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Introduction: The safe-by-design of engineered nanoparticles (NPs) for any
application requires a detailed understanding of how the particles interact with
single cells. Most studies are based on two-dimensional, uniformly dense cell
cultures, which do not represent the diverse and inhomogeneous cell
environments found in situ. In-vitro models that accurately represent tissue
complexity, including realistic cell densities, are essential to increase the predictive
accuracy of studies on cell-NP interactions. This study uses a bioprinted cell gradient
model to examine the relation between cell density and NP uptake in one dish.

Method: A549 lung epithelial cell density gradients within single inserts were
produced with a bioprinter by modulating inter-droplet distances. After two days
in culture, cells were exposed to Cy5-labeled silica NPs (SiO2 NPs, ~112 nm,
20 μg/mL) for up to 48 h. Confocal fluorescence microscopy and 3D image
analysis were used to quantify NP uptake, cell surface area, and cell volume. The
relationship between NP uptake and the other parameters was then investigated
statistically.

Results: Bioprinting enabled the creation of reproducible linear cell density
gradients, allowing controlled modeling of density variations while preserving
cell viability throughout the experiment. Increasing inter-droplet distances, from
0.1mm to 0.6mm, were used to achieve uniformly decreasing cell densities. SiO2

NP uptake per cell was around 50% higher in low-density regions compared to
high-density areas across all time points, i.e., 6, 24, and 48 h post-exposure. This
inverse relationship correlated with greater average cell surface area in lower-
density regions, while differences in the proliferation rates of the A549 cells at
varying densities did not significantly impact uptake, did not significantly
impact uptake.

Conclusion: SiO2 NP uptake is significantly enhanced at lower cell densities,
mainly due to the increased available surface area, revealing potential cell-NP
interaction differences in tissues that present cell density variability. Our drop-on-
demand bioprinting gradient model successfully supports the implementation of
cell density gradients in in-vitro models to increase their relevance as new
approach methodologies (NAMs) for next-generation risk assessment strategies.
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1 Introduction

Gradients, variations of a particular variable over a given
distance or over time, are a recurring feature in nature and are
present in all biological contexts, from simple monocellular life
forms to complex macroscopic organisms (Benyamin et al., 2023; Jo
et al., 2022; Bernhardt et al., 2022). These varying parameters
include biomolecule and chemical concentrations (Majumdar
et al., 2014; DeRocher et al., 2020), electrical potential (McCaig
et al., 2009; Adams and Levin, 2013), and mechanical stiffness
(Shellard and Mayor, 2021; Oudin and Weaver, 2016) but are
not limited to these factors. In human biology, among the
various kinds of gradients, cell density variations are crucial in
both physiological and pathological conditions (Cammarota et al.,
2024; Zheng et al., 2016; Trajkovic et al., 2019; Greene et al., 2016;
Sarate et al., 2024; Lu et al., 2024). In-vivo, fluctuations of cell density
over time contribute to processes like tissue repair, development,
and aging, while being driven by immune infiltration, epithelial
remodeling, regeneration, and morphogenesis (Cammarota et al.,
2024; Zheng et al., 2016; Sarate et al., 2024; Lu et al., 2024; Klohs
et al., 2008).

Despite the critical and not yet fully understood impact of cell
density as a research parameter, it is often primarily considered in
studies focused on cell proliferation, differentiation, or migration
(Enrico Bena et al., 2021; Zhou et al., 2011; Wroblewski et al., 2022;
Heinrich et al., 2020; Devany et al., 2023; Burger et al., 2022), and
overlooked in NP hazard and cell interaction studies. Cell density
gradients and inhomogeneities are particularly interesting in NP
applications because the way NPs interact with cells, their uptake
efficiency, and intercellular trafficking can change depending on
how densely and spatially packed the cells are (Greene et al., 2016;
Zhang et al., 2021; Garcia Romeu et al., 2021; Yacobi et al., 2008).
Notably, cell density impacts the observed magnitude and kinetics of
adverse effects by modulating cellular responses to external agents,
such as drugs and oxidative stress-inducing compounds (Riss and
Moravec, 2004; Caviglia et al., 2015; Wu YK. et al., 2020). Since these
effects depend on cellular interaction and uptake, similar effects
could influence NP delivery efficiency and the resulting toxicological
responses. Due to these density-dependent changes, the reliability
and reproducibility of experimental results, particularly in-vitro
studies, may be affected (Trajkovic et al., 2019; Greene et al., 2016).

A previous research study (Kim et al., 2012) has investigated
how cell cycle phase influences NP uptake and suggested that factors
such as cell density may indirectly affect internalization through
their impact on cell cycle dynamics. A higher degree of confluency in
in-vitro cultures has been shown to increase the proportion of cells
in the G0/G1 phase (Hayes et al., 2005; Choresca et al., 2009), which,
as demonstrated in the referenced study, is associated with reduced
NP uptake. Most 2D in-vitro models only assume a single cell
density at the time of the experiment, and, in addition, this
parameter is often unreported. Furthermore, conventional
pipetting for cell seeding can produce uneven distributions
(Moore et al., 2019), as turbulent flow, convection, and vessel
movement cause cells to aggregate at the center or edges of the
dishes/wells. In smaller wells (e.g., 96- to 24-well formats), the
meniscus becomes an additional factor that affects the cell
distribution and the experimental results (Reynolds et al., 2018;
Glaubitz et al., 2023; Mansoury et al., 2021). While these effects may

replicate aspects of in-vivo heterogeneity, their random and
uncontrolled nature prevents systematic investigation and
introduces variability, resulting in limited reproducibility.

To address these challenges and improve both the
reproducibility of in-vitro studies and their ability to better
mimic relevant in-vivo conditions, various methods have been
developed to generate controlled cell density gradients, each with
specific advantages and limitations. These methods include
microfluidic platforms that enable precise control of gradients
through fluid flow (Mehling and Tay, 2014; Chiu et al., 2000; Li
et al., 2015a), directed cell migration systems that generate gradients
through mechanical, chemical, and electrical factors (Mao et al.,
2016; Smith et al., 2006; Liu et al., 2007; Wan et al., 2009),
sedimentation-based approaches utilizing tilted surfaces to create
cell concentration gradients (Li et al., 2015a; Liu et al., 2013), and 3D
bioprinting techniques that allow controlled deposition of cell-laden
bio-inks (Kuzucu et al., 2021; Idaszek et al., 2019). However, among
these approaches, only a few have demonstrated feasibility for
creating cell density gradients (Chiu et al., 2000; Li et al., 2015a;
Liu et al., 2013; Kuzucu et al., 2021).

