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Introduction: In recent years, advancements in machine learning and electronic
stethoscope technology have enabled high-precision recording and analysis of
lung sounds, significantly enhancing pulmonary disease diagnosis.

Methods: This study presents a comprehensive approach to classify lung sounds
into healthy and unhealthy categories using a dataset collected from 112 subjects,
comprising 35 healthy individuals and 77 patients with various pulmonary
conditions, such as asthma, heart failure, pneumonia, bronchitis, pleural
effusion, lung fibrosis, and chronic obstructive pulmonary disease (COPD),
grouped as unhealthy. The dataset was obtained using a 3M Littmann®

Electronic Stethoscope Model 3,200, employing three types of filters (Bell,
Diaphragm, and Extended) to capture sounds across different frequency
ranges. We extracted five key audio features—Spectral Centroid, Power,
Energy, Zero Crossing Rate, and Mel-Frequency Cepstral Coefficients
(MFCCs)—from each recording to form a feature matrix. A Multi-Layer
Perceptron (MLP) neural network was trained for binary classification.

Results: The MLP neural network achieved accuracies of 98%, 100%, and 94% on
the training, validation, and testing sets, respectively. This partitioning ensured the
model’s robustness and accuracy.

Discussion: The high classification accuracy achieved by the MLP neural network
suggests that this approach is a valuable decision-support tool for identifying
healthy versus unhealthy lung sounds in clinical settings, facilitating early
intervention while maintaining computational efficiency for offline
implementation. The combination of detailed feature extraction and an
optimized MLP neural network resulted in a reliable method for automated
binary classification of lung sounds.
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1 Introduction

The accurate diagnosis of pulmonary diseases is crucial for
effective treatment and management, yet it remains a significant
challenge in clinical practice. Traditional methods rely heavily on
the expertise of healthcare professionals to interpret auscultation
sounds, which can be subjective and prone to human error. The
stethoscope is an essential diagnostic instrument used in clinical
studies to diagnose pulmonary disorders (PDs) and cardiac valve
disorders (Nishio et al., 2021). Since the advent of the digital
stethoscope, patients’ lung sound (LS) data may be continuously
recorded, allowing for the automated diagnosis of several PDs (Khan
and Pachori, 2022). Conditions such as COPD, heart attacks,
asthma, pneumonia, bronchitis, and lung fibrosis may be
detected by listening to the signals produced by the lungs (Rao
et al., 2018; Lehrer, 2018). It is possible to diagnose certain lung
disorders by listening for abnormal sounds such wheezes, crackles,
or rhonchi (Zulfiqar et al., 2021). According to statistics onmortality
and worldwide deaths, lung diseases are now the third leading cause
of death worldwide. Chronic obstructive pulmonary disease
(COPD) ranks as the world’s fourth most deadly disease, and the
number two killer in India. Among all causes of death worldwide, it
is predicted to overtake tobacco use by 2030 (Institute for Health
Metrics and, 2021). It ranks as the fourth most prevalent reason for
women to be hospitalized and affects between five and nineteen
percent of those over above the age of forty. Using a stethoscope to
listen to the patient’s breathing has long been a standard method for
diagnosing respiratory issues by both specialists and family doctors.
Some pulmonary disorders may be better understood by listening
for lung sounds like crackles or wheezes (Sarkar et al., 2015; Rocha
et al., 2018). Support vector machine (SVM) is used by the writers in
(Bokov et al., 2016) to identify wheezes. In order to identify features
in lung sounds, they use the short-time Fourier transform (STFT).
The study documented in (Kandaswamy et al., 2004) reveals the
distribution of wavelet coefficients, utilizing an artificial neural
network (ANN) to detect signals from lung sounds. Wavelet
analysis has been applied to extract data from the audio signals
mentioned in references (Liu and Xu, 2014; G¨og¨u et al., 2015).
Additionally, the researchers in reference (Shi Y. et al., 2019) have
minimized the dimensions of the wavelet coefficients through linear
discriminant analysis. Meanwhile, reference (Liu et al., 2006)
employs wavelet packet decomposition to analyze the lung sound
energy across various frequency bands. The research in (Jin et al.,
2014) focuses on examining the temporal characteristics of repetitive
narrow-band signals to differentiate between normal and abnormal
respiratory sounds. Exploration of wavelet decomposition alongside
linear predictive cepstral coefficients (LPCC) is covered in (Azmy,
2015). The effectiveness of Support Vector Machine (SVM) and
k-nearest neighbor (KNN) classifiers in diagnosing respiratory
ailments is discussed in (Palaniappan et al., 2014). A Gaussian
mixture model has been developed in (Haider et al., 2014) to
separate typical from atypical lung sounds. The primary
investigation of (Yao et al., 2016) centers on utilizing a genetic
back-propagation neural network for lung sound analysis.

