
Assessment of synergy-assisted
EMG-driven NMSK model for
upper limb muscle activation
prediction in cross-country
sit-skiing double poling

Xue Chen1, Zhongxue Yuan2, Xianzhi Gao1, Yanxin Zhang2,
Chenglin Liu3* and Bo Huo3,4*
1School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China, 2Department of
Exercise Sciences, The University of Auckland, Auckland, New Zealand, 3Sport Biomechanics Center,
Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing,
China, 4Emerging Interdisciplinary Platform for Medicine and Engineering in Sports (EIPMES), Beijing
Municipal Education Commission, Beijing, China

Introduction: Cross-country sit-skiers are often individuals with spinal cord
injuries, cerebral palsy, or lower limb disabilities, relying heavily on upper limb
strength to generate propulsion during skiing. However, frequent shoulder joint
movements significantly increase the incidence of shoulder joint disorders.
Therefore, quantifying muscle forces during movement is crucial for
understanding upper limb force generation patterns. Currently,
electromyography (EMG)-driven neuromusculoskeletal (NMSK) models are the
predominantmethod for calculatingmuscle forces and joint moments. However,
this approach heavily depends on the quality and quantity of EMG data. Surface
electrodes are typically used to collect activity data from superficial muscles, but
during dynamic movements, factors such as skin stretching, sweating, or friction
may cause electrode detachment or poor contact, leading to EMG signal
acquisition failures or data loss. In this study, we propose a synergy-assisted
EMG-drivenNMSKmodel to predict the activation patterns ofmissingmuscles for
cross-country sit-skiing double poling.

Methods: This method is based on individualized EMG-driven NMSK models
constructed for each participant, incorporating data from 10muscles. By utilizing
the activation data of 9 known muscles, the model predicts the activation of one
missing muscle through synergy analysis. For synergy method selection, we
systematically compared four approaches: Non-negative Matrix Factorization
(NMF), Principal Component Analysis (PCA), Independent Component Analysis
(ICA), and Factor Analysis (FA).

Results: The results demonstrated NMF’s superior performance at 5 synergies,
accurately predicting any missing muscle activation among 10 muscles (r = 0.79 ±
0.25 vs. 0.14 ± 0.60-0.45 ± 0.63 for alternatives, p < 0.05), with lower errors (RMSE:
0.21 ± 0.11, p < 0.05 vs. ICA/FA, p < 0.1 vs. PCA; MAE: 0.17 ± 0.09, all p < 0.05).
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Conclusion: This finding validates the effectiveness of the proposed method in
predicting upper limb muscle activation during coupled shoulder and elbow joint
movements.
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EMG-driven model, muscle synergy, cross-country sit-skiing, muscle activation,
upper limb

1 Introduction

Cross-country sit-skiing, as a high-intensity aerobic endurance
sport, was officially included in the competition system at the 4th
winter Paralympic Games held in Innsbruck, Austria, in 1988
(Gastaldi et al., 2012). Based on the skier’s ability to control their
trunk and pelvis, the International Ski and Snowboard Federation
(FIS) classifies athletes into five levels (LW10 to LW12), ranging from
low to high. Athletes of all levels compete in the same race, with final
rankings determined by adjusting their actual race times using level-
specific time factors (FIS, 2024). Cross-country sit-skiers, commonly
individuals with spinal cord injuries, growth defects, or cerebral palsy,
utilize a sled-based double poling (DP) technique involving trunk
flexion and coordinated upper limb muscle activation to generate
propulsive force (Ohlsson and Laaksonen, 2017; Rosso et al., 2017;
Chen et al., 2023). Existing research has shown that LW10 athletes can
generate significant propulsive force during the early phase of the DP
cycle by rapidly pressing down with their arms and swinging their
upper body (Gastaldi et al., 2016). Liu et al., through an analysis of
upper limb isokinetic muscle strength during the DP cycle, further
confirmed the critical role of enhancing upper limb strength and
coordination in improving athletic performance (Liu et al., 2022).
However, studies on upper limb muscle strength in this sport remain
relatively scarce. To date, only one study has examined the peak forces
of six major muscle groups under different poling camber angles
during the DP cycle (Tian et al., 2023).

