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The rapid identification of bacterial pathogens is critical for the early diagnosis of
severe clinical conditions, such as sepsis or implant-associated infections, and for
the initiation of timely, targeted therapies. This need is particularly acute within
the complex oral microbiome, where diverse opportunistic pathogens contribute
to a range of local and systemic diseases. While techniques such as phenotypic
systems andMALDI-TOF-MS offer faster results, they remain limited by costs, and
operational constraints. To address these challenges and cater to the need for
rapid identification of bacteria, we present a system for identification and
classification of anaerobic bacteria as a first example. This system combines a
pyrolyzer, a gas chromatograph and a highly sensitive ion mobility spectrometer.
The ion mobility spectrometer has been optimized for coupling with the gas
chromatograph and offers simultaneously recording of ion mobility spectra in
both ion polarities during one gas chromatographic separation by using two drift
tubes arranged in axial configuration. Feasibility has been demonstrated by
building a database of fingerprints of eleven isolated reference samples of
anaerobic bacteria with clinical relevance. Preliminary experiments have
demonstrated that pattern recognition algorithms can predict the genus of
isolated bacteria with a precision of up to 97%.
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1 Introduction

The rapid identification of bacterial pathogens in clinical environments is imperative for
the early diagnosis of critical conditions such as sepsis (Brook, 2007). Prompt and accurate
detection empowers clinical teams to make evidence-based decisions (Simons and Capraro,
2024) and initiate patient-specific therapeutic strategies, thereby significantly improving
clinical outcomes. This need is particularly pronounced in complex microbial ecosystems
such as the oral microbiome, where a highly diverse and dynamic community of commensal
and pathogenic bacteria coexist. The human oral microbiome plays a critical role in several
prevalent and significant health conditions, both local and systemic (Lamont et al., 2018). It
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comprises of hundreds of physiologically diverse, biofilm-associated
microorganisms inhabiting various oral microenvironments, with
an even greater diversity of unique genotypes (Baker et al., 2024).
Among these, certain species, primarily anaerobes, e.g.,
Fusobacterium, Porphyromonas, Prevotella and Veillonella have
been associated with oral infections, including severe, hard-to-
treat conditions like peri-implantitis as well as odontogenic
infections, which can occasionally become life-threatening
(Ghensi et al., 2020).

Given these risks, there is a pressing clinical need for
methodologies that enable rapid on-site identification of potential
pathogens, allowing them to be distinguished from benign species.
This is especially crucial during the early stages of disease, even
before symptoms manifest, when the condition is more manageable
and responsive to treatment (Dieckow et al., 2024). In these
circumstances, a timely bacterial identification is fundamental in
optimizing the precise administration of bacteria-specific antibiotics
and mitigating the emergence and spread of global antimicrobial
resistance (Yan et al., 2024). Furthermore, the rapid taxonomic
assignment is a valuable feature of culturomics, which focuses on
isolating numerous strains from complex microbial communities,
including polymicrobial infections (Huang et al., 2023). These
isolates are highly useful for mechanistic molecular studies,
supporting the development of preventive and therapeutic
strategies against intricate polymicrobial infections.

Traditional methods such as Phenotyping (BioMérieux,
Beckman Coulter, BD Diagnostics, Thermo Fisher Scientific), 16S
rRNA Gene Sequencing and shotgun whole genome sequencing
often require several hours (4–96 h) to yield results, which can delay
treatment decisions and negatively impact patient outcomes
(Heaton and Bhatti, 2020). While additional methods such as
Fourier-transform infrared (FT-IR) spectroscopy (Naumann
et al., 1991) and matrix-assisted laser ionization time-of-flight
mass spectrometry (MALDI-TOF-MS) (Lay, 2001), are widely
used in clinical settings for the rapid identification of bacteria,
these systems are dependent on a large database containing
curated reference spectra of a large variety of species, less
accurate for closely related species and sensitive to sample
conditions.