Developing a straightforward, reproducible, and efficient
method to create controlled cell density gradients in one cell
culture dish would address the standardization issues in current
methods and the need for more physiologically relevant in-vitro cell
culture models to study the effects of NPs. This study examines the
connection between human lung epithelial cell density and NP-cell
interactions by developing a reproducible gradient method using
bioprinting drop-on-demand technology and investigating the
relationships between cell density, proliferation rate, surface area,
and NP uptake. The findings demonstrate the reproducibility of the
cell gradient after optimization of the bioprinting parameters
without impacting cell viability. Most significantly, a strong
negative correlation between NP uptake per cell and cell density
was shown, providing critical information to understand the broader
impact of cell density on NP exposure, particularly in
pathological scenarios.

2 Materials and methods

2.1 Cell culture

Cell culture reagents were sourced from Gibco, Thermo Fisher
Scientific (Zug, Switzerland) unless stated otherwise. The A549 cell
line was obtained from the American Type Culture Collection
(ATCC, Rockville, MD, USA) and grown in RPMI-1640 medium.
This medium was supplemented with 10% fetal bovine serum (FBS),
2 mM L-Glutamine, and Penicillin-Streptomycin (100 μg/mL). This
complete growth medium is referred to as complete RPMI 1640
(cRPMI). Cell cultures were kept at 37°C in an incubator with 5%
CO2 and 95% humidity.

A549 cells were split twice a week using 0.25% Trypsin-EDTA,
following the ATCC guidelines. Cell concentration was checked
using the trypan blue exclusion method (0.4% trypan blue in
phosphate-buffered saline (PBS), pH 7.2, from Gibco, Life
Technologies Europe B.V., Zug, Switzerland), and counted with
an automated cell counter (EVE, NanoEnTek Inc., Seoul, South
Korea). The cells were maintained at 37°C with 5% CO2 and 95%
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humidity and passaged when they reached 80%–90% confluency,
with internal passage numbers ranging from 6 to 18. Regular
mycoplasma testing was performed, and no contamination was
observed at any time.

2.2 Fabrication of bioprinted cell gradients

The printing instrument used in this study was the
3DDiscovery™ Biosafety Bioprinter from regenHU Ltd., Villaz-
Saint-Pierre, Switzerland. Dispensing is performed using CF300N
valve-based print heads, which support jetting or contact dispensing
through a solenoid-actuated micro-valve. A549 cell suspensions
were pipetted into cartridges connected to the print heads via a
Luer-Lock adapter and agitated using a propeller to avoid
sedimentation. Dispensing is driven by filtered air pressure.
Designs were created in BioCAD (version 1.1), converted into
g-code, and executed following a parameter adjustment for feed
rate, valve opening time, inter-droplet distance, and air pressure.

In this article, the term “pattern” refers to the result of the droplet-
by-droplet cell deposition process. “Graded patterns” or simply “cell
density gradients” or “cell gradients” indicate the continuous cell
density gradientmodels, while “control patterns” refer to the uniform-
densitymodels printed as separate controls for each density condition.

Graded patterns and uniform control patterns of A549 cells were
fabricated using the aforementioned valve-based droplet deposition
technology. Cells were deposited onto 3 µm holey polyethylene
terephthalate (PET) hanging inserts (Corning® Falcon, Reinach,
Switzerland) placed in 6-well plates, each with a membrane
surface area of 4.2 cm2.

The print parameters included a valve opening time of 150 µs, an
air pressure of ~30 kPa, a feed rate of 10 mm/s, and a 0.2 mm nozzle
diameter. Cell suspensions had a concentration of 2 × 106 cells/mL.
Prior to the deposition of the cells, 1.5 mL of complete RPMI was
added to each well, and PET inserts were placed inside the well.
Then, a preliminary gradient of only the culture medium was
deposited onto the PET inserts. This initial medium layer
facilitated consistent merging between subsequent cell-laden
droplets and was designed with an opposing spacing pattern to
the following cell printing process.

To create continuous cell density gradients, the spacing between
printed cell-containing droplets was systematically varied. Starting with
closely spaced droplets (0.1 mm apart) at one end, we gradually
increased this spacing by 0.05 mm increments every 4 mm of print
distance. This resulted in a continuous gradient with maximum droplet
spacing (0.6 mm) at the opposite end. For control patterns, presenting
different cell densities on distinct inserts, inter-droplet distances of
0.125mm, 0.35mm, and 0.575mmwere used to achieve high, medium,
and low cell densities, respectively. In these control patterns, the inter-
droplet distances were slightly adjusted to account for the gradual
blending of density steps observed in the gradient patterns. After
printing, 0.5 mL of complete RPMI medium was added to the lower
compartment of each well plate to reach 2 mL, while no additional
medium was added to the top of the inserts. This ensured that cells
could grow within the defined “linear cell medium zone” established
during printing. Cells were then incubated for 2 days before further
experiments were performed. Subsequent imaging and staining
procedures are described in detail in Section 2.4.

2.3 Synthesis and characterization of silica
(SiO2) NPs

Fluorescent SiO2 NPs incorporating Cy5 dye were synthesized
via the Stöber method with slight modifications (Stöber et al., 1968;
Moreno-Echeverri et al., 2022). Initially, 162 mL of absolute ethanol
(EtOH) (VWR, Dietikon, Switzerland), 58 mL of Milli-Q water, and
8.71 mL of 25% ammonium hydroxide (NH4OH, Merck, Zug,
Switzerland) were mixed in a 500 mL round-bottom flask
equipped with a reflux setup. The mixture was heated to 70°C
under constant magnetic stirring for 30 min. Then, 22 mL of
tetraethyl orthosilicate (TEOS, GC grade, ≥99.0%, Si(OC2H5)4,
Sigma-Aldrich, St. Louis, MO, USA) was quickly introduced.
After 2 min, 200 µL of a solution containing 11.5 mg/mL
Cyanine 5 N-Hydroxysuccinimide ester (Cy5-NHS, Lumiprobe,
Hunt Valley, MD, USA) in dimethyl sulfoxide (DMSO, GC
grade, ≥99.9%, Sigma-Aldrich, St. Louis, MO, USA), and 3 µL of
(3-aminopropyl) triethoxysilane (APTES, H2N(CH2)3Si(OC2H5)3,
GC grade, 99%, Sigma-Aldrich, St. Louis, MO, USA) were added to
the flask. The reaction was continued at 70°C for an additional 4 h.
Upon completion, the dispersion was cooled down to room
temperature and centrifuged at 3,000 rpm for 40 min three
times. The NPs were re-dispersed in Milli-Q water and stored in
the dark at 4°C for up to 1 month. The NP stability in complete
RPMI was analyzed by DLS and TEM over 6, 24, and 48 h.
Moreover, the stock NPs in Milli-Q water were analyzed by TEM
before and after all uptake experiments to ensure no degradation
occurred during storage (Supplementary Figure S3).