Methods for quantifying muscle force fall into two primary
categories: direct and indirect approaches. Direct measurement
methods require surgical implantation of force sensors within
human tissue to collect data. Although this approach provides
precise measurements, its invasive nature carries inherent risks
such as infection and tissue damage, limiting its application
primarily to clinical research rather than widespread testing
environments (Beidokhti et al., 2017; Trepczynski et al., 2018).
Indirect measurement methods utilize neuromusculoskeletal
(NMSK) modeling, which integrates computational approaches
for calculating muscle activity with musculoskeletal geometries
and contact models, to estimate muscle forces and joint moments
during movement effectively (Rabbi et al., 2024). A fundamental
challenge in this field stems from the anatomical complexity of the
human musculoskeletal system: the number of muscles exceeds the
skeletal degrees of freedom (DOFs), resulting in muscle redundancy.
To resolve this redundancy, researchers have implemented
optimization algorithms, notably static optimization (SO) and
dynamic optimization (DO), for estimating muscle activation
levels (Anderson and Pandy, 2001). These algorithms assume
unique muscle force distribution patterns during movement and
optimal muscle function. Nevertheless, without experimental
electromyography (EMG) data (Manal and Buchanan, 2003) or

established muscle contribution ratios (Ackermann and van den
Bogert, 2010), these optimization methods cannot generate
definitive solutions. Additionally, the predicted muscle activation
patterns often fail to accurately represent physiological muscle
activity or account for muscle co-contraction. Lloyd and Besier
addressed these limitations by proposing an EMG-driven method
that has gained widespread acceptance (Lloyd and Besier, 2003).
This approach utilizes experimentally measured EMG data and
musculotendon unit kinematic data from the NMSK model as
inputs. The optimization objective minimizes the discrepancy
between joint moments derived from inverse dynamics (ID)
calculations and those obtained through EMG-driven model,
thereby predicting muscle forces and joint moments (Buchanan
et al., 2004). This approach successfully addresses muscle
redundancy while facilitating muscle-tendon property calibration.
However, the accuracy of muscle force calculations in the EMG-
driven model critically depends on the reliability of the collected
EMG data. While surface EMG devices are widely employed in
biomechanics research due to their non-invasive nature and
practical applicability, they cannot capture EMG data from deep
muscles that significantly contribute to joint moments. Sartori et al.
developed an optimization-assisted EMG-drivenmodel to overcome
limitations in EMG data collection from specific muscle groups
(Sartori et al., 2014). In this approach, activation signals for muscles
with experimentally measured EMG data are fine-tuned during the
optimization process, while activation signals for muscles without
EMG data are estimated entirely through SO. However, this method
lacks robust validation of its predictions for unmeasured muscle
activation against experimental data. Moreover, the SO approach,
which processes individual time frames independently, may produce
unrealistic discontinuities in muscle activation patterns.

To this end, Ao et al. proposed a muscle synergy extrapolation
method to estimate missing muscle activation, enhancing the EMG-
driven model’s muscle force calculations (Ao et al., 2020). The
muscle synergy theory originates from Bernstein’s hypothesis of a
dimensionality reduction control strategy, which was later validated
and developed into a theory by Bizzi et al. through frog experiments
and modeling (Bernshtei�n, 1967; Bizzi et al., 1991; Bizzi et al., 2008).
This theory suggests that the central nervous system (CNS)
simplifies complex motor control by coordinating the activation
of functionally related muscle groups. Building on this theory, Ao
et al. reduced the dimensionality of experimental EMG data into
time-varying synergy activation coefficients and corresponding
time-invariant synergy vectors. The synergy vectors define the
contribution weights of each synergy activation coefficient to
individual muscle activation. By incorporating the muscle
synergy structure into the prediction of muscle activation, this
method not only eliminates discontinuities between adjacent time
frames but also reduces the number of design variables in the
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optimization process. In this paper, we refer to these approaches that
leverage muscle synergy extrapolation for missing EMG estimation
as “synergy-assisted EMG-driven NMSK modeling.” This synergy-
assisted EMG-driven NMSK muscle force computation method has
been successfully applied to muscle force predictions in gait and
upper limb movements (Ao et al., 2022; Li et al., 2023; Tahmid et al.,
2024). However, its potential application in scenarios involving

complex shoulder and elbow joint movements remains
insufficiently validated.

Therefore, this study aims to develop a synergy-assisted EMG-
driven NMSK model tailored for the DP technique in cross-country
sit-skiing, with the objective of predicting the activation of
unmeasured upper limb muscles and selecting the optimal
synergy extraction method for model assistance. Specifically,

FIGURE 1
Flowchart of the synergy-assisted EMG-driven NMSK model method. The pink solid box section indicates data collection; the blue dashed box
section denotes the NMSK model; the orange dashed box section is the EMG-driven NMSK model; the red solid box area represents the calibration and
validation EMG-driven NMSK model; the purple dashed box part represents muscle synergy analysis; and the green solid box part illustrates the
optimization process.
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kinematic, kinetic, and surface EMG data were collected from
participants during a 30-s maximal effort DP test. Based on these
data, an EMG-driven NMSK model was constructed, with
individualized parameter calibration and validation performed to
ensure accurate muscle force estimation during the DP motion. To
address the limitations of experimentally collected EMG data, this
study employs muscle synergy analysis to reasonably predict the
EMG signals of unmeasured muscles from a limited set of
measured muscles.