In response to these challenges, the approach presented here
aims to provide an alternative rapid method for differentiating
bacterial strains with demonstrated feasibility using clinically
relevant anaerobic bacterial strains from the human oral
microbiome. This approach relies on the use of pyrolysis (Py) in
combination with a gas chromatography (GC). In the Py-GC
process, bacterial strains, composed of a large number of small
molecules such as amino acids, carbohydrates, fatty acids,
nucleotides, quinones, vitamins (Watson et al., 1987), are
fragmented by thermal energy inside the pyrolyzer, resulting in
volatile fragments. These fragments are subsequently separated by
GC.Mass spectrometry (MS) is often employed as a detector in these
hyphenated systems, providing a second dimension of separation
based on the mass-to-charge ratio (m/z). The differentiation of
bacterial strains using Py-GC-MS has been demonstrated in
previous studies (Meuzelaar and Kistemaker, 1973; Basile et al.,
1998; Dworzanski et al., 2005; Melucci et al., 2013; Picó and Barceló,
2020). As an alternative, ion mobility spectrometry (IMS) can be
used instead of MS giving a pyrolyzer-gas chromatograph-ion

mobility spectrometer (Py-GC-IMS) (Snyder et al., 2004; Schmidt
et al., 2004; Prasad et al., 2006; Prasad et al., 2007). IMS offers very
high sensitivity at compact size and low cost and also adds a second
dimension of separation (ion mobility). In addition, IMS typically
operate at ambient pressure and therefore do not require a bulky
vacuum system. This allows for mobile and compact instruments to
be used on site.

Drift tube IMS with field-switching ion shutters are particularly
suited for coupling to a gas chromatograph, as they have a
comparatively small effective detector volume in comparison to
IMS with beam chopping shutters (Nitschke et al., 2024; Kobelt
et al., 2024a). Moreover, they reach significantly higher sensitivity
than beam-shopping ion shutters (Bohnhorst et al., 2021). In IMS
with field switching ion shutter, the ionized analyte molecules
accumulate in the ionization region before being injected into the
drift region where they are separated in an homogeneous electric
field according to their ion mobility (Jenkins and McGann, 2002).
This process is typically repeated every 5–30 ms (Borsdorf and
Eiceman, 2006; Borsdorf et al., 2011), which is sufficient for
resolving GC peaks even of fast GC with typical peak width of
1–3 s (Korytár et al., 2002). The mobility of an ion can be calculated
based on Equation 1 and depends on the ion charge Q, the drift gas
density n, the reduced mass of the ion µ, the Boltzmann constant kb,
the absolute drift gas temperature T and the collision cross section of
the ion and the drift gas molecules σ (Revercomb andMason, 1975).

K � 3
16

�����
2π

µkBT
·

√
Q

nσ
(1)

In order to demonstrate the feasibility of a Py-GC-IMS for the
identification of bacteria beyond the previously shown
differentiation of, e.g., Gram-positive and Gram-negative bacteria
(Snyder et al., 2004), an IMS with significantly improved analytical
performance is used here. Since a Py-GC-IMS does not allow the
identification of unknown pyrolysis fragments, the differentiation of
individual bacteria in this work is based on the unique fragment
pattern of the individual bacteria. For this reason, pure reference
samples of the bacteria are measured in order to obtain characteristic
fingerprints of the respective bacteria and afterwards a classification
algorithm is used to differentiate between the four genera
represented by the eleven diverse bacterial strains in our database.

