deep learning has
significantly improved digital dentistry workflows such as caries
detection, prosthetic evaluation, orthodontic analysis, periodontitis

diagnosis and treatment planning (Graves and Uribe, 2024;
Nordblom et al., 2024; Setzer et al., 2024). Fully automated
medical image segmentation approaches based on deep learning
have been proposed to overcome previous limitations and enhance
the precision and efficiency of CMF surgery due to its ability to learn
features associated with target tasks from large-scale data (Liu et al.,
2023; Nogueira-Reis et al., 2023; Xiang et al., 2024). Inspired by its
remarkable advancements, many studies have developed and
evaluated specific algorithms for CMF CT or Cone-beam CT
(CBCT) segmentation (Zhang et al., 2020; Liu et al., 2024).
Notably, U-Net-based framework demonstrated excellent
performance for medical image segmentation, which has an
encoder-decoder framework with skip connections (Ronneberger
et al., 2015). Liu et al. proposed a 3D U-Net-based model to segment
midface and mandible from CBCT for computer-aided CMF
surgical simulation (Liu et al., 2021; Deng et al., 2023). Dot et al.
evaluated the performance of the nnU-Net for automatic
segmentation of the upper skull, mandible, upper teeth, lower
teeth and mandibular canal from CT scans for orthognathic
surgery (Dot et al., 2022). However, some limitations restrict
their clinical applicability. First, most existing algorithms were
dedicated to coarse segmentation considering few structures (e.g.,
less than 30 structures), and only a few studies have attempted to
segment all the structures of interest (facial soft tissue, upper skull,
mandible bone, cervical vertebra, hyoid bone, pharyngeal cavity,
inferior alveolar nerve, upper teeth, lower teeth and individual
teeth), which limits models’ clinical application (Dot et al., 2022;
Liu et al., 2024). Second, due to the diverse sizes and shapes of
different structures, direct cross-scale training leads to the deficiency
of semantic information in multiple segmentation tasks and the
capability of the individual model for cross-scale information
extraction is limited. The segmentation accuracy and robustness
require improvement. To date, no studies have investigated the use
of ensemble learning strategies to improve the potential of fully
automated segmentation algorithms for application in CMF surgery.
Meanwhile, although current studies focusing on segmentation
algorithms are promising, the reliability and accessibility of
different methods for multi-structure segmentation and
classification in the CMF region have not been systematically and
comprehensively benchmarked (Schneider et al., 2022). Most
published studies were conducted based on small-size hold out
dataset (Dot et al., 2024). Hence, it is of great significance to
systematically evaluate the segmentation performance of existing
models and to develop a novel multi-objective segmentation model
capable of automatically extracting information across
different scales.

Based on previous studies and the identified deficiencies, the
current study aims to comprehensively benchmark the performance
of three 3D U-Net-based deep learning models (V-Net, nnU-Net,
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3D UX-Net) for multi-structure segmentation and classification
using an identical CMF CT dataset. In addition, we propose a
novel fully automated framework, named CMF-ELSeg, that
utilizes deep ensemble learning methodologies specifically tailored

for multi-class segmentation in CMF surgery. By integrating the
strengths of each individual model, CMF-ELSeg achieves accurate
segmentation of CMF structures and teeth, and can identify each
tooth according to the Fédération Dentaire Internationale (FDI)

FIGURE 1
Overview of the study design.
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classification. Our framework serves as a powerful tool for surgical
planning, significantly enhancing the decision-making and design
processes in CMF surgery.

2 Materials and methods

The overview of the study design is shown in Figure 1. Our study
follows the Checklist for Artificial Intelligence in Dental Research
(Schwendicke et al., 2021). This study was ethically approved by the
ethics committee of Shanghai Ninth People’s Hospital, Shanghai
Jiao Tong University School of Medicine (IRB No. SH9H-2022-
TK12-1).