2 Methods

The following content will introduce a method for calculating
muscle force using a synergy-assisted EMG-driven NMSK model
from six aspects (Figure 1).

2.1 Participants

This study recruited three male college students from the Capital
University of Physical Education and Sports as participants (age:

21 ± 2 years, weight: 76.67 ± 5.77 kg, height: 1.84 ± 0.09 m). All
participants declare that they have no restrictions or pain in the
shoulder, elbow, or trunk joints, indicating the absence of upper
limb musculoskeletal disorders. This study was approved by the
Ethics Committee of Capital University of Physical Education and
Sports (Beijing, China) and conducted in accordance with relevant
guidelines. All participants provided written informed consent,
including consent for image publication where applicable.

2.2 Experimental data collection and
processing

The participants were instructed to perform a 30-s maximum
effort test on a self-developed cross-country sit-skiing smart training
device (Liu et al., 2020; Liu et al., 2022) (Figure 2A). During this
process, kinematic data, EMG signals, and bilateral pole forces were
synchronized. Before testing, each participant was required to
complete a 10-min warm-up at their preferred pace to familiarize
themselves with the equipment. The rolling resistance was set to 5%
of the participant’s body weight to simulate real double-poling skiing
conditions. During the formal testing phase, participants were

FIGURE 2
Experimental setup and simulation overview. (A) Subject performed DP on a cross-country sit-skiing smart training device. (B) Reflective marker
placement and surface EMG setup were applied to the subject. (C) A simplified BUET model was used to simulate the DP, with the green arrows on the
hands representing the application of pole forces. Abbreviations: double poling (DP), poling phase (PP), recovery phase (RP).
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instructed to exert maximum effort throughout the entire test to
ensure sufficient data collection. A minimum of 14 DP cycles was
recorded for each test; tests yielding fewer than this number were
discarded (Chen et al., 2023). A 10-min rest period was scheduled
between each test to allow participants to recover and prevent
muscle fatigue.

The three-dimensional trajectories were recorded using an
optoelectronic camera system (Qualisys AB, Gothenburg,
Sweden) sampling at 200 Hz. A total of 35 reflective markers
were utilized, with 2 markers placed on each ski pole and
31 markers on the participants’ body (Figure 2B, for details refer
to Chen et al. (Chen et al., 2023)). The kinematic data were filtered
using a fourth-order Butterworth low-pass filter with a cutoff
frequency of 10 Hz. The marker on the top of the pole was used
to differentiate between the poling and recovery phases of the DP
cycle. The poling phase (PP) began when the marker reached its
highest position and ended at its lowest. Conversely, the recovery
phase (RP) started at the marker’s lowest point and concluded when
it returned to the highest position (Figure 2C).

Pole force was collected at 50 Hz using a uniaxial gauge load cell
(Bengbu Zhongwan Sensor Co., Ltd, China) installed between the
pole and the slider. The raw kinetic data were subsequently
interpolated and smoothed using Matlab software. Two makers
on each ski pole determined the direction of the pole force, with
the point of force application defined as the midpoint between the
two markers on the wrist, acting on the NMSK model’s
hand (Figure 2C).

Surface EMG signals (Cometa Systems Co., Ltd, Italy) were
collected with a sampling frequency of 2000 Hz (Figure 2B). Ten
muscles (as shown in Table 1) on the right side of the body (subject’s
dominant arm) were measured. EMG signals were integrated by a
bandpass filter ranging from 50 to 300 Hz, then processed with full-
wave rectification, linearly enveloped, and finally normalized. The
normalization process involved scaling the EMG amplitudes of each
muscle by the maximum EMG activation recorded for that specific
muscle across all experimental trials (Bianco et al., 2018; Ao et al.,
2020). Then each DP cycle was time-normalized to 100 points, with

50 points corresponding to the PP and the remaining
50 representing the RP.

2.3 Development of EMG-driven
NMSK model

The EMG-driven NMSKmodel comprises four components: the
NMSK model for calculating muscle kinematics and reference
moments, activation dynamics, contraction dynamics, and
forward dynamics, as detailed below.

