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Imaging flow cytometry (IFC), as an extension of conventional flow cytometry,
has emerged as a cutting-edge cellular analysis tool by integrating high-
resolution imaging technology, and has shown significant potential and
application value in biomedical research. In this paper, we comprehensively
review the evolution of IFC from its early theoretical development to its
current mature application, and explain its working principle, unique
advantages, and the current status of its application in several biomedical
fields. The paper focuses on how IFC integrates high-throughput and
morphological imaging, highlighting its key role in cell biology, immunology,
oncology, and environmental monitoring. Furthermore, the paper addresses the
challenges and opportunities in data analysis, and proposes the potential of
artificial intelligence (AI) and machine learning technologies to drive its progress.
The paper concludes with an outlook on the future of IFC, predicting its
application in emerging research areas and emphasizing the role of
continuous technological innovation in driving the development of the field. It
aims to provide researchers with a comprehensive view of IFC to promote its
widespread application in biomedical research.
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1 Introduction

Flow Cytometry (FC) is a revolutionary biotechnology that allows scientists to make
rapid, simultaneous measurements of a wide range of physical and chemical properties of
cells (Lazarski and Hanley, 2024; Railean and Buszewski, 2022). Since its origin in the 1950s,
FC has undergone significant technological advances and its applications have expanded
from the initial counting and size analysis of cells to the multiparametric analysis of cellular
functions (Cram et al., 1992; Zhao et al., 2023). The basic principle of FC involves
suspending cells or particles in a fluid and passing them one by one through an
extremely narrow detection channel. When cells move through the laser beam, signals
generated by their physical properties (e.g., forward and side scattered light) and chemical
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properties (e.g., fluorescent labeling) are captured by the detector
and transformed into electrical data, which computers then process
to produce statistical information and graphical presentations about
the cell properties (Robinson and Roederer, 2015; Zorzi et al., 2023).

Technological advances have driven the multi-stage evolution of
FC: Initially, the creation of multicolor FC enabled the parallel
analysis of multiple parameters using multiple fluorescence channels
simultaneously, which greatly improved the efficiency in studying
cellular properties (De Rosa et al., 2003). This was followed by
adding fluorescence-activated cell sorting (FACS) techniques that
not only added the ability to analyze, but also provided the ability to
physically separate specific cell populations, which has been of great
significance for in-depth research and experimentation (Fulwyler,
1965). The advent of spectral flow cytometry introduced a wider
spectral range and upgraded optics, which greatly improved the
resolution and sensitivity of fluorescence detection (Brandi et al.,
2023; Sharma et al., 2024). The introduction of mass spectrometry
flow cytometry is a perfect combination of FC and mass
spectrometry techniques, which employ heavy metal isotopes as
labels. This integration facilitates the concurrent analysis of over
40 parameters on a per-cell basis, and effectively circumvents the
problem of overlapping fluorescence signals (Spitzer and Nolan,
2016). Perhaps most notable is Imaging flow cytometry (IFC), which
incorporates high-resolution imaging techniques capable of
analyzing the physical and chemical characteristics of cells while
capturing morphological images of cells, providing intuitive
information on cellular function and allowing researchers to gain
insight into morphological changes and microstructure in a high-
throughput environment (Rees et al., 2022).

The origin of IFC was driven by the need for deeper cellular
analysis. Although conventional FC enables high-speed, multi-
parameter cell detection and analysis, it lacks the ability to
visualize cell morphology and microstructure. To break through
this limitation, researchers have begun to explore new ways to
combine imaging technology with FC. Thanks to the rapid
development of imaging technology, especially the breakthroughs
in digital imaging and high-speed camera technology, a solid
technical foundation has been laid for the realization of IFC
(Han et al., 2016). In addition, the increase in computer
processing speed and the innovation of data analysis algorithms
have made it possible to rapidly process large amounts of complex
data, which creates the conditions for the application of IFC. The
concept of IFC emerged, which aims to integrate the advantages of
high-throughput analysis of conventional FC and the morphological
details of microscope imaging technology (Stavrakis et al., 2019).

The birth of IFC is the result of the cross-fertilization of several
disciplines, including biology, optics, and engineering. This
interdisciplinary cooperation model provides a broader
perspective and richer resources for its development, and
accelerates its translation process from theory to practice. Since
the debut of the first commercial IFC system, the Amnis
ImageStream100 (Luminex Corporation) in 2005, the field has
witnessed substantial growth, with multiple manufacturers
introducing sophisticated platforms to meet diverse research
needs. Today, the IFC landscape comprises a range of cutting-
edge instruments, such as the Thermo Fisher Scientific Attune
CytPix, which leverages acoustic focusing for high-speed
morphological imaging, and the BD FACSDiscover™ S8,

equipped with focusless imaging technology to enable real-time
cellular visualization during high-throughput analysis. At present,
the development of IFC has made a significant leap forward.