2 Materials and methods

2.1 Measurement system

The measurement system, shown in Figure 1, contains a
commercial pyrolysis unit 6,200 Pyroprobe (CDS Analytics,
United States) with the “DISC”-Sample Chamber. This chamber
is used to inject quartz sample holders with a maximum sample
volume of approximately 5 µL. The pyrolysis chamber is resistively
heated, enabling different temperatures and temperature programs.
The pyrolysis products are injected into the liner of the Gas
Chromatograph 200 (Ellutia, United Kingdom) which is
connected via a heated transfer capillary (250°C). The gas flow
through the pyrolyzer, also giving the GC carrier gas flow is
controlled by a mass flow controller EL-Flow-Prestige
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(Bronkhorst, Netherlands) instead of the integrated pressure
regulator of the GC. A 30 m RXI-5 ms GC column with ID:
530 µm and df: 1.5 µm (Restek, United States) is used to separate
the fragments. The transfer line from the GC to the IMS is heated to
100°C. The IMS, shown in Figure 2, consists of two axially arranged
drift tubes (Lippmann et al., 2020a) for simultaneously detecting
both ion polarities during one GC cycle. The drift tubes are
constructed from polyether ether ketone (PEEK), and stainless
steel drift rings (Kirk and Zimmermann, 2015) with an effective
drift length of 87 mm. Purified dry air is used as drift gas for both
drift tubes and is supplied bymass flow controllers IQ+ (Bronkhorst,
Netherlands). With an effective detector volume auf just 360 µL
(Kobelt et al., 2024a; Kirk et al., 2022), the ionization region is
optimized for coupling with a gas chromatograph. The optimized
flow geometry ensures that the IMS can be operated at ambient
temperature, while only heating the transfer capillary to the IMS is
required. An extended field switching shutter is integrated to
maximize sensitivity (Kirk et al., 2020). A self-built 600 V power
supply and MOSFET half bridges are used to generate the short
200 µs voltage pulses required for the ion shutter. An X-ray source
SCXT0829 (Sunje, South Korea) is used to ionize the sample via
atmospheric pressure chemical ionization (APCI) (Spangler and
Carrico, 1983; Pershenkov et al., 2006). The required electronics for
the acceleration voltage and filament supply of the X-ray source are

also self-built. For the drift voltage, two HCE 7–12,500 (FuG,
Germany) are used in combination with an RC-lowpass filter
(2 nF and 2.4 MΩ) to reduce drift voltage ripple. To convert the
ion current into a voltage, a self-built transimpedance amplifier with
a gain of 5 GΩ and a bandwidth of 25 kHz is used at each detector of
the drift tube (Cochems et al., 2014). These two signals are then
digitized simultaneously at 250 kSamples per second with 16-bit
resolution with our self-built FPGA-based isolated data acquisition
(Kobelt et al., 2024b; Lippmann et al., 2020b). The data is digitally
low-pass filtered at 25 kHz and then 16 IMS spectra are averaged
before saving the spectra to the measurement file to increase the
signal-to-noise ratio of the IMS and reduce file size. The data
acquisition system also controls the entire measurement setup
and records all parameters. To calculate the ion mobilities the
pressure inside the drift tube and the ambient temperature are

FIGURE 1
Gas flow chart of the pyrolyzer-gas chromatograph-ion mobility spectrometer (Py-GC-IMS). The GC carrier gas flow is supplied by a mass flow
controller and routed through the pyrolyzer into the gas chromatograph. The GC is coupled to the self-build dual polarity ion mobility spectrometer with
a special ionization region optimized for coupling with gas chromatography. Clean, dry air is used as the drift gas. The drift gas inlets and outlets are also
controlled by mass flow controllers.

FIGURE 2
Photo of the self-build dual polarity ion mobility spectrometer
with two drift tubes in axial configuration.

TABLE 1 Operating parameters IMS.

Effective drift voltage 6.4 kV

Effective drift length 87 mm

Drift region diameter 21 mm

Injection field 240 V/mm

Injection time 600 µs

Compensation field −26 V/mm

IMS temperature 25°C

Dew point carrier and drift gas −98°C

Drift gas flow rate in 150 mL/min

Drift gas flow rate out 100 mL/min

IMS period 30 ms

IMS averages 16

IMS pressure 1,010 hPa

X-Ray accelerating voltage 4950 V

X-Ray emission current 5.4 µA
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measured during all measurements with a combined pressure,
temperature and humidity sensor BME280 (Bosch, Germany).
This allows for matching IMS peak positions over long
measurement durations. To synchronize the GC, the Py and the
IMS, the Py toggles a TTL output at the start of the pyrolysis and the
GC and IMS start their measurement cycle. Although mainly self-
built electronics was used in this setup, any commercially available
equipment that provides the electric fields and the switching times
given by Table 1 may be used instead.