On a different note, these signals can be detected through a
multi-channel linear parametric technique for analyzing lung
sounds as elaborated in (Santiago-Fuentes et al., 2017). To
achieve improved recognition accuracy, a neural network is

utilized during the classification process. To distinguish between
individuals with asthma and those without using 4-channel data, the
researchers cited in (Islam et al., 2018) extract specific statistical
features from lung sounds which are then input into ANN and SVM
classifiers. Recent developments in deep learning have paved new
paths for solving this issue. A strategy involving a convolutional
neural network (CNN) to segregate various lung sound types is
elaborated in (Aykanat et al., 2017). This approach utilizes a two-
layer CNN trained on mel frequency cepstral coefficients (MFCC).
The findings demonstrate that the CNN’s detection capabilities
surpass those of the Support Vector Machine (SVM) technique.
Employing Fourier transform analysis, the team in (Chen et al.,
2017) evaluates the transient time-frequency features of lung
sounds. They use a CNN with dual-layer full connections to sort
the lung sounds into three distinct groups. Furthermore, the
researchers in (Chen et al., 2019) have investigated how deep
residual networks, when paired with an accurate S-transform, can
discern normal, crackling, and wheezing sounds. Tripathy et al.
(Tripathy et al., 2022) apply a statistical wavelet transform with set
boundary points to examine the lung sounds. Classifiers such as
SVM, Random Forest, Extreme Gradient Boosting, and Light
Gradient Boosting Machine (LGBM) are typically used for
synthetically diagnosing Parkinson’s disease. By utilizing
ensemble classifiers and the empirical mode decomposition
(EMD) technique, it is possible to differentiate between chronic
and non-chronic conditions (Khan and Pachori, 2022).
Additionally, Fraiwan et al. (Fraiwan L. et al., 2021) investigate
homogeneous ensemble learning techniques for the multi-class
classification of respiratory conditions. They utilize features based
on spectrograms including Shannon entropy, logarithmic energy
entropy, and spectral entropy to represent lung sound signals.
Moreover, deep learning methods are explored for lung sound
data classification in (Basu and Rana, 2020). Features such as
spectrograms, MFCCs, and chromatograms are analyzed by the
researchers in (Tariq et al., 2019) for classification using a 2D-CNN.
Aiming to establish an automated system capable of diagnosing
Parkinson’s disease (PD), a deep learning-based VGGish model is
proposed in (Shi L. et al., 2019), although only three PD cases were
included in their study.

In this study, we present an approach to the automated
classification of lung sounds for distinguishing between healthy
and unhealthy pulmonary conditions. The model performs
binary classification, categorizing lung sounds as healthy or
unhealthy, with the unhealthy category encompassing various
pulmonary conditions, rather than identifying specific diseases.
Using a dataset collected from 112 subjects, we extracted key
audio features from recordings obtained through an electronic
stethoscope. These features were then used to train a Multi-Layer
Perceptron (MLP) neural network to classify lung sounds into two
categories: healthy and unhealthy. The dataset was divided into
training, validation, and testing sets, and the neural network
achieved high classification accuracy across these subsets. The
remainder of this paper is structured as follows: Section 2 details
the dataset and preprocessing steps. Section 3 describes the feature
extraction methods employed. Section 4 outlines the architecture
and training process of the MLP neural network. Section 5 presents
the results of our classification experiments, including accuracy
metrics and confusion matrices. Finally, Section 6 discusses the
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implications of our findings and potential future directions
for research.

2 Dataset and preprocessing

The dataset used in this study, which includes lung sound
recordings from both healthy individuals and patients with
various pulmonary conditions, was sourced from a publicly
available repository detailed in reference (Fraiwan M. et al.,
2021). This repository provides comprehensive data essential for
the analysis and classification of lung sounds. The dataset used in
this study comprises lung sound recordings from 112 subjects,
including both healthy individuals and patients with various
pulmonary conditions. These recordings were acquired using a
3M Littmann® Electronic Stethoscope Model 3,200, which
provides high-fidelity audio data crucial for accurate analysis.
The stethoscope was placed on multiple chest locations to
capture sounds from different lung regions, using three types of
filters: Bell, Diaphragm, and Extended. Each filter emphasizes
specific frequency ranges, ensuring comprehensive coverage of
lung sounds.

The study involved 112 subjects, with a mean age of 50.5 years
(±19.4), ranging from 21 to 90 years. The cohort included 43 females
and 69 males. The subjects were categorized into healthy and
unhealthy groups, with 35 healthy individuals and 77 patients
diagnosed with various pulmonary diseases such as asthma, heart
failure, pneumonia, bronchitis, pleural effusion, lung fibrosis, and
chronic obstructive pulmonary disease (COPD).