IFC is an advanced biotechnology that blends conventional FC
with high-resolution imaging. By capturing high-resolution images
of cells as they pass through the detector, IFC provides
morphological information including cell size, shape, intracellular
granularity (e.g., size and distribution of cytoplasmic or nuclear
particles), and finer structural features (e.g., membrane contours,
subcellular organelle morphology). The value of this technology is
mainly reflected in the following aspects: 1) Morpho-functional
integration: Unlike conventional FC, which lacks detailed
morphological analysis, IFC can provide both morphological
images and functional parameters of the cells such as cell size,
shape and fluorescent labeling simultaneously, providing a more
comprehensive perspective for cell analysis. 2) Visual intuition for
cell classification: IFC’s imaging capability enables direct
visualization of cell morphology, facilitating rapid identification
of cell types and detection of abnormal features, whereas FC
relies solely on fluorescent labeling and scatter signals, which
may miss subtle morphological cues. 3) High-throughput
precision: While inheriting the quantitative and qualitative
capabilities of FC for high throughput (capturing thousands of
cells per second), IFC enhances analytical accuracy by
incorporating morphological metrics, reducing reliance on
subjective manual gating and improving the reliability of rare cell
detection. 4) Enabling new research frontiers: IFC addresses gaps in
FC by facilitating studies of cell-cell interactions and subcellular
dynamics, which require spatiotemporal morphological data
unattainable with conventional FC. 5) Automated, objective
analysis: Advanced software in IFC automates image processing
and multi-dimensional data integration, minimizing human
bias—an advantage over FC’s more manual, gating-dependent
workflows, particularly for complex datasets. In conclusion, the
advent of IFC signifies the advancement of cell analysis
technology to a higher dimension and deeper level. It is projected
to become more crucial in the realm of scientific research in
the future.

IFC, as an emerging technology, bridges the gap between
conventional FC and microscopic imaging. However, there is a
relative paucity of comprehensive reviews of its technical
development, application cases, and future potential, which
limits the full understanding of the potential of the technique
by both researchers and clinical specialists. Therefore, this paper
reviews the development of IFC from its early conceptualization to
the mature application of modern technology. The technical
principles of IFC are described, including its links and
differences with conventional FC. Describe the applications of
IFC in different biomedical research fields, such as cell biology,
immunology, oncology and environmental monitoring, to
demonstrate its technical advantages and practical value.
Explore the challenges IFC faces in data analysis and how
artificial intelligence (AI) and machine learning technologies
can facilitate its development. Finally, the future direction of
IFC is envisioned, predicting its potential application in
emerging research areas. This paper’s exploration and discourse
aim to offer researchers a comprehensive perspective on IFC and
promote its wider application in biomedical research.
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2 Technical principles of IFC

IFC is an advanced bioanalytical instrument that combines the
advantages of conventional FC and imaging technology, and is
capable of obtaining high-resolution images of each cell while
performing multi-parameter analysis at the single-cell resolution.
The basic structure consists of (Figure 1) 1) Fluid system: the fluid
system of an IFC is responsible for moving the cell sample through
the instrument at a suitable rate and stability. This typically involves
the use of a series of microfluidic channels and sheaths, the latter of
which are used to maintain the stability of the cells during flow and
to ensure that the cells move through the detector one by one in a

smooth manner. 2) Optical system: This consists of a laser and
optical filters used to irradiate the sample and to generate scattered
light and fluorescence signals from the cells. The choice and
configuration of the laser source have a direct impact on signal
quality and intensity, while optical filters are used to select specific
wavelengths of light to capture specific fluorescent markers. 3)
Imaging system: one of the core components of an IFC, which
usually includes a high-precision camera (such as a charge-coupled
device (CCD) camera) and an objective lens. Alternatively, it may
employ fluorescence imaging via radiofrequency-tagged emission
(FIRE), which uses the beating of a digitally synthesized light field to
map the image into the radiofrequency spectrum for imaging