2.2 Strains and culture conditions

The study is focused on eleven anaerobic bacterial strains,
summarized in Table 2, representing three classes, four genera,
and seven species. All these species are associated with oral
infections, including peri-implant diseases. The collection
includes both reference type strains and recent clinical isolates.

The bacterial strains were cultured on Fastidious Anaerobe Agar
(FAA; CE, LAB090/NCM2020A, LabM/Neogen, United Kingdom)
supplemented with 5% defibrinated sheep blood (SR0051E,
ThermoScientific, United States). Cultivation was conducted
under anaerobic conditions (80% N2, 10% CO2, and 10% H2)
using an anaerobic chamber (Concept 400 Anaerobic
Workstation; Ruskinn Technology Ltd., Leeds, United Kingdom)
at 37°C for 3 days.

Bacterial biomass was harvested with sterile inoculation loops
(10 μL, #86.1562.050, Sarstedt, Germany) and suspended in oxygen-

free Dulbecco’s Phosphate-Buffered Saline (D8537-500 mL, Sigma-
Aldrich, Germany). The suspension was centrifuged at 4,000 rpm
for 10 min using an 5430G centrifuge (#EP5427000610, Eppendorf,
Germany) to obtain cell pellets. The supernatant was carefully
discarded, and the cell pellets were stored at −20°C for future use.

2.3 Measurements

For eachmeasurement, a new quartz glass sample tube is cleaned
at 1,100°C for 10 s. In order to measure a reproducible amount of
biomass in each experiment, the biomass of the corresponding
sample is dissolved in deionized water in a mass ratio of 1:
100 and mixed for 10 s in a vortex mixer. 2.5 µL of the mixtures
are pipetted into the sample tube, which results in 25 ng biomass in
each measurement. A buffer is not used at this point because the
bacteria are immediately dried and then pyrolyzed and any possible
contamination of the sample should be avoided. A temperature of
150°C for 120 s proved to be a sufficient drying step to remove the
excess water content of the sample. The compounds released in the
cleaning and drying step are vented out of the pyrolyzer via the
integrated eight-port valve and are not transferred to the GC. The
sample tube remains in the pyrolyzer after the drying step and
pyrolysis at 700°C for 10 s is started. These pyrolysis settings were
derived from literature, where temperatures for similar pyrolysis
setups and bacterial samples range from 650°C to 800°C (Prasad
et al., 2006; Schmidt et al., 2004; Sam andWampler, 2021). Different
temperatures and pyrolysis profiles have not been explored yet. The

TABLE 2 Bacterial strains and their origin used in the study.