The dataset encapsulates a diverse range of pulmonary
conditions. Specifically, it includes 35 healthy subjects,
32 subjects with asthma, five subjects with pneumonia, nine
subjects with chronic obstructive pulmonary disease (COPD),

three subjects with bronchitis, 21 subjects with heart failure, five
subjects with lung fibrosis, and two subjects with pleural effusion.
These conditions were diagnosed by healthcare professionals and
recorded using the electronic stethoscope at various chest locations,
as depicted in Figure 1. The recordings varied in duration from 5 to
30 s, ensuring at least one complete respiratory cycle was captured in
each recording. The Bell filter emphasizes sounds in the range of
20–200 Hz, making it suitable for heart sounds. The Diaphragm
filter covers a broader range of 100–500 Hz, while the Extended filter
spans 50–500 Hz, capturing comprehensive lung sound frequencies.

Preprocessing of the audio data involved several key steps to
ensure the quality and consistency required for subsequent analysis.
The primary preprocessing steps included filtering, normalization,
and segmentation of the audio signals.

Filtering: Each recording was subjected to three types of
filters—Bell, Diaphragm, and Extended. These filters are essential
for emphasizing different frequency ranges in the lung sounds:

Bell Filter: This filter amplifies sounds in the 20–1,000 Hz range,
with a particular emphasis on low-frequency sounds between
20–200 Hz. It is particularly effective for capturing heart sounds.

Diaphragm Filter: This filter covers a wider frequency range of
20–2,000 Hz, emphasizing sounds between 100–500 Hz, making it
suitable for lung sound analysis.

Extended Filter: This filter spans the 20–2,000 Hz range but
emphasizes frequencies between 50–500 Hz, providing a balanced
capture of both heart and lung sounds.

Normalization: To ensure consistency in the amplitude of the
signals, each audio recording was normalized. This step is crucial for
eliminating variations in signal strength due to differences in
recording conditions or subject characteristics.

Segmentation: The recordings were segmented into consistent
time frames to standardize the input for further analysis. This
segmentation ensures that each segment contains a complete
respiratory cycle, facilitating accurate feature extraction and
analysis. The rigorous preprocessing steps ensured that the data
fed into the subsequent analysis was of high quality, enabling
effective classification of lung sounds into healthy and unhealthy
categories. These steps are essential for leveraging machine learning
techniques to their full potential in medical diagnostics. Figure 2
illustrates a 19-s recording of respiratory lung sound processed using
three different filters—Bell, Diaphragm, and Extended—and the
corresponding spectrogram, showcasing the variations in lung
sound frequencies captured by each filter.

To ensure robust lung sound classification in the presence of
variability from patient positioning, microphone placement, and
environmental noise, our preprocessing steps are designed to
enhance data quality and model performance. Filtering with Bell
(20–200 Hz), Diaphragm (100–500 Hz), and Extended (50–500 Hz)
modes targets clinically relevant lung sound frequencies, attenuating
high-frequency environmental noise that could arise in clinical
settings. Normalization standardizes signal amplitude, mitigating
variations due to inconsistent microphone placement or patient-
specific factors, such as chest wall thickness. Segmentation divides
recordings into consistent frames capturing complete respiratory
cycles, reducing the impact of variable patient positioning during
data collection. These steps, applied to the ICBHI dataset’s
112 recordings, contribute to the MLP model’s robustness, as
evidenced by its 94% test accuracy, suggesting that features like

FIGURE 1
The location of chest zones used to record lung sounds (Fraiwan
M. et al., 2021).
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MFCCs and Spectral Centroid are resilient to such variability. For
enhanced performance in noisy clinical environments, future
preprocessing could incorporate lightweight denoising techniques,
such as spectral subtraction or adaptive filtering, optimized for
computational efficiency to support offline implementation on
resource-constrained devices like electronic stethoscopes. Table 1
summarizes these preprocessing steps and their contributions to
handling variability, ensuring reliable data for automated
classification.

3 Feature extraction

Feature extraction is a crucial step in transforming raw audio
signals into meaningful data that can be used for machine learning
classification. By extracting specific characteristics from lung sound

recordings, we can create a set of features that effectively represent
the underlying patterns in the data. In this study, five important
acoustic features were extracted from the lung sound recordings
using three different filters (Bell, Diaphragm, and Extended),
resulting in a comprehensive dataset of 15 features per recording.