The NMSK model was based on the OpenSim BUET model
developed for cross-country sit-skiing DP propulsion (Chen et al.,
2023). The BUET model includes 17 articulating rigid bodies,
35 DOFs, and 472 musculotendon actuators. The glenohumeral
and sternoclavicular joints were modeled as three-degrees-of-
freedom rotational joint, which simulated the movement of the
joints in the coronal, sagittal, and transverse planes. The
acromioclavicular joint was established as a weld joint, but it was
unable to move. Based on the BUET model, individualized models
were scaled for each subject, with inverse kinematics calculations
first performed to obtain joint angle during DP propulsion
(Supplementary Figure S2), followed by ID and muscle analysis
to obtain reference moments at the shoulder and elbow, as well as
kinematic data of the muscles (musculotendon length and moment
arm) during DP propulsion. Finally, the obtained data underwent
time normalization, dividing one DP cycle into 100 points, with
50 designated for PP and the other 50 for RP. To reduce
optimization time, we have reduced the number of
musculotendon actuators in the BUET model to 124 (Figure 2C).

The activation dynamics model consists of two components: the
backward difference model (as shown in Equation 1) and the
nonlinear model (as shown in Equation 2) (Lloyd and Besier,
2003). The preprocessed EMG signals are converted to neural
excitation using a critically damped, second-order dynamic
system, and muscle activation is then computed via a nonlinear
transformation. The respective formulations are as follows:

TABLE 1 Moment arm functions of muscle in shoulder and elbow joint movement.

Experimental muscle
EMG (abbreviation)

Arm flexion-
extension

moment arm

Arm adduction-
abduction

moment arm

Arm internal-external
rotation moment arm

Elbow flexion-
extension

moment arm

Biceps brachii (BB) Positive N/A N/A Positive

Triceps brachii (TB) Negative Positive N/A Negative

Anterior deltoid (AD) Positive Negative Positive N/A

Middle deltoid (MD) N/A Negative N/A N/A

Posterior deltoid (PD) Negative Negative Negative N/A

Infraspinatus (IF) Negative Positive Negative N/A

Teres major (TMj) Negative Positive Positive N/A

Latissimus dorsi (LD) Negative Positive Positive N/A

Pectoralis major (PM) Positive Positive Positive N/A

Brachioradialis (BRD) N/A N/A N/A Positive

Arm flexion, adduction, internal rotation and elbow flexion are positive.
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u t( ) � αe t − d( ) − C1 + C2( )u t − 1( ) − C1C2u t − 2( ) (1)

a t( ) � eAu t( ) − 1
eA − 1

(2)

where all variables and parameters are as previously defined (see
(Lloyd and Besier, 2003), for details).

The calculation of muscle force in muscle contraction
dynamics is based on the following key parameters: maximum

isometric force (Fm
0 ), optimal fiber length (lm0 ), tendon slack

length (lts), musculotendon length (LMT), along with the
muscle activation (a) generated by the activation dynamics
model. Within this computational framework, the Hill-type
muscle model is employed to describe the mechanical
properties of muscles (Equation 3) (Zajac, 1989)
(Supplementary Figure S1A). The specific mechanical
relationship formulas are as follows:

TABLE 2 Parameters for musculotendon force and joint moment calculations.

Model components Parameter Definition Value

Contraction
dynamics

Active force-length relationship

�FCE � Vm · b
Vm

max · 0.25 + 0.75a( ) + afl

b �

afl +
�FCE

Af
;

�FCE ≤ afl

2 + 2
Af

( )(afl �F
M
len − �FCE)

(�FM
len − 1) ;

�FCE > afl

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
fl � e

−( �LM−1)2
γ

�FCE = FCE/Fm
0

Normalised active muscle force = active muscle force/maximum
isometric force

Vm = Vm/Vm
max Normalised muscle fiber velocity = muscle fiber velocity/maximum

contraction velocity
Vm

max = 10

LM =
(LMT − LT)/ cos α

Muscle length = (musculotendon length - tendon length)/ cos α (α
is pennation angle)

�LM = LM/lm0 Normalized muscle fiber length = muscle fiber length/optimal fiber
length

�FM
len

Maximum normalized muscle force achievable when the fiber is
lengthening

1.8

Af Force-velocity shape factor 0.3

γ Shape factor 0.6

Passive force–length relationship

�FPE � e

KPE( �LM−1)
εM
0

−1

eKPE −1

�FPE � FPE/Fm
0

Normalised passive muscle force = passive muscle force/maximum
isometric force

KPE Exponential shape factor 5

εM0 Passive muscle strain due to maximum isometric force 0.6

Tendon length–force relationship

lt � lts · εTtoe ·
ktoe · log FT · ektoe − 1

FT
toe

( ) + 1( ) + lts;

FT ≤ 0.33

lt �
FT − FT

toe( )
klin

+ εTtoe
⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ · lts + lts;