SPS
number

Class Genus Species Type
strain

Other
names

Clinical
origin

Source

453 Bacteroidia Porphyromonas gingivalis Yes DSM 20709 Human gingival
sulcus

DSMZ, Braunschweig, Germany

803 Bacteroidia Porphyromonas gingivalis DSM 28984,
HG 66

Human oral
cavity

DSMZ, Braunschweig, Germany

21 Bacteroidia Prevotella buccae Human peri-
implantitis

Own isolate

577 Bacteroidia Prevotella denticola Human peri-
implantitis

Own isolate

457 Bacteroidia Prevotella intermedia Yes DSM 20706 Empyema DSMZ, Braunschweig, Germany

447 Fusobacteriia Fusobacterium nucleatum
subsp. nucleatum

Yes DSM 15643 Cervico-facial
lesion

DSMZ, Braunschweig, Germany

527 Fusobacteriia Fusobacterium nucleatum
subsp. polymorphum

Yes DSM 20482 Inflamed gingiva DSMZ, Braunschweig, Germany

805 Fusobacteriia Fusobacterium nucleatum
subsp. vincentii

Yes CCUG 37843 Human
periodontal
pocket

CCUG, Gothenburg, Sweden

13 Negativicutes Veillonella dispar Human peri-
implantitis

Own isolate

884 Negativicutes Veillonella parvula PK1910 Subgingival
dental plaque

Nicholas Jakubovics, Newcastle
University, Newcastle,
United Kingdom

513 Negativicutes Veillonella parvula Human peri-
implantitis

Own isolate
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fastest heating rate of the pyrolyzer of 20°C/ms (according to the
datasheet) is selected. The interface of the pyrolysis chamber and the
injector temperature are maintained at 200°C and the eight-port
valve at 250°C. The temperature program of the GC starts
simultaneously with the start of the pyrolysis run. The GC holds
a temperature at 60°C for 5 min and then ramps at 15°C/min to
250°C, which is held for another 5 min. Nitrogen is used as carrier
gas at a flow rate of 10 mL/min. In total, 48 measurements were
performed for the bacterial strains shown in Table 2. Prior to each
biomass measurement, a blank measurement is performed with the
same cleaned quartz sample holder using the measurement protocol
of the bacterial strains.

For example, topographic plots of the measurement data in
positive and negative polarity of Fusobacterium nucleatum
subsp. vincentii (805) and Porphyromonas gingivalis (453) are
shown in Figure 3. In this topographic representation the GC
retention time is given in seconds on the x-axis and the inverse
reduced ion mobility in Vs/cm2 on the y-axis. The color value
encodes the ion current reaching the detector of the IMS. To obtain
these mobility values, the drift time td of the IMS is converted
according to Equation 2 using the recorded pressure p, temperature
T, effective drift voltage Ud and effective drift length Ld to align the
peaks in the IMS dimension. This mitigates ambient pressure and
temperature variations during one GC cycle and over the timespan
of several days. Considering the deviating electric field strength in
the ion shutter region and aperture grid region, an effective drift
voltage and drift length are calculated based on the drift field
strength (according Supplementary Formula 1-7).

1
K0

� Ud · td
L2
d

· T
T0

· p0

p
(2)

Each measurement of the whole data set is interpolated on a
fixed grid of 3,000 × 3,000 data points by using a workflow

implemented in Mathworks MATLAB shown in Figure 4. The
first step in the process is to convert the data from drift time to
inverse reduced mobilities. This step shifts the IMS spectra towards
each other. Next, the data is trimmed and interpolated to a new fixed
pixel raster which is consistent over alle measurements in the
dataset. This step results in pixel images that have the same
retention time and inverse recued mobility for each pixel over
the entire data set.

3 Results and discussion

When comparing the measurements from different bacterial
strains, as exemplarily shown in Figure 3, a lot of similarities are
visible in the positive and negative spectra. However, certain peaks
seem exclusive to certain bacterial strains, particularly in the positive
polarity. Additionally, the intensities of peaks vary depending on the
bacterial strain. While these differences may originate from the
bacterial strains, they may also result from contaminants present in
certain samples. Another contributing factor could be variations in
handling of samples. Despite efforts to control these factors by
preparing a blank measurement before each sample analysis, they
cannot be completely ruled out. To get an overview of the peaks in all
measurements, 95 peaks in the positive polarity and 26 peaks in the
negative polarity were manually selected. During this process,
fluctuation in the retention times of the early eluting peaks were
observed, likely due to unstable starting temperatures of the GC.
However, retention times of the later eluting peaks remained stable.
To address this issue, the peak positions in retention time were
adjusted using linear interpolation of the peak offsets between two
peaks consistently present in each measurement. A square mask of
20 × 20 data points is placed at each corrected peak position to
extract the peaks in each measurement. The results are shown in
Figure 5 for the positive and negative polarity. Given the

FIGURE 3
Topographic plots of the measurement data of: (a) Porphyromonas gingivalis (453) in positive polarity, (b) Porphyromonas gingivalis (453) in
negative polarity, (c) Fusobacterium nucleatum subsp. vincentii (805) in positive polarity, (d) Fusobacterium nucleatum subsp. vincentii (805) in negative
polarity. The x-axis shows the retention time of the gas chromatograph and the y-axis the inverse reduced ionmobility. The color indicates the amplitude
of the detector signal of the IMS. The color scaling within a polarity is identical.
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comparatively low signal intensities in the negative polarity and the
large number of peaks in the positive polarity relative to the number
of measurements, only the 95 peaks from the positive polarity are
considered for the classification algorithm. In future measurement
campaigns with a significantly larger number of measurements and
bacterial strains, the same methods can be used including the data
from the negative polarity.