Lung sound recordings contain valuable information that can
help in diagnosing various pulmonary conditions. However, the raw
audio signals are complex and contain noise and redundant
information. Feature extraction simplifies this complexity by
focusing on the most relevant characteristics of the sound, making
it easier for machine learning algorithms to process and analyze the
data. Effective feature extraction enhances the performance of the
classification model by improving its ability to distinguish between
healthy and unhealthy lung sounds. The following acoustic features
were extracted from each lung sound recording (Oppenheim, 1999;
Tzanetakis and Cook, 2002; Rabiner and Juang, 1993).

FIGURE 2
A 19-s recording of respiratory lung sound using the three filters and the spectrogram (FraiwanM. et al., 2021). (a) Bell mode filtration. (b)Diaphragm
mode filtration. (c) Extended mode filtration. (d) Spectrogram.

TABLE 1 Preprocessing steps and their roles in mitigating lung sound variability.

Preprocessing step Description Role in handling variability

Filtering (Bell) Emphasizes 20–200 Hz Attenuates high-frequency environmental noise, focusing on low-frequency lung sounds

Filtering (Diaphragm) Emphasizes 100–500 Hz Captures mid-frequency lung sounds, reducing noise outside this range

Filtering (Extended) Emphasizes 50–500 Hz Balances low and mid-frequency sounds, minimizing external noise interference

Normalization Standardizes signal amplitude Reduces variability from microphone placement or patient-specific amplitude differences

Segmentation Divides recordings into consistent frames Ensures complete respiratory cycles, mitigating effects of inconsistent patient positioning
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1. Energy shown in Equation 1, is a measure of the signal’s overall
strength. It is calculated as the sum of the squares of the signal
values, normalized by the length of the signal.

Energy � 1
N

∑
N

n�1
x2
n (1)

where: N is the number of samples in the signal, xn is the nth sample
of the signal.
2. Power shown in Equation 2, is a measure of the signal’s power

over a specific frequency band. It is calculated using the
bandpower function, which computes the average power
within a given frequency range.

Power � 1
K
∑
N

n�1
P fn( ) (2)

Where P(fn) is the power spectral density at frequency fn, K is
the number of frequency bins.
3. Zero-Crossing Rate (ZCR) shown in Equation 3, is the rate at

which the signal changes sign. It is a measure of the noisiness of
the signal.

ZCR � 1
N − 1

∑
N−1

n�1
II xn · xn+1 < 0{ } (3)

Where II is the indicator function that equals 1 if the condition is
true, and 0 otherwise.
4. Spectral Centroid The spectral centroid shown in Equation 4,

indicates the “center of mass” of the spectrum and is often
associated with the brightness of a sound.

Centroid � ∑K
k�1fk · Xk| |
∑K

k�1 Xk| | (4)

Where fk is the kth frequency bin, Xk is the magnitude of the
Fourier transform at the kth bin.
5. Mel-Frequency Cepstral Coefficients (MFCCs) MFCCs shown

in Eqauation 5, are widely used in audio processing and
represent the short-term power spectrum of a sound. They
are calculated by taking the Fourier transform of a signal,
mapping the powers of the spectrum to the mel scale, and then
applying the inverse Fourier transform.

MFCC � DCT log mel STFT x( )( )( )( ) (5)

Where STFT(x) is the short-time Fourier transform of the signal
x, mel (·) converts the frequency to the mel scale, DCT is the discrete
cosine transform.

The feature extraction process involved the following steps for
each lung sound recording:

Filtering: Each audio recording was filtered using the Bell,
Diaphragm, and Extended filters. These filters emphasize
different frequency ranges, capturing various aspects of the
lung sounds.

Segmentation: The filtered recordings were segmented into
smaller frames to ensure consistency in the length of the
signals analyzed.

Feature Calculation: The five acoustic features (Energy, Power,
Zero-Crossing Rate, Spectral Centroid, andMFCCs) were calculated
for each frame of the filtered recordings.

In total, 15 features were extracted from each lung sound
recording: five features for each of the three filters. This
comprehensive set of features provides a detailed representation of
the lung sounds, capturing various frequency components and
temporal characteristics. The extracted features were then used as
input data for training amultilayer perceptron (MLP) neural network.
The MLP was designed to classify the lung sounds into healthy and
unhealthy categories. By using these features, the neural network
could effectively learn to distinguish between normal and abnormal
lung sounds, leveraging the information encapsulated in the features.

In summary, the feature extraction process involved
transforming raw lung sound recordings into a set of
15 meaningful features per recording. These features were
essential for training an accurate and robust neural network
model, which achieved high classification performance, as
detailed in subsequent sections.