2.1 Participants and dataset

Three cohorts were formed in our study to train and validate the
segmentation model. CMF CT scans were collected from the
Department of Oral and Cranio-Maxillofacial Surgery, Shanghai
Ninth People’s Hospital. Cohort 1 (Model cohort) and Cohort 2
(Clinical cohort) were employed for model training and clinical
feasibility evaluation. The inclusion criteria for Cohort 1 and Cohort
2 were as follows: (1) patients diagnosed with skeletal malocclusion;
(2) patients who required orthodontic and orthognathic joint
treatment; (3) patients who received CMF CT scans covering the
entire maxillofacial region. Participants were excluded if they met
any of the following conditions: (1) refusal to participate (n = 4); (2)
inadequate image quality that did not meet the requirements for
surgical planning (n = 8); (3) diagnosis of congenital dentofacial
deformities, such as CMF syndromes, cleft lips, and cleft palates (n =
18). Preoperative CT scans were taken during the VSP phase
following the completion of preoperative orthodontic treatment,
while postoperative CT scans were obtained 6 months after surgery.
The parameters of CT images are as follows: a pixel size ranging
from 0.40 mm × 0.40 mm to 0.53 mm × 0.53 mm; a slice interval
between 0.625 mm and 1.250 mm; and a resolution of 512 ×
512 pixels. The details of patient characteristics are shown in the
Supplementary Material (Supplementary Figures S1, S2). In
addition, the Cohort 3 (Multi-disease cohort), including samples
from patients with maxillofacial fractures, fibrous dysplasia, and
congenital syndromes, was used to validate the generalizability of
the model.

2.2 Data annotations

In total, 90 CT scans in Cohort 1 were obtained in Digital
Imaging and Communications in Medicine (DICOM) format and
imported into 3D Slicer software (version 4.2.0). Manual
segmentation for each CT scan was completed by two
experienced radiologists and verified by one oral and
maxillofacial doctor with rich experience in CMF surgery. The
ground truth of each segmentation label was generated, including
facial soft tissue, upper skull, mandible bone, cervical vertebra, hyoid
bone, pharyngeal cavity, inferior alveolar nerve, upper teeth, lower
teeth and individual teeth (Supplementary Figure S3). All ground
truth annotations were carefully reviewed to meet the high standards

required for clinical use. The details of data annotations and
preprocessing were shown in the Supplementary Material.

2.3 Benchmark tasks and construction of
cascaded segmentation networks

Our benchmark includes two tasks: (1) comparing the
performance of different backbones in CMF structures
segmentation; and (2) comparing the performance of fine
segmentation networks in teeth instance segmentation.
Considering the deficiency of semantic information details in
direct cross-scale training, and the difficulty in simultaneously
achieving effective recognition of segmentation tasks at different
granularities, the cascaded segmentation network illustrated in
Figure 2 was developed, which is composed of the coarse
segmentation network for CMF structures segmentation and the
fine segmentation network for teeth segmentation and ID
classification. Three widely used U-Net models including V-Net,
nnU-Net, and 3D UX-Net were selected as backbones for training
and benchmark evaluation (Milletari et al., 2016; Isensee et al., 2021;
Lee et al., 2023). The descriptions of the backbone models are
included in the Supplementary Material (Supplementary Figure S4).

In the coarse stage, the CMF anatomical structures of interest
(facial soft tissue, upper skull, mandible bone, cervical vertebra,
hyoid bone, pharyngeal cavity, inferior alveolar nerves) were first
segmented. The teeth are roughly categorized into upper and lower
classes according to the position of the teeth in the maxilla and
mandible. Then, the CT images and labels were synchronously
scaled and cropped using nearest neighbor interpolation based on
the foreground region of the upper and lower teeth to obtain the
regions of interest (ROI). In the fine stage, the framework of fine
segmentation networks shared the same basic architecture as the
model from the first stage. A combination forecasting approach
based on the features of adjacent teeth to reduce misidentification
was applied to achieve fine segmentation of individual teeth. The
final layer of the decoder includes two output layers corresponding
to the segmentation of teeth into 33 classes (32 individual teeth and
the background) and five classes (odd and even-numbered upper
and lower teeth, along with the background), respectively. This
improvement utilizes a Dice loss function for the five-class
segmentation to correct the 33-class segmentation. The loss
function for the fine segmentation network is defined as follows:

L � λ1Ldice p̂33, G33( ) + λ2Ldice p̂5, G5( )
Where p̂33 and G33 represent the predicted results and ground truth
for 33-class tooth segmentation, respectively, and p̂5 and G5

represent the predicted results and ground truth for five-class
tooth segmentation, respectively. The accuracy of individual
cascaded network with different backbones was compared in the
task of teeth segmentation.