The SiO2 NPs were imaged using transmission electron
microscopy (TEM; FEI Technai G2 Spirit, Columbia, MD, USA),
and their core diameter along with size distribution were analyzed
using ImageJ software (Wayne Rasband, National Institute of
Health, Bethesda, MD, USA). The hydrodynamic diameter and
zeta potential of the NPs were determined using an Anton Paar
Litesizer 500 particle analyzer (Anton Paar, Graz, Austria) with a
658 nm laser by dynamic light scattering (DLS). The hydrodynamic
size was obtained at a scattering angle of 175° and using an advanced
cumulant model. Applying the Smoluchowski approximation
yielded the zeta potential. The hydrodynamic diameter was
measured at 25°C in Milli-Q water and complete RPMI after 0, 6,
24, and 48 h incubation times at 37°C. The incubated NPs were then
centrifuged (Thermo Scientific Heraeus Multifuge X1R Pro
Centrifuge) at 10,000 rpm for 15 min, and the resulting
supernatant was collected for analysis to assess the loss of
fluorescent labels from the NPs. Liquid-phase fluorescence
spectra were recorded using a Horiba Fluorolog 3 spectrometer
(Horiba, Kyoto, Japan), equipped with a 450 W Xenon lamp for
excitation and an FL-1030-UP photomultiplier for detection. The
excitation wavelength was set to 650 nm, and fluorescence intensity
was measured from 650 nm to 800 nm.

2.4 Confocal microscopy imaging

After exposure of the cells to 1 mL 20 μg/mL SiO2 NP dispersion
in complete RPMI (see Section 2.3) for the three time points of
interest (i.e., 6, 24, and 48 h), the inserts were washed three times
with PBS and then fixed with a 4% paraformaldehyde (PFA) (Sigma-
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Aldrich, St. Louis, MO, USA) solution in PBS at +4 °C for at least
60 min. Following fixation, PBS washing, and permeabilization with
0.1% Triton X-100 (Thermo Fisher Scientific, Switzerland) for
10 min, cells were stained for 60 min at room temperature. Both
cell nuclei and F-actin filaments were stained simultaneously using a
single solution containing 1 μg/mL 4′,6-diamidino-2-phenylindole
(DAPI), and 66 nM Alexa Fluor 488 phalloidin (Thermo Fisher
Scientific, Switzerland) in PBS. After staining, cells were washed
three times with PBS. Coverslips were then mounted with Kaiser’s
glycerol gelatin and stored in the dark at 4°C.

Imaging was conducted using a Leica Stellaris 5 inverted
confocal laser scanning microscope (cLSM, Leica Wetzlar,
Germany) equipped with Power HyD S detectors, a Plan
FLUOTAR 10x/0.32 Dry objective, a Plan-Apochromat 20x/
0.75 Dry objective, and a Plan-Apochromat 63x/1.4 Oil
CS2 objective (Leica, Wetzlar, Germany). The system was
operated using LAS X software version 4.6.1. Stack images of the
cells were acquired sequentially at ×63 magnification, providing a
field of view of 184.70 µm × 184.70 µm with a pixel resolution of
1,024 × 1,024. For broader overviews, tile scans across full graded
patterns were performed using ×10 magnification, while tile scans of
the control patterns for cell counting were obtained using 20x
magnification. The resulting tiles were merged using the LAS X
software. Fluorescence imaging was performed using three laser
excitation wavelengths: 405 nm for DAPI, 488 nm for Alexa Fluor
488, and 638 nm for Cyanine 5 (Cy5).

2.5 3D image analysis

3D Stack images of the cells were acquired and analyzed in three
dimensions using Imaris software (Oxford Instruments, Version
10.1, Abingdon, UK). Initially, all image stacks were trimmed at the
level of the insert membrane to establish a consistent starting point
for subsequent analysis across samples. The Imaris “Surfaces”
function created a three-dimensional region of interest (ROI) by
training a model to distinguish the cellular mass from surrounding
external space (Supplementary Figure S4). This ROI allowed the
assessment of several parameters, including NP uptake and average
surface area and volume.

NP uptake was quantified by integrating the signal of Cy5-
conjugated NPs throughout the entire cell volume within the defined
ROI. Additionally, the accessible surface area and total volume were
calculated directly from the dimensions of the ROI itself.

The “Spots” function of Imaris was then used to determine the
number of cell nuclei per field of view (Supplementary Figure S4).
The number of nuclei was accurately identified by inputting an
estimated nucleus diameter (9 µm in X-Y, 6 µm in Z) and applying a
background subtraction filter. All data obtained from these analyses
were subsequently used for statistical evaluation.

2.6 Cytotoxicity, viability, and
proliferation assays

To evaluate the impact of the printing process and NP exposure
on cell viability within the printed graded patterns, the
ReadyProbes® Cell Viability Imaging Kit (Blue/Green) (Thermo

Fisher Scientific, Waltham, MA, USA) was used following the
standard protocol. The test cell gradients were printed and
incubated for 48 h, before ulterior 48 h exposure to the NPs.
Fluorescence imaging was performed to assess cell integrity,
staining all nuclei with NucBlue® Live reagent (405 nm
excitation), a cell-permeable nuclear stain based on Hoechst
33342, and selectively staining dead cells with NucGreen® Dead
reagent (488 nm excitation), a membrane-impermeant DNA dye.

For cell viability control experiments, the different densities of
the graded patterns were reproduced in separate wells. The cells were
seeded in a 96-well plate at varying densities (Table 1) and allowed to
grow until exposed to 100 µL of SiO2 NPs (20 μg/mL) for the three
chosen time points. The seeding densities were adjusted to ensure
that cells reached the three conditions of interest—high (600 cells/
mm2), medium (300 cells/mm2), and low (150 cells/mm2)—at the
moment of NP exposure, which occurred in succession at 48, 24, and
6 h before the assay endpoint. To design the experimental setup, a
constant 24 h doubling time was assumed based on reported values
for A549 cells (Assanga, 2013; American Type Culture Collection,
2025), allowing synchronization of all conditions within a single
assay run. This minimized the variability induced by running
viability assays on different days for each different condition. In
summary, after 24 h of pre-incubation, the NPs were added
sequentially, allowing all cells to reach their respective exposure
endpoints simultaneously after 48 h.

After exposure, the conditioned medium was transferred to a
second 96-well plate, maintaining the same layout. 100 μL of fresh
complete RPMI was added to the cells, and Water Soluble
Tetrazolium-1 (WST-1) (Roche, Mannheim, Germany) and
Lactate Dehydrogenase (LDH) (Roche, Mannheim, Germany)
assays were conducted to assess cellular metabolic activity and
membrane integrity.