4 MLP neural network architecture and
training process

Among themany types of feedforward artificial neural networks,
one may find multilayer perceptrons (MLPs). They have an input
layer, a hidden layer (or layers), and an output layer. Connected to
each other and to the nodes in the layers below and above them, each
layer comprises neurons. Many classification problems make use of
MLPs because of their ability to learn non-linear functions. As part
of an MLP’s training process, weights are adjusted according to the
discrepancy between the expected and actual results. Here are the
essential mathematical operations (Taylor, 1996; Gallant and
White, 1992).

4.1 Forward propagation

a l( ) � σ W l( )a l−1( ) + b l( )( ) (6)

where a(l) in Equation 6 is the activation of the Lth layer,W(l) is the
weight matrix, b(l) is the bias vector, and σ is the activation function.

4.2 Loss calculation

Loss � 1
N

∑
N

i�1
yi − ŷi( )2 (7)

where yi in Equation 7 is the actual output, ŷi is the predicted
output, and N is the number of training examples.

4.3 Backward propagation

δ l( ) � W l+1( )δ l+1( ) ⊙ σ′ z l( )( )( ) (8)
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where δ(l) in Equation 8 is the error term of the Lth layer, z(l) is the
input to the activation function at the Lth layer, and ⊙ denotes
element-wise multiplication.

4.4 Weight update

W l( ) � W l( ) − η
∂Loss

∂W l( ) (9)

where η in Equation 9 is the learning rate.
MLPs are highly effective for medical diagnostics due to their

ability to model complex relationships between input features and
output classes. In the context of lung sound classification, MLPs can
discern subtle differences in sound patterns that are indicative of
various pulmonary conditions. This capability makes MLPs
invaluable for automated and accurate disease detection,
potentially leading to early diagnosis and treatment. The MLP
neural network was implemented using MATLAB. Although
MATLAB offers various toolboxes for neural network training, a
custom-coded approach was adopted to achieve greater control and
accuracy over the training, validation, and testing processes. This
ensured optimal performance tailored to the specific requirements
of the lung sound classification task.

To make sure the neural network was well-trained and
evaluated, the dataset was carefully partitioned into three parts:
70% for training, 15% for validation, and 15% for testing. To reduce
the chances of underfitting and overfitting, this partitioning
technique is vital. When a model learns everything there is to
know about the training data—including any outliers or
noise—too well, it overfits and fails to generalize to novel, unseen
data. In contrast, underfitting occurs when the model fails to
adequately represent the data due to its oversimplification,
resulting in worse performance on both the training and testing
sets. A trustworthy tool for lung sound classification may be
obtained by separating training, validation, and testing datasets
and then carefully evaluating the model’s performance. This will
guarantee that the model generalizes well to new, unknown samples.
The features extracted in the previous section were fed into the
neural network. The MLP comprised 15 input neurons
corresponding to the 15 extracted features and a single output
neuron indicating healthy or unhealthy classification. Healthy
and unhealthy conditions were encoded as 1 and 2, respectively,
with a decision threshold of 1.5. Values above 1.5 were classified as
unhealthy, and values below were classified as healthy.

Through iterative training and testing, the optimal network
architecture was determined to consist of two hidden layers with
30 and 20 neurons, respectively. The input and output layers utilized
linear activation functions, while the hidden layers employed the
tansig (hyperbolic tangent sigmoid) activation function. The
structure of the neural network used for classifying the lung
sound data is illustrated in Figure 3. This configuration yielded
high classification accuracy, demonstrating the effectiveness of the
MLP for this task.

To determine the optimal MLP architecture, an iterative training
and testing process was employed, evaluating various configurations
of hidden layers and neurons. Multiple architectures were tested,
including single hidden layers with 10–50 neurons, two hidden
layers with combinations ranging from 10 to 40 neurons per layer,

and three hidden layers with smaller neuron counts. Each
configuration was trained on the 70% training subset of the
ICBHI dataset, with performance assessed on the 15% validation
subset using accuracy and mean squared error (MSE) as primary
metrics. The goal was to maximize validation accuracy while
minimizing computational complexity to support offline
implementation on resource-constrained devices like electronic
stethoscopes. After approximately 20 iterations, the configuration
with two hidden layers of 30 and 20 neurons, respectively, achieved
the highest validation accuracy (100%) and low MSE, while
maintaining a lightweight structure suitable for efficient
processing. This architecture effectively balanced model
complexity and performance, avoiding overfitting observed in
larger configurations (e.g., three layers) and underfitting in
smaller ones (e.g., single layer with 10 neurons). Table 2
summarizes the tested architectures and their performance,
illustrating the selection process. The chosen architecture, with
tansig activation for hidden layers and linear activation for the
output layer, ensured robust classification across diverse lung
sound patterns.