FT > 0.33

FT = FT/Fm
0

Normalised tendon force = tendon force/maximum isometric force

lt � LT/lts Normalised tendon length = tendon length/tendon slack length

FT
toe Tendon force at the transition from nonlinear to linear behavior

FT
toe = FT

toe/F
m
0

Normalised FT
toe = FT

toe/maximum isometric force 0.33

εT Tendon strain

εT0 Tendon strain due to maximum isometric force 0.04

εTtoe Tendon strain threshold for linear behavior 0.609 εT0

ktoe Exponential shape factor 3

klin Linear scale factor 1.712/εT0

Forward dynamics

Mi � ∑Nmuscle

j

Fm
0,j · [�FCE

j + �FPE
j ] · rmi,j · cos αj

Mi Joint moment of the i th joint

rmi,j Moment arm of the j th muscle relative to the i th joint

Objective function of the calibration model Mmod
c,i,p

Model-predicted moment at the p th data point of the i th joint in
the c th cycle

Mc,i,p
exp ID-calculated moment at the p th data point of the i th joint in the c

th cycle

n Total number of data points in each cycle 100

Ncyc Total number of cycles 5

Ndof Total number of degrees of freedom 4
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FMT � FT � FM cos α � FCE + FPE( ) cos α (3)
FMT represents musculotendon force; FT represents tendon force;
FM represents muscle force.

Active muscle force-activation-length-velocity relationship
as shown in in Table 2 (Thelen, 2003). A Gaussian function
was employed to model the active force-length relationship (fl),
as shown in Supplementary Figure S1B. The parameter b varies
according to the muscle fiber contraction state whether it
undergoes shortening or lengthening phases (Supplementary
Figure S1C). Passive muscle force-length relationship is
represented by an exponential function as shown in
Supplementary Figure S1B (Thelen, 2003). Tendon length-
force relationship is represented by an exponential function as
shown in Supplementary Figure S1D (Thelen, 2003; Ma et al.,
2016). All mathematical formulations and specific parameter
details are provided in Table 2.

After completing the force calculations for contraction
dynamics, the joint moments are derived using the principles
of forward dynamics. The resultant moment at a single joint is
equal to the sum of the products of all muscle forces acting on
that joint, their corresponding pennation angle cosines, and the
moment arms (details are in Table 2).

Utilizing these four core components, the EMG-driven
NMSK model was developed. The dynamic computation
process of this model is illustrated in Figure 3,
and the algorithm was implemented within the Matlab
environment.

2.4 Calibration and validation EMG-driven
NMSK model

After constructing the EMG-driven NMSKmodel, it is necessary
to calibrate individualized parameters for each subject. Referring to
previous research, Kian et al. successfully calibrated the EMG-driven
model for shoulder motion tasks by optimizing musculotendon
parameters Fm

0 , l
m
0 , l

t
s, and activation dynamics coefficients A, C1, C2

(Kian et al., 2021). Furthermore, the findings of Blache et al.
demonstrated that muscle force estimation for the shoulder and
upper limb is highly sensitive to variations in musculotendon
properties, with the variability of Fm

0 and lm0 having the most
significant impact (Blache et al., 2019). Based on these two
studies, we selected Fm

0 , l
m
0 , l

t
s, A, C1, C2, and d as the parameters

to be calibrated to achieve individualized settings for each subject.
The calibration process is as follows. Firstly, kinematic data,

external force data, and EMG signals from 5 DP cycles were input
into the EMG-driven model to calculate the joint moments of the
shoulder and elbow. Subsequently, the model-predicted moments
were compared with those obtained through ID. A simulated
annealing algorithm was employed for iterative optimization,
continuously adjusting the model parameters to minimize the
root mean square error (RMSE) between the two sets of results
(as shown in Equation 4; Table 2). Finally, individualized parameters
for each subject were determined and output, ensuring that the
model accurately captures inter-individual physiological differences.
It is worth noting that for the parameters Fm

0 , l
m
0 , and lts, we allowed

them to vary within ± 50% of their initial values, which were derived

FIGURE 3
Dynamic calculation process of the EMG-driven model. Blue represents the muscle kinematics model; yellow represents the activation dynamics
model; black represents the mechanical relationship model between muscle and tendon; green represents the active muscle force-activation-length-
velocity relationship mode; orange represents the passive muscle force-length relationship model; purple represents the tendon length-tendon force
relationship model; red represents the forward dynamics model.
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from the standard settings of a generic model. Additionally, the
initial values of parameters A, C1, C2, and d were set to −0.1,
0.5, −0.5, and 0.05, respectively, and were adjusted within the ranges
of −3 to 0, −1 to 1, −1 to 1, and 0.01 to 0.3. This parameter
configuration not only ensures the model’s high sensitivity and
accuracy in capturing individual differences but also guarantees the
physiological plausibility and interpretability of the parameters.

min J ≜ ∑NCycle

c

∑NDofs

i

�����������������
1
n
∑n
p�1

Mmod
c,i,p −Mc,i,p

exp( )2√√
(4)

Using 5 DP cycles data that differ from the calibration process,
the individualized EMG-driven NMSK model of the subjects was
validated by comparing the moment results calculated by the ID.