As a positive control, 0.2% Triton X-100 in complete RPMI was
added to the cells to ensure full lysis before the supernatant was
collected. LDH and WST-1 levels were measured in triplicate. The
absorbance of the colorimetric product was read using a
spectrophotometer (Benchmark Microplate reader, BioRad,
Cressier, Switzerland) at 490 nm and a reference wavelength of

TABLE 1 Initial Cell Seeding Densities Optimized for Simultaneous NP
Exposure Endpoints (cells/mm2). Table 1 presents optimized initial cell
seeding densities for cytotoxicity assays with varying NP exposure
durations. We established these seeding parameters to ensure cells
reached comparable densities. We established these seeding parameters to
ensure cells reached comparable densities at the time of NP exposure,
regardless of the exposure duration. This standardization allows for a direct
comparison of cytotoxic effects across different exposure time points. For
example, cells intended for 6 h NP exposure experiments were initially
seeded at ~28 cells/mm2 and pre-incubated for 66h, reaching ~150 cells/
mm2 before NP addition. Similarly, for 48 h exposure experiments, cells
were seeded at a higher density (~75 cells/mm2) and pre-incubated for only
24 h to achieve the same cell density at exposure time. This approach
eliminates potential confounding effects of varying cell confluence during
cytotoxicity assessment, enabling simultaneous endpoint analysis at 72 h
post-initial seeding across all experimental conditions.

Time points Cell density (cells/mm2)

Low Medium High

6 h ~28 ~55 ~110

24 h ~38 ~75 ~150

48 h ~75 ~150 ~300
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630 nm for LDH and at 440 nm with a 650 nm wavelength as
reference for WST-1. Interference was accounted for by using
appropriate blanks to eliminate any potential quenching or auto-
absorption effects. The absorbance results for the LDH and WST-1
assays were normalized to the positive control (0.2% Triton X-100)
and the untreated negative control, respectively.

To address the possible impact of NP exposure on proliferation,
cells were seeded at different densities in a 24-well plate and exposed
to 500 µl of NP dispersion (20 μg/mL). Initial seeding densities were
300 cells/mm2, 150 cells/mm2, and 75 cells/mm2, representing high,
medium, and low densities, respectively, and were intended to
double after 1 day of pre-incubation. After NP exposure for three
time intervals (6, 24, and 48 h), the cells were washed with PBS and
detached using Trypsin/EDTA. Following detachment, cells were
collected with complete RPMI and subsequently counted using an
automated cell counter (EVE, NanoEnTek Inc., Seoul, South Korea)
to determine proliferation rates with and without NPs.

The abovementioned target cell densities for cytotoxicity and
proliferation assays were selected based on preliminary experiments,
which revealed significantly higher proliferation rates in well plates
compared to the printed setup. This prompted a reduction in initial
seeding densities to account for the faster proliferation. As a result, at
the 6 h exposure point, well plate densities were lower than those in
printed control patterns. However, by 24 and 48 h of exposure, their
rapid proliferation led to comparable or even higher densities than
those observed in the control patterns (Supplementary Figure S1).

2.7 Statistical analysis

Average NP uptake was calculated by dividing the total NP
fluorescence intensity by the cell count per field of view. Similarly,
average free surface area and cell volume were determined by
dividing the cell clusters’ total surface area and total volume by
the number of cells, defined by the number of nuclei, in each field of
view. Data were collected from three independent samples per
exposure time point, each comprising 15 confocal stacks—five
stacks per density region (high, medium, low). Similarly, for the
control patterns, data were collected from three samples (one per
density condition) at each exposure time point. Group sizes were
kept equal across all density regions to ensure consistency in
statistical analysis.

Statistical analysis was performed using GraphPad Prism
version 10.4.1 for Windows (GraphPad Software, www.graphpad.
com). Raw “NP uptake per cell” (Cy5 signal intensity, A.U.) data was
organized in different columns for each density region and further
separated into subcolumns by biological repetition. Two-way
ANOVA followed by Tukey’s multiple comparisons test was
conducted to analyze the data. Two-way ANOVA was selected
over one-way ANOVA to account for biological repetition as a
matched factor, allowing for a more precise comparison of treatment
effects while controlling for within-replicate variability.

Normality testing was carried out on all raw data using Shapiro-
Wilk (ideal for small datasets like those used in this study),
Anderson-Darling, Kolmogorov-Smirnov, and D’Agostino-
Pearson tests. Raw data passed the Shapiro-Wilk test in all but
one case, while the ANOVA residuals consistently followed
normality. Homogeneity of variances was tested using the

Levene-Brown-Forsythe test, which was successful in all cases
except one, with a p-value of 0.0466. ANOVA is robust to slight
deviations from homoscedasticity; therefore, the analysis was still
considered valid. The Geisser-Greenhouse correction was applied to
all datasets as a precautionary measure to account for potential
minor sphericity deviations.

The statistical comparison of NP uptake (per cell) between
different cell densities was additionally analyzed using a Mixed-
Effects Model, which confirmed the trends initially observed with
the ANOVA analysis without assuming the normality of residuals or
homoscedasticity.

The same flow was used for the statistical analysis of NP uptake
per unit of surface area (µm2) at each cell density, where the
measured heterogeneity of variances justified the use of the
Mixed-Effects Model instead of Two-way ANOVA.

Pearson’s and Spearman’s correlation tests were applied to
determine the correlation between NP uptake, cell density,
average free surface area, and cell volume, given that not all data
sets were normally distributed. Proliferation data were analyzed and
fitted using exponential (Malthusian) growth models to calculate
doubling times.

3 Results

This study examined the interactions between SiO2 NPs and
A549 cells at different cell density conditions, focusing on cell
viability, density-dependent uptake profiles, and the effects of
proliferation.

3.1 Effects of SiO2 NPs on cell growth
and viability

First, the three densities were replicated in single wells to analyze
the NP-cell interactions in individually controlled settings. Cells
were seeded at varying concentrations (Table 1) in a 96-well plate
and pre-incubated for 24 to 66 h prior to NP exposure. Seeding was
adjusted to achieve high (600 cells/mm2), medium (300 cells/mm2),
and low (150 cells/mm2) densities at the time of NP exposure.

The SiO2 NPs were synthesized, and their size, zeta potential,
and colloidal stability in complete RPMI were characterized. The
results are summarized in Table 2. The cells were then sequentially
treated with the NPs (20 μg/mL) at three different time points,
ensuring all reached their final exposure endpoint simultaneously
after 48 h. SiO2 NPs demonstrated minimal cytotoxicity across high,
medium, and low cell densities over 6, 24, and 48 h (Figure 1). The
LDH assay showed negligible impact on membrane integrity, while
WST-1 measurements revealed only a slight, statistically non-
significant reduction in metabolic activity, particularly at higher
densities after 48 h (Figure 1A).