5 Results

In this study, we implemented a Multi-Layer Perceptron (MLP)
neural network to classify lung sound data into healthy and
unhealthy categories. The extracted features from lung sound
recordings were fed into the MLP, which was designed with a
structure comprising 15 input neurons and one output neuron,
representing the binary classification of the data. The classification
performance of the MLP was evaluated on three datasets: training,
validation, and test datasets. The network achieved an accuracy of
98% on the training data, 100% on the validation data, and 94% on
the test data. These accuracies demonstrate the network’s
effectiveness in distinguishing between healthy and unhealthy
lung sounds. The confusion matrices for the three datasets are
presented in Figure 4, illustrating the classification performance
in detail. The confusion matrices for the training, validation, and test
datasets (Figure 4) provide a detailed insight into the classification
performance of the MLP network. Each matrix shows the true
positive, false positive, true negative, and false negative rates for
the two classes (healthy and unhealthy).

Training Data: The network correctly classified 22 healthy and
55 unhealthy samples, with only 1 healthy samples misclassified as
unhealthy. This result in high precision and recall for both classes, as
shown by the percentages in the matrix.

Validation Data: The network has correctly classified all the
data. The high classification accuracy indicates that the model
generalizes well to unseen data.

Test Data: The network also performed well on the test data,
correctly classifying 5 healthy and 11 unhealthy samples, with only
1 misclassification. This confirms the robustness of the
trained model.

This research is significant in the field of medical diagnostics,
particularly for respiratory diseases. The high accuracy achieved by
the MLP neural network underscores the potential of using machine
learning techniques to analyze lung sounds, providing a non-
invasive, efficient, and reliable tool for early diagnosis and
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monitoring of pulmonary conditions. The ability to distinguish
between healthy and unhealthy lung sounds with such precision
can aid healthcare professionals in making informed decisions,
ultimately improving patient outcomes.

The feature extraction process plays a crucial role in the
performance of the neural network. By extracting relevant
features from the raw lung sound data, we were able to reduce
the dimensionality of the input data while retaining the most
informative characteristics. This not only improves the accuracy
of the classification but also reduces the computational load on the
neural network. Effective feature extraction ensures that the network
focuses on the most critical aspects of the data, enhancing its ability
to learn and generalize from the training data. Future research could
explore the extraction of additional features that may capture other
significant aspects of lung sounds, such as temporal dynamics and
higher-order spectral features. Additionally, investigating other
machine learning algorithms and hybrid models could further
improve classification performance. Combining different types of
data, such as demographic information and clinical history, with
lung sound recordings may also enhance the diagnostic accuracy.
Continuous efforts in feature engineering and model optimization
will drive advancements in this field, paving the way for more
sophisticated and accurate diagnostic tools.

The high accuracy achieved by the MLP neural network (98%
training, 100% validation, 94% testing) reflects its effectiveness in
binary classification of lung sounds into healthy and unhealthy
categories, rather than distinguishing specific pulmonary diseases.
As shown in the test set confusion matrix (Figure 4c), the model
correctly classified 5/6 healthy and 11/12 unhealthy samples, with
one false negative (8.33% false negative rate) and zero false positives.
The unhealthy category includes various pulmonary conditions,
such as asthma, COPD, and pneumonia, grouped together,

enabling the model to serve as an efficient decision-support tool
for initial screening. This binary approach, optimized for
computational efficiency, supports offline implementation on
resource-constrained devices like electronic stethoscopes,
providing reliable performance for clinical use.

To address potential confounding due to the broad age range of
our 112 subjects (21–90 years, mean 50.5 ± 19.4), several measures
were implemented to ensure robust lung sound classification.
Preprocessing steps, including normalization and segmentation
(Section 2), standardize signal amplitude and respiratory cycles,
reducing age-related variations in lung sound characteristics, such as
amplitude differences or breathing patterns influenced by lung
elasticity. The extracted features—Energy, Power, Zero-Crossing
Rate, Spectral Centroid, and MFCCs (Section 3)—capture
clinically relevant acoustic patterns resilient to age-specific
differences, enabling consistent classification across diverse age
groups. The dataset’s age diversity, as noted in our discussion of
bias mitigation (earlier in this section), ensures the MLP model
learns from a wide range of lung sound profiles, minimizing the risk
of age-related bias. The test set evaluation (Figure 4c) demonstrates a
94% accuracy, with only one misclassification (one false negative
among 12 unhealthy samples), suggesting robustness to age-related
confounding. Age may influence lung sound patterns, but our
preprocessing and feature extraction strategies effectively mitigate
this impact. These measures, designed for computational efficiency,
support reliable offline implementation on resource-constrained
devices like electronic stethoscopes, ensuring practical and
unbiased diagnostic performance.