FIGURE 1
Imaging flow cytometry system diagram. The diagram illustrates the core components of an IFC system, including: 1) Fluid system: Microfluidic
channels and sheath fluidmechanisms that align cells into a single-file stream for stable flow through the detection zone. 2) Optical system: Laser sources
and optical filters that generate and isolate excitation/emission signals from fluorescently labeled cells. 3) Imaging system: Capture high-resolution
cellular images. 4) Electronic systems: Signal processing units that convert optical signals to electrical data for downstream analysis. This integrated
design enables simultaneous multi-parameter analysis and morphological imaging at the single-cell level, bridging the capabilities of conventional flow
cytometry and microscopy (McEnaney et al., 2014). Copyright © American Chemical Society. Scheme images were partly created with Biorender.com.
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(Diebold et al., 2013). As cells pass through the detection area, the
imaging system captures high-resolution images of the cells, which
can be used for subsequent morphological analysis. 4) Electronic
systems: include electronic devices for signal processing and data
acquisition. These electronic systems are responsible for converting
optical signals into electrical signals, which are further processed
into analyzable data and ultimately stored for subsequent analysis.

The general workflow of IFC begins with cell preparation and
labeling, where cell samples are precisely fluorescently labeled,
allowing the organelle or protein of interest to be stained and
emit a unique fluorescent signal for identification and analysis.
This is followed by a cell flow and focusing phase, where labeled
cells are introduced into the fluidic system and formed into a
precisely aligned row by the sheath fluid, ensuring that each cell
passes uniformly and individually through the detection zone and is
exposed to the light source. As the cells pass through the detection
zone, the excitation and signal capture session is initiated. The laser
light source illuminates the cells and excites the fluorescent dyes
inside the cells to emit fluorescence at different wavelengths; at the
same time, the presence of the cells alters the scattering pattern of the
illuminated light. These fluorescent and scattered lights are then
collected by the signal conversion and imaging system. The
fluorescent signals are converted to electrical signals and sorted
by wavelength, while the imaging system captures high-resolution
images that demonstrate cell morphology, size, and other
visual features.

The integration of imaging technology and FC faces several
technical difficulties in the development of IFC (Basiji and
O’Gorman, 2015; Doan et al., 2015). The first problem is the
requirement for rapid imaging and data processing capabilities.
Due to the fast speed of cells passing through the detection area,
the imaging system must have the ability to capture images quickly
and simultaneously process and analyze the large amount of image
data generated instantly, which undoubtedly puts forward higher
requirements for data processing algorithms and hardware
performance. Secondly, preserving the high clarity and resolution
of images amidst rapid cell flow poses a challenge, ensuring that the
image will not be blurred due to the rapid movement of the cells.
Coupled with the complexity inherent in multiparametric imaging,
which involves the simultaneous detection of multiple fluorescent
markers, the problems of spectral overlap and signal crosstalk must
be overcome, which further increases the complexity of the
instrumentation as well as the precise requirements of the optical
system. Finally, the integration of high-resolution imaging systems
with high-speed data processing capabilities also results in imaging
flow cytometers that are costly and complicated to maintain and
operate, which somewhat limits their widespread use in laboratories
and healthcare organizations with limited budgets.

To cope with these technical difficulties, a suite of innovative
strategies can be implemented to facilitate the advancement of IFC.
In terms of imaging and data processing, the use of high-speed
complementary metal-oxide-semiconductor (CMOS) or charge-
coupled device image sensor (CCD) high-speed cameras can
realize rapid imaging and capture cells in a high-speed flow. At
the same time, the utilization of graphics processing unit (GPU)
acceleration and parallel data processing techniques can significantly
increase the data processing speed and approach the goal of real-
time data analysis. To maintain image clarity and resolution,

focusless imaging techniques that are not limited by flow control
requirements can also be introduced, such as the FIRE technology
(Diebold et al., 2013; Schraivogel et al., 2022). Optimizing the
microfluidic channel design and adjusting the cell flow rate,
combined with increasing the camera shutter speed, effectively
reduces the movement of cells in the imaging area and results in
clearer images. In addition, the development of new technologies
such as time delay integration (TDI) camera technology reduces
motion blur and enables clear imaging under high-speed flow. To
balance high-throughput analysis with the requirements for high-
resolution imaging and reliable machine learning-artificial
intelligence (ML-AI) algorithms data, most commercial IFC
systems operate within a flow rate range of ~10,000 images/
second. This range is carefully optimized to ensure single-cell
alignment and minimize motion blur, which is essential for
accurate morphological and functional analysis, and thus, reliable
data for ML-AI algorithms. For multiparameter imaging, the use of
advanced optical filters with high spectral resolution and multipoint
excitation sources helps to achieve better spectral separation
between different fluorescent markers, reduce signal crosstalk,
and improve the accuracy of multiparameter imaging. In
response to the need to process large amounts of data, the
establishment of cloud-based data processing and storage services
not only reduces the dependence on local high-performance
computing resources, but also enables remote access and sharing
of data. Finally, the development of open-source software (such as
CellProfiler) and standardized operational processes can reduce
overall costs and improve accessibility and operational
consistency among different users. Together, these measures can
advance the development of IFC technology and enable it to be
better used in laboratories and healthcare organizations with limited
budgets, further facilitating the development of biomedical research.