2.5 Synergy-assisted EMG-driven
NMSK model

Based on the calibrated and validated subject-specific EMG-
driven NMSK model, a synergy-assisted EMG-driven NMSK model
was developed (Figure 1). In this study, the EMG data of one muscle
were sequentially excluded and treated as unmeasured, while the
remaining muscles’ EMG data were treated as measured. The
measured EMG data were organized into a matrix em, which was
input into the activation dynamics model to obtain the muscle
activation matrix am. This matrix am was used as input for both the
EMG-driven model and muscle synergy analysis.

Non-negative Matrix Factorization (NMF) was applied to
decompose am into two matrices: the motor module Wm and the
motor primitive Hm, according to V ≈ VR � WH. The matrix Wm

represents the relative weights of individual muscles (m × l), where l
denotes the number of synergies, and Hm represents the time-
dependent coefficients (l × n). To investigate the effect of the
number of synergies on predicting unmeasured muscle activations,
l was predefined in the NMF algorithm. Since extracting a number of
synergies equal to the total number of measured EMG signals does not
reduce the dimensionality of the data, the maximum number of
synergies was restricted to 75% of the total number of muscles. In this
study, synergy numbers range from 2 to 7 were evaluated. For each
synergy number, the factorization process was repeated 10 times with
newly randomized initial matrices Wm and Hm in each iteration to
avoid local minima. During this process, the coefficient of
determination (R2) between the reconstructed (VR) and original
activation matrices (V) was calculated, and the solution with the
highest R2 was selected for each synergy number. Subsequently, based
on the synergy weight matrix Wx containing the relative weights of
unmeasured muscles (1 × l), combined with a matrix Hm extracted
from the measured muscle synergy analysis, the activation of
unmeasured muscles ax was reconstructed (ax � WxHm). Notably,
the matrix Wx was obtained through optimization iterations by
tracking the experimental joint moments. During this process, the
values of Wx were constrained to be greater than 0, while the
reconstructed muscle activation values (ax) were restricted to a
range between 0 and 1. Furthermore, this study systematically
investigated the efficacy of Principal Component Analysis (PCA),
Independent Component Analysis (ICA), and Factor Analysis (FA) in

extracting synergistic patterns for predicting muscle activation
accuracy. Through comparative analysis of the predictive
performance among these four methods (including NMF), we
aimed to identify the optimal synergistic assistance approach for
accurate upper-limb muscle activation prediction in shoulder-elbow
coupled movements, thereby enhancing the predictive robustness of
the synergy-assisted EMG-driven NMSK model (detailed
methodology provided in Supplementary Material).

In this section, the synergy-assisted EMG-driven NMSK model
was evaluated using data from 10 DP cycles, which were the same
datasets used for calibrating and validating the EMG-driven NMSK
model. The entire process was implemented in MATLAB, utilizing a
simulated annealing algorithm to optimize the objective function.
The predicted muscle activation values were then compared with the
experimentally measured results.

2.6 Statistical analyses

To evaluate the performance of the synergy-assisted EMG-driven
NMSK model in predicting unmeasured muscle activation, this study
selected 10 complete DP cycles from each participant during the
calibration and validation phases of the EMG-driven NMSK model
for comprehensive evaluation. First, R2 was calculated to quantify and
evaluate the ability of NMF to reconstruct muscle activation patterns
under different synergy number conditions. Furthermore, to further
assess the overall performance of the synergy-assisted EMG-driven
NMSK model in predicting muscle activations and joint moments, as
well as the specific impact of different synergy numbers on the
prediction results, the following metrics were calculated: (1) %
RMSE (as in Equation 5), r, and %MAE (as in Equation 6)
between the model-predicted joint moments and the reference
joint moments obtained from ID, with paired t-tests used for
statistical comparison; and (2) RMSE, r and MAE between the
predicted unmeasured muscle activation and the experimentally
measured muscle activation (all synergy-assisted methods).
Statistical analyses were conducted using the Kruskal–Wallis test,
followed by Dunn’s test for post hoc comparisons. All analyses were
performed in Matlab, with the significance levels set at p < 0.05.