The aim of this work is to classify the bacterial strains
representing major opportunistic peri-implant pathogens at the
genus level. For demonstrating feasibility, this work is focused on
a representative collection of eleven bacterial strains which are
assigned to one of the three classes and four genera:
Fusobacteriia/Fusobacterium: 12, Bacteroidia/Porphyromonas: 10,
Bacteroidia/Prevotella: 13, Negativicutes/Veillonella: 13. To

classify the genera of present in an unknown sample, Support
Vector Machines (Noble, 2006) was used. The dataset containing
the peaks of positive polarity of the 48 measurements shown in
Figure 5 was used as the model’s input. The input features used for
training were obtained by integrating the signal intensities inside
each square mask, representing each peak with a single scalar value.
Before training the model, the values are z-score normalized. The
genus is used as the training labels. The training process involved the
use of scikit-learn 1.6 in Python (Pedregosa et al., 2011), with the
“linearSVC” model configured with its default settings. This
implementation uses a quadratic hinge loss function and a linear
kernel function. Using the “SVC” function from scikit-learn, various
kernel functions were evaluated with their default settings on the
complete dataset of 95 positive peaks. The results indicate that in this

FIGURE 4
Demonstration of the interpolation process of the GC-IMS data from eachmeasurement to a new fixed pixel grid. The color indicates the intensity of
each measurement point, which corresponds to a pixel value in the resulting image.

FIGURE 5
Overview of all 95 selected peaks recorded in positive IMS polarity and 26 selected peaks recoded in negative IMS polarity for each measurement in
the dataset. Each box shows the extracted peak from the corresponding measurement displayed on the y-axis. The color indicates the amplitude of the
IMS detector signal, ranging from blue to green to red. The peaks are sorted on the x-axis from left to right according to their retention time.
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case a linear kernel function provided the best classification
performance. The confusion matrices for the alternative kernel
functions are included in the Supplementary Information 1–4. It
is worth noting that non-linear kernel functions may offer better
results by systematically optimizing their model parameters. Such
optimization will be part of future work. A k-fold cross-validation
approach was used to validate the trained models, whereby the data
was randomized and divided into five sets. Four sets were allocated
for model training, while the fifth set served as the validation set.
After five steps, the data set is randomized again, and the process is
repeated. For each validation, the number of times the genus of the
unknown samples is predicted correctly is recorded. After training
1,000 models, a confusion matrix is generated in which the
frequencies of the assignment of the genera by the model, see
Figure 6 (left). Using all 95 selected peaks of the positive IMS
polarity, Fusobacterium and Porphyromonas are correctly classified
in over 97% of the cases. Only Prevotella is misclassified as
Porphyromonas about 10% of the time and Veillonella is
misclassified as Fusobacterium 8.5% of the time. The relevance of
each peak in identifying unknown samples can be assessed by
analyzing the coefficients of the fitted model. After each of the
1,000 runs, the peaks are sorted according to their relevance and the

least relevant peak is removed from the dataset. Then, the training
and validation are repeated until only two peaks remain in the
dataset for identification. Figure 7 shows the mean percentage of the
diagonal of the confusion matrix for each number of remaining
peaks in the dataset. In addition, the minimal and maximal
percentage of correct identification are shown by the error bars
in Figure 7. The model’s performance consistently improves as the
dataset is reduced from the original 95 peaks to the 34 most relevant
peaks. It reaches its optimal performance when using between
32 and 20 peaks, but beyond this range, the dataset appears to
lack sufficient information for precise identification of samples.
Confusion matrices for the 40 most relevant peaks (middle) and
25 most relevant peaks (right) are shown in Figure 6. It can be
observed that the prediction of Fusobacterium and Porphyromonas
remains high and is almost independent of the number of peaks used
for classification, as long as the number of peaks used falls between
95 and 20. Meanwhile, classification accuracy for Veillonella
improves steadily, with misidentification rates decreasing to
roughly 2.5% when using 25 features. Prevotella shows best
improvement with limiting the number of most relevant peaks,
which improves identification rates from 91% to 99.5%. Figure 8
shows the 25 most relevant peaks for the best performing model,