To evaluate the impact of NP exposure on proliferation, the cells
were seeded in a 24-well plate at high (300 cells/mm2), medium
(150 cells/mm2), and low (75 cells/mm2) densities and pre-incubated
for 24 h. They were then exposed to 500 µL of NP dispersion (20 μg/
mL). Cell counts at 6, 24, and 48 h post-treatment showed stable
proliferation rates across all densities (Supplementary Figure S1),
with no significant differences due to NP exposure (Figure 1B).
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Furthermore, phase-contrast microscopy revealed no noticeable
changes in cell morphology or growth patterns over the 48 h
period (Figure 1C).

3.2 A549 cell gradient fabrication by
bioprinting technology

The illustration in Figure 2A portrays the printing process where a
drop-on-demand printhead deposits cell-laden droplets with a
gradually increasing inter-droplet spacing (from an initial 0.1 mm,
increasing by 0.05mm every 4mm until reaching 0.6 mm) to generate
the cell density gradient on PET hanging inserts with 3 µm pores. The
choice of these inserts as a printing substrate for lung tissue modeling
stems from previous works of this group (Horváth et al., 2015). Direct
printing on plastic or glass dishes, both clean and functionalized, was
also attempted, but the droplets spread immediately, leading to less
controlled conditions (data not shown). The printed cell patterns on
the PET inserts maintained consistent structure and spacing on the
membrane surface (Figure 2B), enabling the formation of defined cell
density gradients (Figure 2C). After the printing, the inserts were
placed into the 2-well chamber system with cell culture medium on
the lower side in the basal compartment. Due to the stress from
printing, the graded patterns were pre-incubated for 48 h, rather than
24 h, to allow cell recovery before NP exposure.

After this pre-incubation time, cell culture mediumwas added to
the apical side by pipetting, and the system was incubated for an
additional 48 h; this final incubation period represents the longest
exposure time, simulating the conditions of pre-incubation and
subsequent NP exposure. Fluorescence microscopy of stained
cells and cell nuclei after incubation revealed distinct cell density
regions across the gradient (Figure 2D), with clearly defined low (red
box), medium (orange box), and high (gray box) density zones
(Figure 2E–G).

Due to the inability to clearly define the boundaries of the three
density zones within the printed graded patterns, wide-area density
quantification was not feasible. Instead, control patterns were
fabricated on three separate inserts using inter-droplet distances of
0.125 mm, 0.35mm, and 0.575 mm to achieve high, medium, and low
cell densities, respectively, providing reference values and serving as
the basis for proliferation analysis (see Section 3.4; densities are
presented in Table 3). For the graded patterns, cell densities were
calculated from high-magnification (63x) image stacks and were used
exclusively for direct correlation with NP uptake.

Surface plot analysis demonstrated the achievement of stable cell
gradients with uniform proliferation dynamics over time (Figure
2H–J). From end to end, the gradient consisted of a continuous
decrease in cell crowding, with reproducible cell densities across
multiple fabrication runs in the three analyzed density zones.

Specifically, after optimizing the printing parameters through
several test runs, three independent printing processes (biological
repetitions) were conducted, each using cells from a different passage.
In addition, three graded patterns were produced per experiment, one
for each exposure time point. All runs were performed by a single
operator; however, the bioprinter’s automation minimizes
potential inter-operator variability, as their role is limited to
cartridge preparation and initiating the printing process via the
user interface.

Live/dead imaging was used to assess the viability of the printed
cells after a 48 h pre-incubation period followed by an additional
48 h of NP exposure, revealing minimal cell death (Figure 2K).

3.3 The impact of A549 cell density gradients
on SiO2 NP uptake

The uptake of ~112 nm SiO2 NPs (Table 2; Supplementary Figure
S2) was analyzed in A549 cells across different density regions using
cLSM and 3D image analysis (Figure 3). Quantification of NPs in single
cells revealed that cells at low densities exhibited approximately 50%
higher NP uptake compared to those at high densities, and this
difference remained consistent over the 48 h exposure period
(Figure 3A). Similar NP contents were observed in control
experiments, where cell density was varied in separate wells (Figure 3B).

Analysis of average free cell surface area and cell volume’s
impact on NP uptake showed a strong positive linear correlation
at all time points (Figure 4A–C), with Pearson’s correlation
coefficients generally above 0.8 and Spearman’s coefficients
mostly above 0.7 (Supplementary Figures S6, 7). In brief, larger,
more spread cells exhibit higher NP fluorescence, suggesting
increased nanoparticle uptake. Indeed, cLSM revealed distinct
differences in cell arrangement: cells in high-density regions
formed tight, vertically oriented clusters, whereas cells in low-
density regions displayed a more spread-out, horizontally
arranged morphology (Figure 4D).

Interestingly, cells at higher densities exhibit 30%–50%
increased efficiency in NP uptake per unit surface area (µm2)
compared to cells at lower densities (Supplementary Figure S8).
This highlights the significant impact that NP availability has on
uptake, as lower-density cells internalize more NPs on average
despite being less efficient relative to their surface area.

3.4 The impact of cell proliferation on SiO2
NP uptake

With all factors considered, one question remains: how much
does cell proliferation influence uptake results? To answer this

TABLE 2 Summary of the Key Physicochemical Properties and Stability of the SiO2 NPs. 1core diameter; 2hydrodynamic diameter; 3zeta potential.