3 Application of IFC

3.1 Cell biology and cell signaling

IFC has emerged as a significant research tool in cell biology and
cell signaling. It can not only quantitatively evaluate cell surface and
intracellular markers, realize the precise classification of cell
subpopulations, but also reveal the localization information of
proteins. In addition, IFC excels in analyzing cell cycle, apoptosis
and intracellular signaling. It greatly facilitates the understanding of
cell behavior and signaling mechanisms by providing detailed
morphological and functional information about cells.

Patterson, J. O. and other researchers used IFC to analyze the
fission yeast cell cycle after fixation (Figure 2A). They accurately
determined the G1, S, and G2/M stages of the cell cycle by
monitoring the changes in DNA content and ascertained the
distribution of cells across these phases using quantitative
analysis (Patterson et al., 2015). George, T. C. and other
investigators used IFC to observe morphological changes such as
cell shrinkage, nuclear condensation, and DNA breaks during
apoptosis and to precisely differentiate different modes of cell
death by fluorescent labeling technique (George et al., 2004).
Maguire, O. et al. used this technique to quantify the expression
of p65 during NF-κB activation in the nucleus and correlated it with
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the results obtained by the western blot technique to assess the
activation status of cellular signaling pathways (Figure 2B) (Maguire
et al., 2011). Cerveira, J. et al. used IFC to study changes in
intracellular structures such as the reorganization of the
endoplasmic reticulum, mitochondria and cytoskeleton, which
are closely related to signaling. They achieved a high-precision
study for high-throughput analysis of the spatiotemporal
dynamics of calcium ion signaling in T cells under various
stimuli (Figure 2C) (Cerveira et al., 2015).

3.2 Immunology

IFC is instrumental in immunological research, particularly in
the analysis of immune cell phenotype and function, showing its
unique application value. Conventional FC is based on fluorescence
staining for phenotyping immune cells, which has the disadvantages
of high staining cost and signal confusion arising from spectral

overlap between fluorescent dyes or autofluorescence. Lippeveld, M.
et al. used high-quality IFC datasets to evaluate whether machine
learning-assisted methods can utilize morphological data from
bright and dark field measurements to achieve stain-free
classification of a variety of human leukocyte cell types with a
balanced accuracy of 74.05% (Figure 3A) (Lippeveld et al., 2020).
An advantage of IFC is its ability to capture morphological changes
in immune cells during activation, which can be decisive for
unraveling the mechanisms of activation and functioning of
immune cells, as demonstrated by the quantitative analysis of the
activation state of eosinophils using this technique by (Figure 3B)
Piasecka et al. (2020). Markey, K. A. and colleagues have devised a
technique for evaluating the establishment of immunological
synapses between isolated in vitro dendritic cells (DCs) and
antigen-specific CD4+ T cells, utilizing IFC to measure the
reorganization of adhesion molecules (LFA-1) and f-actin within
DC/T cell interfaces (Figure 3C). This innovative use of IFC marks a
significant advancement in research on dendritic cell functions and

FIGURE 2
The IFC applications in cell biology and cell signaling. (A) Cell cycle analysis in fission yeast: The 2D plot shows propidium iodide (PI) emission
intensity against signal length (major axis intensity) to distinguish G1, S, and G2/M phases. Exemplary brightfield (BF) and fluorescent images (middle and
right panels) visualize DNA content changes during the cell cycle (Patterson et al., 2015). Copyright © Elsevier Ltd. (B) NF-κB activation monitoring: The
HL-60 cell line was treated with an activator of NF-κB. The correlation between NF-κB/p65 nuclear translocations and biological responses was
evaluated by IFC (Maguire et al., 2011). Copyright © Wiley-VCH. (C) Mitochondrial (Mito) and endoplasmic reticulum (ER) Ca2+ dynamics: IFC’s
multispectral capabilities assess spatiotemporal changes in endoplasmic reticulum and mitochondrial Ca2+ signaling in T cells under stimulation,
revealing organelle interactions during cell activation. The cell imaging panels at the bottom represent exemplary images of cells at each time point
(Cerveira et al., 2015). Mag-Fluo4-AM (MagF4, A fluorescent marker), Dihydro-Rhod2 (DiH-Rhod2: A fluorescent dye specifically targeting the
endoplasmic reticulum). Copyright © Elsevier Ltd.
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immune synapses, offering a robust tool for the quantitative, high-
throughput examination of DC-T cell interactions both in vivo and
ex vivo (Markey et al., 2015).