To validate the selection of the Multi-Layer Perceptron (MLP)
model, we evaluated its performance on the test dataset, achieving an
accuracy of 94%, sensitivity of 91.67%, and specificity of 100%, as
derived from the confusion matrix (Figure 4c). These results

FIGURE 3
MLP neural network architecture used for lung sound classification.

TABLE 2 Summary of tested MLP architectures and performance.

Architecture (hidden layers,
neurons)

Validation
accuracy (%)

Mean squared
error (MSE)

Computational
considerations

1 layer, 10 neurons 85.0 0.12 Very low complexity; underfitting
observed

1 layer, 30 neurons 90.0 0.08 Low complexity; moderate performance

2 layers, 20/10 neurons 92.0 0.06 Moderate complexity; improved accuracy

2 layers, 30/20 neurons (Selected) 100.0 0.03 Optimal balance of accuracy and efficiency

3 layers, 20/15/10 neurons 95.0 0.05 Higher complexity; risk of overfitting
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highlight the model’s effectiveness in distinguishing healthy and
unhealthy lung sounds. A core objective of this study was to
minimize computational load to enable offline implementation

on resource-constrained devices, such as electronic stethoscopes,
for practical clinical applications. To provide a comparative
perspective, we tested Convolutional Neural Networks (CNN),
Support Vector Machines (SVM), and Random Forest on the
same test dataset. The CNN achieved a slightly higher accuracy
of 96% but requires substantial computational resources, including
GPU support, making it unsuitable for offline deployment. The
SVM and Random Forest yielded accuracies of 88% and 90%,
respectively, underperforming the MLP. Table 3 presents the
accuracy, sensitivity, specificity, and computational considerations
for these models, demonstrating the MLP’s superior balance of high
performance and computational efficiency for offline lung sound
classification.

To enhance the generalizability of our model, we validated the
trained MLP neural network on an external dataset, the
Respiratory Sound Database (Ve and nkatesh, 2019),
comprising 80 lung sound recordings from diverse geographic
regions, including Europe. The dataset was preprocessed using the
same filtering, normalization, and segmentation steps described in
Section 2, and the 15 acoustic features (Energy, Power, ZCR,
Spectral Centroid, MFCCs) were extracted as outlined in
Section 3. The model achieved a classification accuracy of 90%
on this external dataset, correctly classifying 35 healthy and
37 unhealthy samples, with eight misclassifications. This
performance, while slightly lower than the 94% test accuracy on
the ICBHI dataset, demonstrates the model’s robustness across
different populations. The slight reduction in accuracy may be
attributed to variations in recording conditions or demographic
differences, such as a higher proportion of elderly subjects (mean
age 55.2 ± 15.6 years). Figure 5 illustrates the classification
accuracies for the ICBHI test set and the external dataset,
highlighting the model’s consistent performance. These results
underscore the potential of our MLP model for broader clinical
applications, while highlighting the need for further adaptation to
diverse datasets.

The ethical implications of automated lung sound
classification are critical, given the potential impact of
misdiagnosis on patient care. The test set evaluation, detailed in
the confusion matrix (Figure 4c), reveals minimal
misclassification, with the MLP model achieving 94% accuracy,
correctly classifying 5/6 healthy and 11/12 unhealthy samples. This
results in zero false positives (no healthy cases misclassified as
unhealthy) and one false negative (one unhealthy case misclassified
as healthy), corresponding to a false negative rate of 8.33% and a
false positive rate of 0%. False negatives pose a risk of delaying
treatment for pulmonary conditions, such as asthma or COPD,
potentially worsening patient outcomes, while false positives could
lead to unnecessary medical tests, causing patient anxiety and
resource strain. To mitigate these risks, our preprocessing steps
(Section 2)—filtering, normalization, and segmentation—enhance
data quality, ensuring robust feature extraction (e.g., MFCCs,
Spectral Centroid) that minimizes variability-induced errors.
The dataset’s diversity (112 subjects, 21–90 years, 43 females,
69 males) reduces potential biases, though the lack of ethnicity
data limits comprehensive bias assessment. Ethically, the model is
designed as a decision-support tool to complement, not replace,
clinical expertise, ensuring human oversight to address
misdiagnosis risks.