TEM DLS

MilliQ cRPMI

Cd
1 [nm] Hd

2 [nm] t = 0 h ζ3 [mV] Hd [nm] t = 0 h Hd [nm] t = 6 h Hd [nm] t = 48 h

112 ± 14 nm 121 ± 2 nm −47.5 ± 0.6 mV 160 ± 9 nm 152 ± 4 nm 147 ± 7 nm
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FIGURE 1
Impact of SiO2 Nanoparticles (SiO2 NPs) on A549 Cell Proliferation, Viability and Cytotoxicity. (A) LDH and WST-1 cytotoxicity and viability assays at
48 h exposure time point. The assays displayed expected outcomes, with the WST-1 results revealing a noticeable, but statistically non-significant
reduction inmetabolic activity at higher cell densities. This may be due to the assay’smechanism, which relies on intracellular NADPH to reduce theWST-
1 salt. Mitochondria are a primary NADPH source and can be subtly affected by SiO2 NPs. The effect may bemore evident at higher cell densities due
to higher baselinemetabolic activity. Absorbance values were normalized to the 0.2% Triton X-100 positive control for LDH, and to the untreated negative
control for WST-1. (B) Comparison of A549 cell proliferation with and without SiO2 NP exposure over 48 h revealed no significant impact of the NPs on
cell doubling time. (C) Comparison of phase-contrast images of A549 cells, used in the proliferation investigation, from left to right: low, medium, and
high initial densities, under control conditions (−) and with NP exposure (NP) at 6 and 48 h time points.
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FIGURE 2
PrintingOptimization and Cell Gradient Fabrication. (A) An illustration of the printing process shows a drop-on-demand printhead depositing cell-laden
droplets with varying spacing. (B) PET culture inserts with printed lines at different fixed inter-droplet distances. (C) PET culture insert showing a graded
deposition pattern with progressively increasing inter-droplet distances. (D) Confocal Laser Scanning Microscopy (cLSM) fluorescent image of the gradient
after 4 days of incubation, demonstrating the established cell density gradient. (E–G)Close-up (63x) images from the three studied density zones of the
gradient, highlighting variations in cell distribution and density. The printedcellswere stainedwith Alexa Fluor 488phalloidin (magenta) to visualize F-actin and
with DAPI (cyan) to label cell nuclei. (H–J) Representative surface plots generated from 10x tile images of graded patterns at 6, 24, and 48 h time points from
the actin channel, displaying actin fluorescence intensity as an indicator of cell density. (K) A cLSM 10× tile scan image of a gradient stainedwith the Live/Dead
imaging kit (dead cells in green; nuclei in blue) reveals minimal cell death after printing, pre-incubation, and 48-h NP exposure.
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question, the cell proliferation in the control patterns at each density
condition had to be estimated.

Cell proliferation analysis across different densities showed
exponential growth patterns over 48 h (Figure 5A). Cell counting
revealed doubling times of 25.79 ± 8.66 h in low-density regions,
26.38 ± 8.06 h in medium-density regions, and 33.48 ± 5.35 h in
high-density regions, though these differences were not
statistically significant. As time progressed, there was a
demonstrable decrease in the average distance between the

nuclei (Figure 5B, C). The reduction in average nuclear distance
over time reflects increasing cell crowding, suggesting that
proliferation contributed more to densification at the center of
the control patterns rather than driving the outward expansion
beyond their initial boundaries.

Confocal microscopy tile scans of control patterns were acquired
and used for density estimation. Their visual inspection clearly
demonstrated the dynamic increase in cell density and crowding
from 6 to 48 h (Figure 5D–F).

TABLE 3 *Average Cell Densities (Mean ± SD)Measured fromControl Patterns for High, Medium, and LowDensity Conditions at each Time Point (cells/mm2)
*n counts = 3.

Time points Low (0.575 mm) Medium (0.35 mm) High (0.125 mm)

6 h 272 ± 40 568 ± 163 1,069 ± 197

24 h 386 ± 67 947 ± 282 1,655 ± 195

48 h 821 ± 77 1,817 ± 352 2,655 ± 298

FIGURE 3
Cell Density’s Impact on NP Uptake. (A) Graphs showing the mean and standard deviation (SD) of semi-quantitative NP uptake measurements at
different time points in the graded patterns. (B) Graphs showing the mean and SD of NP uptake at different time points in the control patterns, with
different densities in separate inserts. Signal intensity (A.U.) was quantified from 3D regions of interest (ROIs) derived from 5 image stacks per density zone
or pattern. A two-way ANOVAwas performed, and variance homogeneity and normal distribution of the ANOVA residuals were verified. Significance
annotations reflect the p values: ns = not significant, p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****). Across both graded and uniform
control patterns, NP uptake increased by approximately 50% from high-density to low-density regions at all time points.
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4 Discussion

4.1 The impact of cell density on SiO2
NP uptake

The observation of 50% higher NP uptake in low-density regions
compared to high-density areas reveals the critical but unrecognized
role of cellular spatial organization in NP-cell interactions. Unlike
traditional methods (Ashraf et al., 2020; Rennick et al., 2021), our
integrated approach provides comprehensive insights by
simultaneously examining NP content and cell spatial
arrangement within a single experiment. These perspectives are
typically assessed independently, with 3D cell surfaces generally
being derived rather than directly measured (Shahinuzzaman and
Barua, 2020).

The consistency of the density-dependent differences in uptake
across all time points suggests fundamental physical constraints
rather than temporal cellular adaptations. This also indicates that
saturation effects, such as reaching cell content limits or
internalization mechanism saturation, did not significantly
influence uptake rates, as such effects would typically reduce
differences over time by causing uptake in low-density regions to

plateau once saturation is reached (Ashraf et al., 2020; Chithrani
et al., 2006; Lunov et al., 2011).

Cell density is inherently connected to cell spreading and has
been shown, particularly in mesenchymal stem cells, to be a more
critical determinant of cell morphology and proliferation than
substrate stiffness (Venugopal et al., 2018). Therefore, the impact
of the average free cell surface area and cell volume on uptake was
investigated. A strong positive linear correlation was found between
cell surface area, cell volume, and NP uptake, with correlation
coefficients (Pearson’s r and Spearman’s ρ) generally well above
0.7, with a minimum of 0.6 (Supplementary Figures S6, 7). This
correlation between average accessible cell surface area and NP
uptake provides quantitative evidence that spatial accessibility of the
outer cell membrane significantly influences cellular interactions
with NPs. This effect, which explains 50%–80% of uptake variability
through surface area availability, aligns with previous studies
showing relationships between cell size, area, and NP uptake
(Shahinuzzaman and Barua, 2020; Khetan et al., 2019; Behzadi
et al., 2017; Yang et al., 2023).

However, the remaining 20%–50% of variability may stem from
additional factors. These include density-dependent cellular
behaviors beyond surface area influence, such as variations in

FIGURE 4
Average Free Surface Area’s Impact on NP uptake. (A–C) Graphs showing scatter plots and simple linear regression of NP uptake measurements
versus the average free surface area of cells at 6 h A), 24 h B), and 48 hC) in the graded patterns. Different colors represent biological replicates. (D)Close-
up (63x) cLSM images of the three density zones from representative cell density gradients across all time points, arranged from left to right (high to low
density) and top to bottom (6–48 h). These images illustrate differences in cell spreading and crowding over time. Cells were stained with DAPI
(cyan) to label nuclei, Alexa Fluor 488 phalloidin (magenta) to visualize F-actin, and internalized NPs were detected via Cy5 labeling (yellow).
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receptor expression or membrane dynamics (Zhang et al., 2021;
Garcia Romeu et al., 2021; Steinkühler et al., 2019; Kavaliauskiene
et al., 2014). In future studies, immunostaining of receptors or
membrane-bound proteins linked with specific endocytic
pathways (transferrin receptor, caveolin-1) (Bannunah et al.,
2024; Feng et al., 2020) and the use of lipid-specific fluorescent
probes (filipin, Laurdan) (Wilhelm et al., 2019; Levitan, 2021) could
be applied to assess density-dependent variations in receptor
expression and membrane composition.