%RMSE �
������������������
1
n∑n

p�1 Mp
exp −Mmod

p( )2√
max M exp( ) −min M exp( ) (5)

%MAE �
1
n∑n

p�1 Mp
exp −Mmod

p

∣∣∣∣∣ ∣∣∣∣∣
max M exp( ) −min M exp( ) (6)

3 Results

3.1 Assessment of EMG-driven NMSK
model accuracy

Figure 4 illustrated the relationship between the moment
calculations of the EMG-driven NMSK model and the
experimental joint moments calculated using ID for three
subjects during calibration and validation trials. The figure shows
that, aside from a slight shortfall in the accuracy of predicting the
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arm internal-external rotation moment, the predictions for other
joint moments demonstrate a high level of accuracy. Further analysis
of the data in Table 3 revealed that during the calibration trials, the
model performed best in the arm flexion-extension moment (%
RMSE = 0.15 ± 0.03, r > 0.92) and elbow flexion-extension moment
(%RMSE = 0.17 ± 0.02, r > 0.92). In contrast, the prediction accuracy

for the arm adduction-abduction moment and internal-external
rotation moment was relatively lower, particularly for internal-
external rotation moment, which had a r of only 0.55 ± 0.14. In
the validation trials, an independent set of five DP cycles was used as
the validation dataset, and paired t-test results indicated no
significant statistical difference between the calibration and

FIGURE 4
In both the calibration and validation trials, the inverse dynamics (ID) method and the EMG-driven NMSK model with all muscles were used to
calculate the average joint moments for four degrees of freedom at the shoulder and elbow joints of three participants. The blue curve represents the
average reference joint moments calculated by the ID method, while the red curve represents the average joint moments calculated by the EMG-driven
NMSK model. The 0%–50% of the cycle corresponds to the poling phase (PP) of the double poling (DP), while the 50%–100% corresponds to the
recovery phase (RP).
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validation data. During the validation trials, the arm adduction-
abduction moment, flexion-extension moment, and elbow flexion-
extensionmoment all maintained high correlation (r > 0.9). However,
it was noteworthy that the r for the arm internal-external rotation
decreased from 0.55 to 0.43, reflecting the uncertainty in the
prediction for this degree of freedom (DOF). The relatively poor
estimation of internal and external rotation moments is likely
attributable to the absence of deep rotator cuff muscles in the
EMG-driven NMSK model. Due to the limitations of our study,
only EMG data from ten superficial muscles were collected.

3.2 Muscle activation prediction

This study employed NMF, PCA, ICA, and FA synergy-
assisted EMG-driven NMSK models for muscle activation
prediction, with results shown in Figures 5, 6 and
Supplementary Figures S3–S9. The findings revealed that the
number of synergies had no significant impact on RMSE, r, and
MAE for missing muscles in PCA, ICA and FAmethods, except for
TB and TMj muscles, where statistically significant differences in
these metrics were observed with 2 synergies. Critically, none of
these three methods could reliably provide satisfactory predictions
for all possible single-muscle missing scenarios. Specifically: the
PCA approach lacked a single synergy number that could
simultaneously maintain moderate correlations (r > 0.35) for
muscles BB, BRD, IF, LD, and PM, with negative correlations
even observed (Supplementary Figures S3–S4; Supplementary
Table S1); the ICA method demonstrated limited predictive
capability across all single-muscle scenarios, with r < 0.51 and
RMSE values averaging approximately 0.3, indicating ineffective
prediction performance (Supplementary Figures S5–S6;
Supplementary Table S2); and the FA method poor predictive
performance for muscles BB, BRD, IF, LD, and PM (r < 0.35,
RMSE >0.3; Supplementary Figures S7–S8; Supplementary Table
S3). Statistical analysis of RMSE, r and MAE between predicted
and experimental data across six synergy numbers confirmed that
the NMF method consistently outperformed other methods under
all synergy conditions, exhibiting the smallest prediction errors
(RMSE: 0.21 ± 0.11 to 0.23 ± 0.13; MAE: 0.17 ± 0.09 to 0.18 ± 0.13;
p < 0.05 vs. ICA/FA; both RMSE and MAE showing partial non-
significance vs. PCA) and highest correlations (r: 0.78 ± 0.26 to
0.84 ± 0.23, p < 0.05 vs. PCA/ICA/FA) (Figure 6; Supplementary
Figure S9). Given these findings, we focus our subsequent detailed
analysis exclusively on the NMF method results, which
demonstrate superior performance in predicting muscle

activation patterns under various single missing muscle
conditions.

The NMF synergy-assisted EMG-driven NMSK model
demonstrates excellent performance in predicting missing muscle
activation (as shown in Figure 5). The predicted muscle activation
curves closely resemble the experimental measurement curves,
effectively capturing the dynamic changes in muscle activation,
particularly reflecting the actual trends during both the rising and
falling phases of activation. In the early phase of the DP cycle (within
the PP), the model’s predicted curves show a high degree of overlap
with the experimental values, indicating its accuracy during the initial
activation stage. The variation in the number of synergies affects the
prediction of muscle activation. When the number of synergies
reaches four or more, the R2 value exceeds 0.95, indicating that
the reconstruction effect is very satisfactory (Figure 7).