2.4 Framework of CMF-ELSeg

Based on the performance of the coarse-to-fine cascaded
segmentation networks, we proposed an ensemble learning
segmentation model for CMF surgery, named CMF-ELSeg, to

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Bao et al. 10.3389/fbioe.2025.1580502

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1580502


enhance overall segmentation ability (Figure 2). Three cascaded
segmentation networks, employing V-Net, nnU-Net, and 3D UX-
Net as backbones, were integrated for the development of the
ensemble model. Each backbone was chosen for its distinct
advantages in voxel recognition. Each individual cascaded
segmentation network was trained separately and the CMF-ELSeg
was developed leveraging the diversity of different models through a
weighted voting strategy to produce a fused segmentation result. To
avoid overfitting and poor robustness, we employed ensemble
learning to learn the trainable voting weights. Specifically, the
Adaptive Boosting (AdaBoost) method was utilized for adaptively
assigning appropriate weights to the classifiers during the training
process, which is advantageous in effectively reducing bias and
variance, thereby improving overall generalization and accuracy
(Freund and Schapire, 1997; Schapire, 2013). By combining
multiple weak classifiers and iteratively adjusting the weights of
the dataset to focus on previously misclassified samples, AdaBoost
enhanced the performance of the segmentation task. The weights of

weak classifiers were calculated by evaluating the accuracy of three
individual cascaded segmentation networks according to the
following formula:

αt � 1
2
ln

1 − ϵt
ϵt

( ), t � 1, 2, 3

where t represents the number of three individual cascaded
segmentation network, and ϵt represents the error rate of the
different model. Subsequently, we integrated multiple weak
classifiers to construct a strong classifier, thereby enhancing the
accuracy of segmentation tasks.

2.5 Evaluation of model performance

Both qualitative and quantitative assessments were conducted.
By inputting the original CT images into the deep learning models,
we obtained the segmentation results (predictions) for each target.

FIGURE 2
Architecture of our proposed deep learning model.
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For visualization, individual CMF 3D models were reconstructed
employing 3D Slicer software. The segmentation performance of the
deep learning models for each CMF structure and individual tooth
was assessed by comparing the predictions with manually delineated
ground truth. Quantitative evaluation metrics including the Dice
and Intersection over Union (IoU) were utilized for this evaluation.
The specific definitions of these metrics are listed in the
Supplementary Material.

2.6 Evaluation of clinical feasibility

Cohort 2 and Cohort 3 were used to validate the clinical
feasibility and generalizability of CMF-ELSeg. Specifically,
Cohort 2 comprised 30 patients with skeletal malocclusion,
while Cohort 3 included 23 patients with a variety of CMF
conditions. A four-point categorical scale was used to evaluate
the segmentation quality of each category as well as the overall
segmentation performance: “Grade A” = optimal automatic
segmentation, indicating that the results can be directly used
for VSP (The overall grade can only be rated as “A” if all
individual categories are also graded as “A”); “Grade B” =
minor visual errors in the automatic segmentation, with
results still deemed suitable for direct use in surgical planning;
“Grade C” = segmentation errors that could impact surgical
planning but are easily correctable, such as defects in the
anterior wall of the maxillary sinus, misidentification of
individual teeth, or discontinuities in the nerve canal; and
“Grade D” = significant errors that are difficult to manually
correct and adversely affect surgical planning, requiring re-
segmentation, such as misidentification of multiple teeth or
incorrect classification of the maxilla and mandible (Deng
et al., 2023). The segmentation and reconstruction results
were evaluated by three experienced surgeons, who
collaboratively determined the grade for each label and the
overall performance.