FIGURE 6
Confusionmatrix of the predicted genus by the classification model for all 95 peaks from the positive polarity (left), the 40most relevant peaks from
the positive polarity (middle) and only the 25most relevant peaks from the positive polarity (right). Eachmatrix entry represents the percentagewith which
the sample (y-axis) was assigned to a specific label (x-axis). The diagonal corresponds to the correct assignments.

FIGURE 7
Trend of the correct detection rate, derived from the average of the diagonals of the confusion matrices, plotted against the number of most
relevant peaks. Error bars represent the minimum and maximum values of the diagonal for each confusion matrix.
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along with their order of relevance within this trained model. In
addition, an overview of these 25 peaks across all measured samples
is included in the Supplementary Information 5. Notably, the most
relevant peaks are distributed across the full retention time range,
from 500 to 900 s. Furthermore, the most relevant peaks have
comparatively low intensities in the spectra. Furthermore, due to the
chemical ionization of analytes in the IMS, the peaks may be
protonated monomers or proton-bound dimers of the same
analyte or product ions which only occur when two substances
coelute from the GC. This means that there could ultimately be
fewer analytes relevant for classification than the number of peaks
indicates. Using the 25 most relevant peaks from the dataset of the
different bacterial strains, an accuracy of over 97% can be achieved
for taxonomic classification of bacteria up to the genus level. It is
important to note that this involves only the identification of isolated
bacterial strains. In real applications, combinations of various
bacteria and complex background matrices may lead to
interactions during pyrolysis and masking effects in IMS.
Therefore, at this stage, we can only demonstrate the basic
feasibility of the technology for rapid identification of selected
clinical isolates. Subsequent scientific investigations need to
explore the system’s robustness against background media, limits
of detection, and matrix effects in complex samples.

4 Conclusion

In this work, we use a dual polarity IMS with an optimized
ionization region for coupling with gas chromatography with
front-end pyrolyzer. The IMS enables simultaneous detection of
relevant signatures in both ion polarities in a single GC run.
Despite the small dataset, this work shows feasibility of
differentiating clinical isolates of anaerobic bacteria by the

genus level using a pyrolysis-gas chromatography-ion mobility
spectrometry. By selecting the 25 most relevant peaks of the GC-
IMS data, the four genera, Fusobacterium, Porphyromonas,
Veillonella, and Prevotella, can be identified with 97% accuracy
using the experimental data.

It is worth noting that Py-GC-IMS has a much broader
perspective in clinical microbiology applications beyond the
contextualization within the oral microbiome presented here. The
oral microbiome, in particular the anaerobic bacterial strains
investigated here are considered as a first example to show
general feasibility. The representative bacteria used in our study
are commonly found in oral biofilms and were selected to
demonstrate the basic capability to differentiate between
individual genera. Currently, our focus for future analysis of
polymicrobial infections is on the analysis of clinical isolates.
However, very complex biofilms, such as oral microbial
communities, pose major additional challenges and require
further methodological development beyond the scope of this
work. Therefore, feasibility of differentiating selected clinical
isolates by Py-GC-IMS cannot yet be transferred to real clinical
applications with complex biofilms. Future analyses involving
different bacteria from various sources and in complex
backgrounds will further challenge this approach using Py-GC-
IMS for rapid on-site identification of bacteria. Moreover, on-site
detection would require the miniaturization of the entire system,
which is an engineering task conceivable with the selected
technologies.
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FIGURE 8
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25 most relevant peaks along with their order of relevance in the corresponding trained model.
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