3.3 Oncology

The application of IFC in the field of oncology focuses on the
fine analysis of tumor cell phenotypes, in-depth exploration of
the tumor microenvironment, precise resolution of tumor cell
heterogeneity, and effective evaluation of tumor
treatment response.

Acute myeloid leukemia is a heterogeneous blood cancer with
a poor prognosis. It originates from leukemic stem cells arising
from the genetic transformation of hematopoietic stem cells.
Leukemic stem cells have prognostic value; however, the
heterogeneity of their molecular and immunophenotypes poses
a challenge for accurate detection due to the lack of specific
markers to identify all leukemic stem cells. Hybel, T. E. and
other investigators employed IFC in conjunction with AI-
assisted image analysis to achieve visual differentiation of
leukemic stem cells from hematopoietic stem cells by
morphological features, which offers an innovative concept for
the advancement of monitoring technologies in acute myeloid
leukemia (Figure 4A) (Hybel et al., 2024). Liquid biopsy, as a non-

invasive detection method, effectively predicts and monitors the
dynamics of tumor development by analyzing metastasis-related
substances such as extracellular vesicles, circulating tumor cells
and nucleic acids in the patient’s blood. A researcher has used IFC
to capture circulating tumor cells and provided typical images of
circulating tumor cells for breast cancer and prostate cancer
patients, laying a solid foundation for exploring the mechanism
of tumor metastasis (Figure 4B) (Muchlińska et al., 2022). In the
field of tumor immunotherapy, especially the rapid development
of chimeric antigen receptor T-cell (CAR-T) technology has
brought significant results for the treatment of a wide range of
malignant tumors including leukemias, gliomas, lymphomas, and
neuroblastomas (Du et al., 2025; Tang et al., 2023). Patrick et al.
from Yale University designed and synthesized SyAM-P mimetic
antibody analogs, which were able to simultaneously bind to the
PSMA antigen on the surface of prostate cancer cells and FcγRI on
the surface of immune cells, effectively guiding immune cells to
target prostate cancer cells (Figure 4C). With the help of IFC, the
phagocytosis process of immune cells on tumor cells can be clearly
observed, and then the efficacy of CAR-T therapy can be
intuitively and quantitatively assessed (McEnaney et al., 2014).
In addition, by analyzing dipeptidyl peptidase-IV and
immunophenotypes by IFC, Rao et al. investigated the
mechanism of regulating the dipeptidyl peptidase-IV expression
pathway in macrophages, revealing that targeting this pathway

FIGURE 3
The IFC application in immunology. (A) Stain-free leukocyte classification: Machine learning models analyze brightfield and autofluorescence
images to classify human white blood cells without fluorescent staining. The workflow includes feature extraction and validation against manually gated
populations, achieving high accuracy as reported (Lippeveld et al., 2020). Copyright © Wiley-VCH. (B) Eosinophil activation analysis: Side scatter,
brightfield, and autofluorescence images visualize morphological changes in activated eosinophils. Quantitative analysis of cell size, and
cytoplasmic texture helps characterize immune cell function (Piasecka et al., 2020). Copyright © Wiley-VCH. (C) Immunological synapse imaging: Ex vivo
dendritic cells (DCs) and CD4 T cells are labeled for surface adhesion molecules (LFA-1) and intracellular actin (phalloidin). IFC captures dynamic
reorganization of the synapse interface, enabling quantification of DC-T cell interactions critical for immune response activation (Markey et al., 2015).
Copyright © Elsevier Ltd.
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may be a novel strategy to attenuate inflammatory responses
triggered by dipeptidyl peptidase-IV (Rao et al., 2019). These
studies not only provide new technical approaches in the field
of oncology, which can not be completed by conventional FC, but
also lay the scientific foundation for the implementation of
precision medicine.

3.4 Microbiology and environmental
monitoring

IFC plays a significant role in the field of microbiology and
environmental monitoring, particularly in the rapid identification,
classification, and quantification of microorganisms, as well as the
monitoring of microbial contamination in water and air.