Following the qualitative evaluation, the experts responsible
for the initial manual annotations refined the preliminary
segmentation results rated as B, C, or D. Manual corrections
were performed using the 3D Slicer to modify and correct
mislabeled regions slice by slice. The revision continued until
the segmentation quality for each anatomical structure and
individual tooth fully satisfied the criteria of Grade A,
indicating that the corrected results could be directly
employed for VSP. Dice coefficients were subsequently
calculated to compare the automatic segmentation results with
the manually corrected outcomes. The corresponding
modification times were also recorded throughout this process.

2.7 Statistical analysis

All these models underwent training using a 5-fold cross-
validation strategy. The analysis and visualization of all data were
conducted using Python (v.3.7) and R software (v.4.1.2). For
statistical analysis, categorical variables were presented as
numbers and percentages, and continuous variables were
presented as means ± standard deviations (mean ± Std). We

employed the T-test for normally distributed continuous
variables, and the Mann-Whitney U test for non-normally
distributed continuous variables to compare continuous variables
between two groups. P < 0.05 was considered as the statistical
significance.

3 Results

3.1 Performance evaluation of cascaded
segmentation networks for CMF structures
and individual teeth segmentation

Figure 3 and Supplementary Table S2 show the performance
(Dice and IoU) of V-Net, nnU-Net, and 3D UX-Net for CMF
structures segmentation. The segmentation performance of 3D UX-
Net and nnU-Net was comparable and significantly better than that
of V-Net (Figure 3A; Supplementary Figure S5A). In the
segmentation task for the upper skull, mandible, cervical vertebra
and pharyngeal cavity, both 3D UX-Net and nnU-Net achieved
average Dice scores exceeding 0.96 and average IoU exceeding 0.93.
The nnU-Net generally has the highest mean value on all metrics,
particularly excelling in the segmentation of the hyoid bone, inferior
alveolar nerve, upper teeth, and lower teeth.

The performance of fine segmentation for individual teeth was
evaluated and the quantitative analysis results were presented in
Figure 3B and Supplementary Figure S5B. The cascaded
segmentation network based on 3D UX-Net demonstrated
optimal performance across all evaluation metrics, maintaining
high accuracy and stability even when segmenting the maxillary
3rd molar (Dice = 0.9133 ± 0.0778; IoU = 0.8514 ± 0.1153)
(Supplementary Table S3). nnU-Net based model’s Dice and IoU
scores were slightly lower than those of 3D UX-Net but higher than
those of V-Net except for the maxillary 3rd molars. Additionally, the
most notable segmentation error made by the model based on nnU-
Net was the mislabeling of individual teeth, which occurs less
frequently in the model developed based on 3D UX-Net.

3.2 Performance evaluation of CMF-ELSeg

The mean results of Dice and IoU for each segmentation label
are shown in Figure 4A and Supplementary Table S4. Two cases
were randomly selected from our dataset to illustrate our results
(Case 1: a patient with dentofacial deformity before orthognathic
surgery; Case 2: a patient who has undergone orthognathic surgery).
It can be observed that apart from suboptimal segmentation
performance for the hyoid bone and inferior alveolar nerves
(Dice coefficient less than 0.9), CMF-ELSeg consistently achieves
high segmentation levels across other categories. Compared to
individual models, CMF-ELSeg demonstrated approximately a
3%–5% improvement in Dice coefficient scores in the
segmentation of CMF structures including facial soft tissue,
upper skull, mandible bone, cervical vertebra, and pharyngeal
cavity (Figure 4B). Figures 5A–D and Supplementary Figure S6
showed the results of 2D segmentation and 3D reconstruction for
each label. Additionally, the results of 2D segmentation, 3D
reconstruction and surface deviations of all teeth were presented
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in Figures 6, 7. It showed consistently high segmentation accuracy in
the segmentation and classification of individual teeth, where CMF-
ELSeg achieved Dice exceeding 0.94 for most teeth segmentation
tasks, with slightly lower Dice scores observed for Maxillary 3rd
molar (0.9282 ± 0.0515), Mandibular central incisor (0.9180 ±
0.0425), Mandibular lateral incisor (0.9204 ± 0.0577), Mandibular
1st premolar (0.9397 ± 0.0332), and Mandibular 2nd molar
(0.9307 ± 0.1053) (Supplementary Tables S4, S5).