Additionally, cell over-growth at higher densities may affect
average free surface area and NP uptake quantification
(Supplementary Figure S5) by reducing surface accessibility and
introducing depth-related detection biases; however, z-stacks were
acquired while avoiding regions with significant multilayer growth
to minimize this bias. Another possible factor could be cells at lower
densities moving more freely, increasing NP availability. Lastly, the
limitations in cell segmentation, counting accuracy, and surface/
volume quantificationmethods could introduce measurement biases
and lead to slight over- or underestimations of these parameters.
Further optimization of the image acquisition and image processing
approach will reduce the effect of these limitations and enhance the
accuracy of the results.

Further evidence of the fundamental role of cell spreading and
available free surface area in NP uptake was observed when
analyzing the impact of cell density on uptake efficiency per µm2

(Supplementary Figure S8). Cells at higher densities demonstrated
30%–50% greater efficiency in NP uptake per unit area compared to
lower-density cells, suggesting that while lower-density cells uptake
more NPs on average, they are less efficient relative to their surface
area. In this study, the authors prioritized analyzing NP uptake on a

per-cell basis to reflect the primary interest in potential effects at the
single-cell level. However, expressing uptake efficiency relative to
surface area would be more relevant to investigating tissue-level
functions, such as overall uptake capacity and barrier properties.

Our 3D analysis approach provides advantages over traditional
2D assessments (Khetan et al., 2019; Yang et al., 2023; Rees et al.,
2019), by directly considering the entire accessible cell surface rather
than just the projected area or simulated 3D estimations. This also
differs from flow cytometry, which typically estimates cell size from
detached, rounded cells (Shin et al., 2020; Adan et al., 2017). While
our approach does not yet differentiate between apical and basal
surfaces, it more accurately represents NP interactions under real
testing conditions by excluding surfaces between contacting cells.
These findings enhance our understanding of how cellular
organization influences NP-cell interactions at different
cell densities.

The A549 cell line was selected for its widespread use in studies
investigating nanoparticle–cell interactions. Furthermore, the
bioprinting process did not adversely affect cell viability, making
A549 cells particularly suitable for assessing how variations in cell
density influence nanoparticle uptake by modulating cell spreading
and the resulting exposed surface area.

The selection of the 20 μg/mL SiO2 NP dispersion is based on
previous studies showing SiO2 NPs’ low toxicity at this
concentration (Kim et al., 2017; Yu et al., 2009; Mares-García
et al., 2021) while allowing sufficient particle internalization
(Moreno-Echeverri et al., 2022; Lee et al., 2022). Moreover, the
SiO2 NPs were suspended in the growth medium containing 10%
FBS, which has been reported to reduce their cytotoxicity due to
protein corona formation (Sun et al., 2018; Mortensen et al., 2013).

FIGURE 5
Cell Proliferation and Crowding Dynamics Over 48 h. (A)Graph showing cell counting results from control patterns at three different initial densities
across the time points of interest, including the exponential fit used to calculate doubling times. (B)Graph illustrating the decrease in the average distance
to the three closest nuclei. (C) Graph showing the decrease in the average distance to the nine closest nuclei. Both metrics were included to capture
crowding effects at different scales. The two average distances reflect short- andmedium-range crowding within the population. This is particularly
relevant at low densities, where nuclei distances can vary greatly due to clustered growth, with examples of tightly packed small clusters remaining
isolated (D–F) Tile scan (20x) cLSM images from three representative high-density control patterns across all time points (6–48 h, arranged left to right).
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This agrees with our study and no significant impact on cell viability
or cell metabolism was observed. For all experiments and
conditions, the same particle concentration was used. For cells
cultured directly in 96-well plates, a volume of 100 µL per well
was used to meet the viability assay volume requirement. This
exposure corresponded to a nanoparticle surface dose of
approximately 6 μg/cm2, calculated by normalizing the total NP
amount in the exposure volume to the well area. The surface dose
was chosen to be comparable to that received by cells printed on
inserts, where 1 mL of a 20 μg/mL dispersion corresponds to
approximately 5 μg/cm2. Similarly, cells cultured in 24-well plates
to study the NP’s effect on proliferation were exposed to 500 µL of
the dispersion, achieving a comparable surface dose of around
5 μg/cm2.

4.2 The impact of cell proliferation on SiO2
NP uptake

Initial cell seeding density has been recognized as a critical factor
influencing cell proliferation for primary cells (Heng et al., 2011;
Kim et al., 2016) as well as cell lines. For adenocarcinoma epithelial
cell lines, studies report contrasting findings, with higher densities
being associated with either slower (Browning et al., 2018), faster
(Jin et al., 2017; Jin et al., 2016), or unaffected (Browning et al., 2020)
proliferation rates.

Our findings reveal variations in doubling times across density
regions, though not statistically significant. The consistent ratio of
average NP content between low and high-density regions (1.5x)
over time indicates that proliferation-related NP dilution (Kim et al.,
2012; Bourquin et al., 2019; Summers, 2012) had minimal influence
on the system, and uptake rates remained stable. Since higher-
density regions typically experience slower proliferation, they should
undergo less NP dilution over time compared to low-density
regions. If proliferation-driven dilution were a dominant factor,
we would expect the NP content in low-density regions to decline
relative to high-density regions over time, thereby decreasing the
low-to-high NP content ratio.

These variations in doubling times observed in the printed
control patterns contrast with proliferation results in standard
culture conditions, where doubling times showed greater
consistency across densities. The proliferation rates in standard
cultures in 24-well plates (Supplementary Figure S1) remained
consistent across all densities and time points, ranging between
18 and 20 h in doubling time for both exposed and control cells.
Comparing these with the pattern-based results, where doubling
times varied from 25.79 to 33.48 h, highlights the importance of
culture conditions in cellular behavior. The faster proliferation in
well plates compared to printed control patterns could be attributed
to the higher perceived cell density (Enrico Bena et al., 2021; Nelson
and Chen, 2002; Johnson et al., 2019) in the former situation, with
cells typically accumulating at the center of the wells after pipetting
(Reynolds et al., 2018; Glaubitz et al., 2023). Cell counts obtained
using the automated cell counter, however, may have been affected
at early time points and at lower initial seeding densities, where
concentrations were outside the instrument’s optimal detection
range. Additionally, cell concentrations that were derived from
the imaged control patterns may have been underestimated at

higher densities. Nuclear morphology and dimensions were
observed to change across different cell densities, decreasing in
size at increasing crowding conditions. This behavior is
consistent with known effects of varying crowding and cell
spreading on nuclear structure, as reported in several cell lines
and primary cells (Cantwell and Dey, 2022; Edens et al., 2013;
Bermudez et al., 2024; De Corato and Gomez-Benito, 2024). This
could have impacted counting accuracy at increasing crowding
conditions and could partially explain why a variation in
proliferation rate, though not significant, was observed at
different densities in the control patterns, while no difference was
found for cells cultured in the well plates.