In the current context of multiple environmental challenges
such as eutrophication, climate warming, and biological invasions,
improved identification and enumeration of phytoplankton species

have become an integral part of water quality assessment, which is
critical for developing effective countermeasures. Using IFC,
researcher Dunker S. et al. acquired images of nine common
freshwater nano- and micro-phytoplankton species. Based on
these images, a deep neural network was trained to successfully
recognize phytoplankton species and their life cycle stages,
demonstrating an extremely high prediction accuracy of 97%
(Figure 5A) (Dunker et al., 2018). In addition, Luo S. and other
researchers developed a deep learning-based high-throughput
system that combines IFC with an efficient artificial neural
network, MCellNet, for the prediction of Cryptosporidium and
Giardia flagellates in drinking water, with a classification
accuracy of more than 99.6%, and a sensitivity of 97.37% and
specificity of 99.95% for the detection of these two pathogens
(Figure 5B). This system provides a novel approach for rapid,
accurate and high-throughput detection of biological particles for
clinical diagnosis, environmental monitoring and potential
biosensing applications (Luo et al., 2021).

FIGURE 4
The IFC applications in oncology. (A) Leukemic stem cell identification: IFC combined with AI-based image analysis differentiates hematopoietic
stem cells (HSCs) from leukemic stem cells (LSCs) in acute myeloid leukemia by morphological features (e.g., nuclear irregularity, surface marker
expression) (Hybel et al., 2024). Copyright © Multidisciplinary Digital Publishing Institute. (B) Circulating tumor cell (CTC) characterization: Brightfield and
fluorescent images of CTCs from prostate cancer patients highlight morphological heterogeneity. These images aid in understanding tumor
metastasis mechanisms (Muchlińska et al., 2022). Copyright © Multidisciplinary Digital Publishing Institute. (C) CAR-T therapy efficacy assessment: SyAM-
P molecules guide monocytes to phagocytose prostate cancer cells labeled with PSMA (prostate-specific membrane antigen). IFC visualizes and
quantifies phagocytosis efficiency by tracking fluorescently labeled target cells, enabling objective evaluation of immunotherapeutic interactions
(McEnaney et al., 2014). Copyright © American Chemical Society.
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FIGURE 5
The IFC applications inmicrobiology. (A) Representative brightfield images captured by the IFC of various phytoplankton species utilized in this study
for training the deep learning network across three distinct life cycle stages: early exponential, exponential, and stationary phases (Dunker et al., 2018).
Copyright © BioMed Central. (B) Introduction to MCellNet, a sophisticated deep learning model designed for IFC to identify Cryptosporidium and Giardia.
This integrated setup encompasses a laser source, a flow cytometry module, an imaging apparatus, a repository of images, and a deep neural
network (Luo et al., 2021). Copyright © Wiley-VCH.
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4 IFC data analysis and challenges

4.1 Data processing and multi-parameter
analysis strategies

The IFC generates high-speed data streams containing rich
biological information. The complexity of these data, which often
include multiple fluorescent markers, light scattering parameters,
and morphological properties, requires efficient data processing
strategies and algorithms for processing. For accurate analysis of
multicolor-labeled samples, appropriate compensation algorithms
are required to eliminate spectral overlap between different
fluorescence channels. At the same time, image processing
software needs to be able to accurately recognize real signals
from background noise to ensure precise identification and
tracking of cells or particles. In multiparameter analysis,
integrating data from different channels and time points, such as
cell size, shape, fluorescence intensity, and other information, is
critical for the accurate classification and phenotypic identification
of cell populations. In addition to initial analysis using standard
tools of conventional FC, such as scatter plots and histograms. A
range of new automated data analysis algorithms [t-SNE (van der
Maaten and Hinton, 2008), UMAP (McInnes and Melville, 2018),
FlowSOM (Van Gassen et al., 2015), PhenoGraph (Levine et al.,
2015), etc.] can also be utilized to replace manual data analysis
processes. These tasks encompass data preprocessing, the
identification and quantification of cell populations, feature
extraction, and the classification of samples (Cheung et al., 2021;
Mair et al., 2016).

4.2 Challenges and solutions for
data analysis

The main challenges of high-content data analysis in IFC
include the storage, processing, and analysis of large-scale image
data. Due to the huge amount of data generated, traditional data
processing methods are often unable to cope. One of the strategies to
address this challenge is to use high-performance computing
platforms and the use of specialized image processing software to
significantly shorten the analysis time through parallel processing
techniques. At the same time, the development of efficient data
compression algorithms and automated image-cleaning processes
can also help reduce the burden of data storage and processing.
Researchers must craft automated image analysis algorithms to
boost the efficiency of data processing, focusing on cell
segmentation, feature extraction, and pattern recognition (Hennig
et al., 2017). These algorithms, which are usually based on pattern
recognition and statistical learning theories, can extract meaningful
biological information, such as morphological changes, protein co-
localization, and cell-cell interactions, from complex images. Unlike
conventional FC, which benefits from standardized, user-friendly
analysis tools, IFC’s rich morphological and imaging data often
demand tailored machine learning – artificial intelligence
approaches. This specificity introduces hurdles such as the need
for collaborative expertise between biologists and computer
scientists, specialized training in computational methods, and
access to high-performance computing resources—all of which

are underrecognized limitations in purely biological
research contexts.