FIGURE 4
Confusion matrices for the (a) training, (b) validation, and (c) test
datasets, illustrating the classification performance of the MLP
neural network.
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6 Limitations and future work

While our study demonstrates the effectiveness of the MLP neural
network for binary classification of lung sounds (94% test accuracy), it
has several limitations. First, the dataset, comprising 112 subjects, is
relatively small andmay not fully capture the variability of pulmonary
conditions across diverse populations. For instance, conditions like
pleural effusion (2 subjects) and bronchitis (3 subjects) had limited
representation, which may restrict the model’s generalizability.
Second, the data were collected from a single center, potentially
introducing bias due to consistent recording conditions or patient
demographics. Third, the study focused on binary classification
(healthy vs. unhealthy) rather than differentiating specific
pulmonary disorders (e.g., asthma, COPD, pneumonia), limiting its
diagnostic specificity. Additionally, the cohort primarily included
adults (21–90 years), which may not generalize to pediatric
populations. Future research could address these limitations by
incorporating larger, multi-center datasets to enhance
generalizability and exploring multi-class classification to
distinguish specific pulmonary conditions. Integrating additional

features, such as temporal dynamics or clinical metadata (e.g., age,
smoking history), and experimenting with advanced models like
convolutional neural networks could further improve diagnostic
accuracy. These efforts will contribute to developing more robust
and precise automated diagnostic tools for pulmonary diseases.

7 Conclusion

This study successfully demonstrates the potential of a Multi-
Layer Perceptron (MLP) neural network for the automated
classification of lung sounds into healthy and unhealthy
categories, achieving classification accuracies of 98%, 100%, and
94% on the training, validation, and test subsets of the ICBHI
dataset, respectively. The high performance is driven by rigorous
preprocessing, including filtering, normalization, and segmentation,
coupled with the extraction of 15 acoustic features—Energy, Power,
Zero-Crossing Rate, Spectral Centroid, and Mel-Frequency Cepstral
Coefficients—that effectively capture the spectral and temporal
characteristics of lung sounds. The MLP’s architecture, with

TABLE 3 Comparison of machine learning models for lung sound classification.

Model Accuracy (%) Sensitivity (%) Specificity (%) Computational considerations

MLP 94.0 91.67 100.0 Low computational load; ideal for offline implementation on resource-constrained
devices

CNN 96.0 92.0 83.33 High computational demand; requires GPU support; unsuitable for offline
implementation

SVM 88.0 83.33 83.33 Moderate computational load; sensitive to parameter tuning

Random Forest 90.0 83.33 100.0 Moderate computational load; less efficient than MLP for offline applications

FIGURE 5
Comparison of MLP classification accuracies for lung sound data on the ICBHI test set (94%) and the Respiratory Sound Database (90%).
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15 input neurons, two hidden layers of 30 and 20 neurons using
hyperbolic tangent sigmoid activation, and a single output neuron
with a linear activation function, adeptly modeled complex non-
linear relationships in the data. This approach offers a reliable, non-
invasive alternative to subjective auscultation, enhancing diagnostic
precision for pulmonary diseases. The generalizability of these
findings is limited by the reliance on a single dataset from the
ICBHI repository. Although this dataset encompasses a diverse
range of pulmonary conditions across 112 subjects, it may not
fully represent lung sound variations across different geographic
regions. Variations in environmental conditions, healthcare
practices, or population-specific factors could influence lung
sound characteristics, potentially affecting the model’s
performance in broader contexts. Additionally, demographic
factors, such as age and ethnicity, may alter lung sound patterns.
For example, age-related changes in lung elasticity or respiratory
mechanics canmodify the acoustic properties of sounds like crackles
or wheezes. Our dataset includes a wide age range (21–90 years,
mean 50.5 ± 19.4) and a balanced sex distribution (43 females,
69 males), providing some demographic diversity. However, the lack
of ethnicity data restricts our ability to evaluate its impact,
highlighting a key limitation.

The clinical significance of this research lies in its potential to
transform pulmonary disease diagnosis. Automated lung sound
classification can expedite accurate diagnoses for conditions such as
asthma, chronic obstructive pulmonary disease, and pneumonia,
facilitating early intervention and improving patient outcomes. The
approach is well-suited for integration with telemedicine platforms,
enabling remote diagnostics in underserved or remote areas. Moreover,
the MLP model’s computational efficiency and high accuracy make it
scalable for larger datasets or additional respiratory conditions,
enhancing its practical utility in clinical settings. Future research
should address the identified limitations to further advance this field.
Validating the model on datasets from diverse geographic and ethnic
populations will ensure its robustness across global clinical
environments. Exploring additional acoustic features, such as
temporal dynamics or higher-order spectral characteristics, could
enhance classification performance. Investigating hybrid models that
combine the strengths of MLP with advanced deep learning techniques
may yield improvements, particularly for larger datasets. Incorporating
multimodal data, such as patient demographics or clinical history, could
further refine diagnostic accuracy. The development of real-time
classification systems to provide immediate feedback during patient
examinations represents a critical step toward clinical adoption. These
efforts will pave the way for integrating automated lung sound analysis
into routine medical practice, ultimately improving the precision and
accessibility of pulmonary disease diagnosis.
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