3.3 Clinical feasibility evaluation of
CMF-ELSeg

Cohort 2 included 30 patients with skeletal malocclusion. The
example of segmentation and the results of the qualitative evaluation
of CMF-ELSeg are shown in Figures 8A,B. Among 30 cases, 90%
were ranked “Grade A” or “Grade B,” indicating that these results
could be directly used for VSP without the need for manual revision.

FIGURE 3
Quantitative analysis results for segmentation performance. (A) Dice scores for segmentation performance of CMF structures using V-Net, nnU-
Net, and 3DUX-Net. (B)Dice scores for segmentation performance of individual teeth using cascaded segmentation networks based on V-Net, nnU-Net,
and 3D UX-Net.
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Only 10% of the cases were rated as “Grade C,” with no
segmentation results rated as “Grade D.” The quantitative
analysis results showed that, except for the segmentation of the
hyoid bone (0.943 ± 0.148) and inferior alveolar nerve (0.882 ±
0.153), the average Dice scores for the other structures exceeded
0.975 (Supplementary Table S6; Figure 8C). The revision times were
recorded in Supplementary Table S6 and Figure 8C, where the
overall revision time was 15.119 ± 10.155 min. Cohort 3 consisted of
23 patients with various craniofacial disorders, including 10 cases of
maxillofacial fractures, eight cases of fibrous dysplasia, and five cases
of complex craniofacial conditions (cleidocranial dysplasia,
secondary deformities from cleft lip and palate) (Figure 8D).
CMF-ELSeg demonstrated strong performance in the
segmentation and reconstruction of maxillofacial fractures and
fibrous dysplasia, with the evaluation of Grade B and above
reaching 100% for facial fractures and 87.5% for fibrous dysplasia
(Figure 8E). However, the model’s performance significantly

decreased when applied to complex craniofacial conditions, with
40% of cases rated as C and D (Figure 8E). The automatic
segmentation results are shown in Figure 8F.

4 Discussion

Segmentation and reconstruction of CMF structures and
individual teeth are essential steps for orthodontics and
orthognathic treatment planning. Developing and validating fully
automatic segmentation algorithms and selecting the optimal model
are of great significance (Zhang R. et al., 2023; Chen et al., 2024). In
this study, we designed a novel coarse-to-fine cascaded
segmentation network and employed a combination forecasting
method to enhance the accuracy of individual teeth
segmentation. By comparing three network backbones and
utilizing ensemble learning, CMF-ELSeg achieved a 3%–5%

FIGURE 4
Segmentation performance of CMF-ELSeg. (A) Quantitative analysis results for segmentation performance of CMF structures and individual teeth.
(B) Comparison of segmentation performance between CMF-ELSeg and the baseline models. *P < 0.05.
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improvement in segmentation performance for CMF structures and
individual teeth compared to individual models.

To our knowledge, this is the first study to simultaneously
segment multiple CMF structures and individual teeth (Cui et al.,
2022; Xiang et al., 2024). First, we evaluated the segmentation
performance of the three models on nine CMF structures, which
are commonly involved in surgical planning. We selected V-Net,
nnU-Net, and 3D UX-Net for their complementary strengths in
handling complex CMF segmentation needs. Specifically, V-Net’s
residual convolutional architecture allows for enhanced feature
extraction in volumetric data, while nnU-Net’s self-configuring
capabilities make it particularly effective across variable
anatomical regions. Meanwhile, 3D UX-Net’s transformer-based
architecture captures both global and local features, contributing to
high-precision segmentation of individual teeth and other small
structures. The ensemble approach leverages these unique strengths,
optimizing the performance of CMF-ELSeg in the context of
intricate CMF anatomy. The use of Dice and IoU scores across
CMF and dental structures provides a robust, multifaceted
evaluation of CMF-ELSeg’s segmentation performance. However,
the segmentation of the inferior alveolar nerve yielded lower Dice
scores, due to its small size and complex trajectory (Ntovas et al.,
2024). nnU-Net significantly outperformed the other two models in

segmenting elongated anatomical structures, including inferior
alveolar nerves and the hyoid bone, making it the preferred
choice for its user-friendly features (Isensee et al., 2021). Our
findings are consistent with those from Dot et al., who employed
the nnU-Net to segment CMF structures from CT scans and
demonstrated its reliable performance in accomplishing fully
automated segmentation for skeletal malocclusion patients before
orthognathic surgery (Dot et al., 2022).