In addition, While IFC offers unprecedented insights into
cellular morphology and high-dimensional phenotypic data, it
faces a critical challenge in “data comparability with conventional
FC,” stemming from the latter’s established foundational data
infrastructure. Conventional FC, with over six decades of
technological refinement and widespread adoption, has built a
robust ecosystem of standardized protocols, reference datasets,
and a vast corpus of comparative literature (De Rosa et al., 2003;
Robinson and Roederer, 2015). In contrast, IFC, as a relatively newer
technology, lacks the same depth of standardized data frameworks.
The key challenges include: 1) Protocol Variability: IFC incorporates
morphological features (e.g., nuclear texture, cytoskeletal
organization) that are not uniformly defined across studies. For
instance, metrics like “nuclear irregularity” or “granule intensity”
may be quantified differently based on imaging settings or analysis
software, leading to inter-laboratory variability. 2) Limited
Reference Datasets: Conventional FC benefits from large-scale
repositories (e.g., FlowCAP, Cytobank) hosting millions of
standardized datasets, facilitating benchmarking and algorithm
validation. IFC, however, has fewer publicly available datasets,
particularly for rare cell populations or complex morphological
phenotypes, limiting the ability to validate findings against
established baselines. 3) Marker Cross-Validation: Many IFC
studies rely on fluorescent markers overlapping with
conventional FC, but the addition of morphological parameters
introduces new variables that lack equivalent historical data. To
bridge this gap, data sharing and standardization of analysis
processes should be promoted to facilitate collaboration between
different laboratories and researchers. 4) High-Throughput
Capabilities: In contrast, most commercially available IFCs
currently offer lower throughput for multiwell plate processing
than conventional FC, mainly due to the trade-off between high-
resolution imaging and speed.

4.3 Application of AI and machine learning
for image analysis

The AI andmachine learning techniques provide powerful tools for
image analysis in IFC. Deep learning networks can be trained to
recognize and classify extremely complex cellular phenotypes, and
can even identify subtle differences that are easily overlooked in
traditional analysis such as rare cell populations that are lost due to
manual gating biases (Mochalova et al., 2022).Machine learningmodels
can be used to predict cellular states, identify abnormal cells, and
discover new biomarkers. Algorithms powered by AI can perform
image processing and data analysis tasks in seconds to minutes that
would otherwise take hours or even days to complete (Lippeveld et al.,
2020; Rosenberg et al., 2021). Deep learning models can also assist in
removing background noise, enhancing image quality, and performing
preprocessing steps such as data normalization, thereby improving the
accuracy of the subsequent analysis and significantly improving the
efficiency of data processing and analysis in IFC (Doan et al., 2021;
Rodrigues et al., 2021). In addition, using predictive models established
by deep learning, researchers can predict cellular responses, disease
progression, or treatment effects based on previous imaging data (Hybel
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et al., 2024; McEnaney et al., 2014). These models are able to integrate a
large amount of imaging data from different samples and experimental
conditions, providing deeper insights for research. In clinical settings,
AI decision support systems enhance diagnostic precision. For example,
Hybel et al. used IFC with deep learning to identify leukemic stem cells
in acute myeloid leukemia, providing clinicians with quantitative tools
to guide treatment choices and prognosis assessment (Hybel et al.,
2024). In addition, the application of AI technology can facilitate the
automation and standardization of IFC, reducing the need for manual
manipulation and lowering the variables introduced due to inter-
operator variation. Automated workflows not only enhance the
reproducibility and reliability of experiments, but also enable non-
specialists to perform complex imaging analyses (Mair et al., 2016).

However, there are still some challenges to applying AI and
machine learning to IFC analytics. First, large amounts of high-
quality and accurately labeled training data are required to optimize
algorithms, a process that can be time-consuming and costly.
Second, the decision-making mechanisms of machine learning
models, particularly deep learning models, are frequently
considered “black boxes” due to their lack of transparency, which
can be a problem in certain scientific and regulatory environments.
In the future, as computing power increases, algorithms improve,
and access to large datasets becomes easier, the use of AI and
machine learning in IFC will becomemore widespread. Not only can
they improve the accuracy and efficiency of analysis, but they can
also help researchers explore unknown biological questions and
drive progress in bioscience and medical research.