As a cancer cell line, A549 exhibits reduced contact inhibition
compared to primary cells, constituting a limitation of the model.
The experimental time frame was carefully selected to ensure that
A549 cells largely maintained monolayer growth, with minimal
multilayer formation. Future studies incorporating primary cells
would help validate and extend these findings by providing
additional information on the impact of proliferation on NP
uptake under conditions that more accurately represent a healthy
epithelium, where cell density is physiologically regulated.

In this study, A549 cells are cultured and exposed under growing
conditions. This differs from the in-situ situation in the healthy lung,
where the cells are in a differentiated state instead of a proliferative
one (Juul et al., 2020; Spencer and Shorter, 1962; Guillot et al., 2013).
This was deemed necessary in order to ensure robust and sensitive
responses in viability assays, which rely on active metabolism.
Moreover, inducing a non-proliferative state in-vitro would
require methods that would additionally affect the results, like
serum starvation or the use of chemical inhibitors. Lastly, as
A549 cells are derived from alveolar Type II cells, which serve as
facultative stem cells capable of proliferating and differentiating
during lung repair, expanding conditions remain relevant
particularly when modeling tissue regeneration in pathological
contexts (Barkauskas et al., 2013; Ruaro et al., 2021).

4.3 Optimized fabrication of cell gradients

The choice of using a linear gradient rather than multiple
discrete uniform-density patterns in this experimental setup was
driven by its potential to enable continuous exploration of a virtually
unlimited range of cell densities within a single run. An “area
gradient” created by juxtaposing parallel uniform patterns was
also considered but not selected due to the increased difficulty in
controlling printing result consistency, as well as in recognizing the
density zones of interest during microscopic analysis.

Although effective, existing methods to fabricate cell density
gradients have significant limitations. Sedimentation-based and
directed cell migration approaches suffer from lengthy
preparation times, parameter control difficulties, and poor
reproducibility (Liu et al., 2013; Havenhill and Ghosh, 2024;
Frick et al., 2018; Fortunato and Sunyer, 2022; Wu et al., 2014),
while microfluidic and 3D printing platforms employing
microfluidic chips for mixing and gradient formation require
substantial resources and specialized expertise (Mehling and Tay,
2014; Chiu et al., 2000; Li et al., 2015a; Kuzucu et al., 2021; Idaszek
et al., 2019). The successful establishment of a straightforward and
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reproducible method to prepare cell density gradients through the
use of drop-on-demand bioprinting technology provides a novel
platform for investigating density-dependent cellular interactions
with NPs in one dish.

This method enables accurate and controlled gradient formation
with reduced preparation time, without requiring specialized
expertise in microfluidics or advanced 3D printing. While our
results demonstrate reproducibility across independent runs,
further investigation and stricter quantitative analysis of the
method’s variability will be conducted to strengthen this conclusion.

The development of stable and uniform cell gradients presented
significant technical challenges, particularly in maintaining the
shape stability of the deposited cell-laden growth medium. In this
regard, better droplet stability after bioprinting on PET hanging
inserts with 3 µm pores was observed compared to inserts with
smaller pore sizes and other substrates, including those
functionalized with hydrophilic agents such as poly-L-lysine
(PLL), APTES, and collagen type I. However, a detailed
comparison of substrate performance is beyond the scope of this
study and no quantitative data are presented. Implementing a pre-
layer of medium before cell deposition significantly improved
gradient and control pattern reproducibility across different cell
passages and printing processes, by facilitating controlled
droplet merging.

This optimized approach enables reliable investigation of cell
density effects on NP uptake in a controlled environment, advancing
our understanding of density-dependent cell behavior. Additionally,
these graded patterns represent a strong framework to investigate
further the impact of cellular organization and spatial arrangement
on NP-cell interactions and cell physiology, with important
implications for drug delivery and nanosafety evaluations.

5 Conclusion

This study highlights the significant impact that cell density
exerts on NP uptake in the tested epithelial cell line model, with cells
growing in lower-density regions demonstrating around 50% higher
uptake than those in high-density areas up to 48 h after exposure.
This effect strongly correlates with the average available cell surface
area, indicating its critical impact on NP-cell interactions. While
variations in cell proliferation rates between densities were observed
in the printed control patterns, these differences were not
statistically significant and did not contribute to the observed
differences. This indicates that factors like cell spreading, and
average cell volume have a more substantial impact under the
tested conditions.

Using the A549 epithelial cell line and amorphous SiO2 NPs
(~112 nm) provided a controlled system to investigate the
relationship between cell density and NP uptake. Future studies
should expand to primary cells, which exhibit increased contact
inhibition (Grimes and Fletcher, 2020; Pavel et al., 2018), and
consider additional NP properties like size, shape, and surface
chemistry (Öztürk et al., 2024; Li et al., 2015b; He et al., 2010;
Kettler et al., 2014; Foroozandeh and Aziz, 2018; Sousa De Almeida
et al., 2021). Furthermore, investigating whether endocytic
mechanisms themselves are density-dependent would be valuable,
given reported variations in membrane properties and protein

expression under different density conditions (Trajkovic et al.,
2019; Steinkühler et al., 2019; Kavaliauskiene et al., 2014;
Nussinov et al., 2021; Murate et al., 2023; Shim et al., 2020), and
the differences in uptake efficiency per µm2 (30%–50%) observed in
this study at different crowding conditions.

Based on these results, this study highlights the importance of
investigating density-dependent nanoparticle uptake in cell types
that are particularly involved in pathological contexts. In fact,
inflammation and tissue repair are driving processes impacting the
degree of cell density variability in such tissues. The lung
epithelium is an especially relevant example because of its
constant exposure to airborne particulates (Portugal et al.,
2024), its susceptibility to chronic inflammatory diseases
(Duncan, 2016; Barnes et al., 2015), and its role as a major
route of administration for both nanomedicines and
conventional drugs (Wu L. et al., 2020; Videira et al., 2020). On
the other hand, modeling healthy tissues and conditions where in-
vivo cell density is less variable requires careful consideration of the
experimental cell density of choice, as the reliability and
translatability of the results are directly impacted.

To conclude, this work proposes an approach to systematically
investigate density-dependent effects with the opportunity to adapt
the density range of interest depending on the research question.
Moreover, it can be applied to mimic pathological conditions
characterized by high spatial variability in cell density, providing
insights into how such heterogeneity influences nanoparticle
interactions.

The discussed findings increase our understanding of how
cellular spatial organization influences NP-cell interactions and
highlight the importance of considering the cell density factor in
nanosafety evaluations and drug delivery design. Future works
should incorporate more complex biological models to advance
this understanding and its applications.
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