Specifically, due to the lack of semantic detail in direct cross-
scale training and the challenge of recognizing segmentation tasks at
varying granularities, we constructed a coarse-to-fine cascaded
framework for individual tooth segmentation and identification
(ID) classification. Among the three backbones, the 3D UX-Net-
based model demonstrated the best tooth segmentation capability.
By extracting the ROI during the coarse segmentation stage, the
model could capture relevant spatial features and attenuate
background noise (Jing et al., 2018; Lee et al., 2022). Meanwhile,
the feature combination approach effectively addressed the issue of
misidentification caused by tooth contact. As our training data were
obtained from the VSP stage either before orthognathic surgery or
6 months post-surgery, premolars were often absent. Our
experimental results also demonstrated the robust performance of
the proposed model when dealing with samples that had missing

FIGURE 5
Segmentation and 3D reconstruction results of CMF structures and individual teeth using CMF-ELSeg. (A,B) Segmentation results illustrated for two
representative cases. (C,D) 3D reconstruction results illustrated for two representative cases. Case 1: a skeletal class III malocclusion patient with
orthodontic brackets. Case 2: a patient who has undergone orthognathic surgery.
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teeth or significant anatomical and positional variations in wisdom
teeth (Zhou et al., 2024). By integrating the multiple CMF structures
and individual teeth, the reconstructed 3D models can meet the
needs of orthognathic surgery and orthodontic treatment planning.

Another key contribution of our study is the introduction of
ensemble learning to CMF surgery, a paradigm in machine learning
that enhances methodological performance. Recently, several new
segmentation algorithms based on the U-Net architecture have been
developed. We selected three U-shaped models as backbones. V-Net
extends U-Net from 2D to 3D, enhancing local feature extraction
through its residual architecture in each convolutional stage
(Milletari et al., 2016). Chen et al. proposed a multi-task method
based on the V-Net that can segment different kinds of teeth and
deal with non-open bite regions and metal artifacts from CBCT
(Chen et al., 2020). nnU-Net integrates multiple U-Net methods
such as 2D U-Net and 3D U-Net (Isensee et al., 2021). As a publicly

available and user-friendly tool, it can automatically configure itself
and adapt to any new dataset without manual intervention. The
Vision Transformer (ViT) excels in medical imaging tasks, with
some researchers combining it with U-Net to enhance segmentation
performance (Berroukham et al., 2023). Jin et al. proposed a novel
Swin Transformer–U-Net model to segment and classify nasal and
pharyngeal airway subregions (Jin et al., 2023). Compared to CNNs,
which focus solely on local image structures, ViT captures global
features by analyzing connections between localized regions but has
limitations in feature localization. Therefore, some hybrid
frameworks combine the complementary strengths of ViT and
CNNs. 3D UX-Net, developed by Lee et al., is a U-shaped
network combining convolution with Swin Transformer for
volumetric segmentation, effectively reducing parameters through
its lightweight volumetric ConvNet (Lee et al., 2023). While it has
demonstrated state-of-the-art performance in various datasets, its

FIGURE 6
Segmentation results of individual teeth using CMF-ELSeg and individual cascaded segmentation network. Case 1: a skeletal class III malocclusion
patient with orthodontic brackets. Case 2: a patient who has undergone orthognathic surgery.