5 Prospects

Technological developments in the field of IFC are advancing at
an unprecedented pace. As optical, electronic, and computing
technologies continue to advance, we can anticipate qualitative
leaps in hardware performance, including higher resolution,
faster image acquisition, and lower system costs. For example,
new sensor technologies and more efficient photomultiplier tubes
will improve detection sensitivity and resolution. In addition,
advances in laser technology promise to provide more stable and
precise excitation light sources, further optimizing image quality and
data accuracy. On the software side, enhanced image processing
algorithms, optimized user interfaces, increased automation levels,
and enhanced data processing capabilities will make IFC systems
more intelligent and easy to use. The integration of real-time data
analysis and visualization tools will dramatically improve the user
experience and shorten the time from data acquisition to result
analysis, which is extremely critical for research and clinical
environments that require rapid decision-making, such as the
application of intraoperative IFC (D’Amato et al., 2022). In
particular, advances in AI and machine learning are pushing IFC
forward, enabling researchers to gain a deeper understanding of
cellular properties and behaviors, and opening up new possibilities
for biomedical research and clinical applications.

With the continuous advancement of IFC technology and its
significant improvement in cost-effectiveness, it is increasingly
acknowledged for its extensive potential across various emerging
fields. In the field of precision medicine, IFC provides a robust
scientific foundation for the development of personalized

therapeutic plans by accurately analyzing the characteristics of
patients’ cells, especially in cancer treatment and immunotherapy
(Hybel et al., 2024). In cell therapy, IFC is crucial for assessing the
quality and functionality of cell therapy products, such as the
phenotypic and functional analysis of CAR-T cells (McEnaney
et al., 2014). In drug development, IFC can be used for high-
throughput drug screening to assess the effects of drugs on cells,
thus accelerating the process of drug discovery and optimization
(Rao et al., 2019). In the field of microbiology, IFC can be used for
rapid identification and quantification of microbial populations
such as bacteria, viruses and algae, providing a powerful tool for
environmental monitoring and disease prevention (Luo et al., 2021).
In addition, in the field of tissue engineering and regenerative
medicine, the technology helps to monitor the behavior and
interactions of cells in a three-dimensional culture environment,
thereby assessing the efficiency and quality of tissue construction. In
the field of food safety, IFC can be utilized for rapid detection of
harmful microorganisms and contaminants in food. Finally, IFC has
also shown great potential for application in several key areas such as
vaccine development, immunization monitoring and cancer
screening (Lippeveld et al., 2020).

Future research will likely focus on innovative applications at the
intersection of multiple disciplines, particularly in the convergence
of biology, materials science, and computer engineering to drive the
development of novel IFC systems. In addition, with the further
development of big data and AI, it is expected to see more research
on how machine learning can be utilized for image recognition and
classification to significantly increase the level of automation and
accuracy of the analysis process. Another research focus is likely to
be on improving the versatility and flexibility of the system so that it
can perform multiple tasks at the same time, such as acquiring
morphological, genomic, and proteomic data from the same sample
at the same time. This will not only help provide more
comprehensive biological information, but will also facilitate the
scope of application of the system in more complex and dynamic
biological processes.

6 Conclusion

As a cutting-edge biotechnology that combines the high-
throughput analytical advantages of FC with the high resolution
of imaging technology, IFC greatly expands the ability of researchers
to characterize cellular properties in higher dimensions and with
greater precision. The core value of this technology is that it provides
detailed visual information on cell morphology, size, fluorescent
markers, and internal structure, providing valuable data for an in-
depth understanding of cellular functions, disease mechanisms, and
the development of innovative therapies. In the field of biomedical
research, IFC exhibits a wide range of applications, including but not
limited to the monitoring and classification of cell types in
immunological studies, and the identification and quantification
of rare cells, such as circulating tumor cells, in cancer research,
which is critical for early diagnosis and treatment. In addition, the
technology also plays a key role in drug discovery and toxicology
evaluation, accelerating the screening and optimization of new
therapeutic strategies by assessing the efficacy and safety of drug
candidates.
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In the future, along with the deep integration of AI and deep
learning technologies, IFC’s analytical performance is expected to
realize a qualitative leap. Automated image analysis technology will
significantly shorten the data processing time, while improving the
accuracy and objectivity of the analysis. At the same time, technological
advances will promote the popularization of IFC, making it a powerful
tool for more research laboratories andmedical institutions to carry out
cutting-edge research. In conclusion, IFC is of great significance to the
advancement of biomedical science and will continue to play a key role
in the development of precision medicine, disease diagnosis and
treatment strategies that will revolutionize future medical diagnosis
and treatment.
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