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Bao et al. 10.3389/fbioe.2025.1580502

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1580502


application in CMF structure and tooth segmentation remains
unexplored. Here, the proposed ensemble model (CMF-ELSeg)
combines multiple cascaded segmentation networks, leveraging
their diversity to enhance overall performance (Wang et al., 2023;

Roshan et al., 2024). The AdaBoost method effectively reduces bias
and variance, improving generalization and accuracy. Experimental
results show that CMF-ELSeg significantly outperformed individual
cascaded segmentation models. Additionally, our model’s

FIGURE 7
3D reconstruction results and surface deviations of individual teeth using CMF-ELSeg and individual cascaded segmentation network. Case 1: a
skeletal class III malocclusion patient with orthodontic brackets. Case 2: a patient who has undergone orthognathic surgery.
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FIGURE 8
Clinical feasibility evaluation of CMF-ELSeg. (A) An example of the segmentation and reconstruction results using CMF-ELSeg for patients with
skeletal malocclusion. (B) The qualitative analysis results of CMF-ELSeg in Cohort 2. (C) Quantitative analysis results of CMF-ELSeg in Cohort 2. (D) The
composition of patients in Cohort 3. (E) The qualitative analysis results of CMF-ELSeg in Cohort 3. (F) Segmentation and reconstruction cases of CMF-
ELSeg in Cohort 3.
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performance in tooth segmentation can be extended to various
clinical scenarios, such as orthodontic treatment planning,
management of periodontitis patients, and implant restoration
design (Polizzi et al., 2023; Polizzi et al., 2024).

This study has several limitations that should be addressed in future
work. First, model development and evaluation were conducted using a
single-center dataset, necessitating validation through large-sample,
multicenter studies. The CT scans were primarily from patients with
CMF deformities requiring combined orthodontic and orthognathic
treatment. To enhance the model’s applicability and robustness, future
research will include a broader patient population, encompassing
individuals with complex craniofacial conditions such as fractures,
jaw defects, craniofacial syndromes, and cleft lip and palate. Second,
our results indicated relatively lower segmentation accuracy for tubular
and thin anatomical structures, such as the hyoid bone, inferior alveolar
nerve, orbital walls and maxillary sinuses. Addressing these challenges
might involve integrating higher-resolution sub-volume inputs
specifically focused on these fine structures to enhance spatial
resolution. Specialized segmentation architectures, potentially
incorporating attention mechanisms or transformer-based modules
optimized for thin and tubular structures, could further improve
performance. Third, clinical validation revealed poor performance in
complex craniofacial conditions like cleft lip and palate and congenital
syndromes, where segmentation was compromised. Calcified lesions,
such as those in fibrous dysplasia, impacted precision due to varying
degrees of calcification. To address these issues, we plan to refine the
model by developing specialized algorithms tailored to complex
craniofacial conditions and calcified tissues. This will enhance the
model’s robustness and applicability across a broader range of
clinical cases. In addition, while the cascaded architecture and
ensemble inference of CMF-ELSeg significantly enhance
segmentation accuracy and robustness, these strategies inherently
increase computational complexity and inference time. Although our
current inference speed remains clinically acceptable for routine
preoperative surgical planning, real-time deployment or integration
into interactive clinical workflowsmay necessitate further optimization.
We have developed the VSP-AI platform and integrated our
segmentation algorithm into it (Supplementary Figure S7). This
platform streamlines the VSP design process, optimizing workflow
and improving efficiency. In the future, we plan to conduct clinical
validation studies to evaluate themodel’s accuracy and efficiency in real-
world trials, providing valuable insights into its practical applicability.

5 Conclusion

In conclusion, our study introduced CMF-ELSeg, a fully multi-
structure segmentation model designed to simultaneously segment
multiple CMF structures and individual teeth for orthognathic
surgical planning. Built on a coarse-to-fine cascaded segmentation
network architecture, CMF-ELSeg leverages an ensemble learning
approach that combines the strengths of V-Net, nnU-Net, and 3D
UX-Net. This multi-model approach led to a 3%–5% improvement in
Dice coefficients for segmentation of facial soft tissue, upper skull,
mandible bone, cervical vertebra, and pharyngeal cavity compared to
individualmodels. Additionally, CMF-ELSeg consistently achieved high
accuracy for individual teeth segmentation, with Dice coefficients
exceeding 0.94 for most teeth. These results underscore CMF-

ELSeg’s high precision and its potential as a practical tool for
clinical practice, significantly enhancing the efficacy of patient-
specific treatment planning for CMF surgery.
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