Further analysis using the Kruskal–Wallis test revealed the
impact of the number of synergies on the RMSE, r, and MAE for
predicting missing muscle activation (Figure 8; Supplementary
Table S4). The results show that as the number of synergies
increases, the RMSE and MAE for most muscles tend to
decrease gradually, particularly between synergy counts of
2 and 5. However, when the number of synergies reaches 6 and
7, the RMSE for some muscles (such as BRD, PD, and PM) slightly
increases, indicating a degree of instability. This suggests that when
the number of synergies exceeds 5, the improvement in error
metrics becomes very limited. Additionally, the RMSE and MAE
for the LD and TMj muscles significantly decrease and increase,
respectively, as the number of synergies increases, indicating that
different muscles exhibit varying sensitivities to the number of
synergies. The r values generally remain high (above 0.76 for all
muscles except BB and BRD, indicating strong correlations), but
for muscles IF, LD, MD, TB, and TMj, the r values significantly
decrease as the number of synergies increases, with optimal values
occurring at a synergy count of 2. This suggests that in certain
cases, increasing the number of synergies may lead to a decline in
the model’s fit. In summary, a synergy count of 5 is considered the
optimal choice, as it allows the model to effectively capture the
main features of the data while maintaining low error values.
Additionally, all muscles exhibit r values within the moderate to
strong correlation range, thereby avoiding the risk of overfitting.

In addition, we evaluated the ability of the NMF synergy-assisted
EMG-driven NMSK model to estimate joint moments. The results
showed that changes in the number of synergies did not have a
significant effect on the accuracy of joint moment estimation (see
Supplementary Figures S10–S13). However, the omission of specific
muscles led to significant differences in joint moment estimation

TABLE 3 The %RMSE, r and %MAE between experimental joint moments and EMG-driven predicted in calibration trials and validation trials.

Degree of freedom Calibration trials Validation trials

%RMSE r %MAE %RMSE r %MAE

Arm adduction-abduction 0.36 ± 0.18 0.78 ± 0.20 0.27 ± 0.14 0.31 ± 0.06 0.74 ± 0.15 0.23 ± 0.05

Arm flexion-extension 0.15 ± 0.03 0.92 ± 0.05 0.12 ± 0.03 0.17 ± 0.03 0.91 ± 0.06 0.14 ± 0.02

Arm internal-external rotation 0.36 ± 0.08 0.55 ± 0.14 0.27 ± 0.07 0.38 ± 0.13 0.43 ± 0.28 0.28 ± 0.10

Elbow flexion-extension 0.17 ± 0.02 0.92 ± 0.04 0.13 ± 0.02 0.17 ± 0.04 0.90 ± 0.08 0.14 ± 0.03
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(see Supplementary Tables S6–S9). Specifically, the omission of the
PD significantly affected the estimation of both arm
adduction–abduction and flexion–extension moments. The
absence of the TB substantially impacted the estimation of arm
adduction–abduction moments as well as elbow flexion–extension
moments. Meanwhile, the exclusion of the IF notably influenced the
estimation of arm internal–external rotation moments. Notably, the
joint moment estimations obtained from the NMF synergy-assisted
EMG-driven NMSK model were consistent with those obtained
from the EMG-driven NMSK model with all muscles.

4 Discussion

In this study, we developed an EMG-driven NMSK model tailored
for the DP technique in cross-country sit-skiing. By comparing the
model predictions with experimental data, we validated its ability to
accurately calculate the coupled joint moments of the shoulder and
elbow during the DP motion. Furthermore, based on this model, we
established a synergy-assisted EMG-driven NMSKmodel to predict the
activation patterns of missing muscles during upper limb movements
and systematically investigated the impact of synergy number on

FIGURE 5
The variation curves of the predicted average space missing muscle activation and the experimentally measured average muscle activation under
different synergy number conditions were plotted. The blue curve represents the experimentallymeasured values, while the red curve corresponds to the
predicted values calculated using the NMF synergy-assisted EMG-driven NMSKmodel. The 0%–50% of the cycle corresponds to the poling phase (PP) of
the double poling (DP), while the 50%–100% corresponds to the recovery phase (RP). Muscle abbreviations: AD, anterior deltoid; BB, biceps brachii;
BRD, brachioradialis; IF, infraspinatus; LD, latissimus dorsi; MD, middle deltoid; PD, posterior deltoid; PM, pectoralis major; TB, triceps brachii; TMj,
teres major.
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prediction performance. Regarding synergy analysis methodology, we
comparatively evaluated four decomposition approaches: NMF, PCA,
ICA, and FA. The results demonstrated that the NMF method
significantly outperformed other methods, and when the synergy
number was set to 5, the synergy-assisted EMG-driven NMSK
model could accurately predict the activation patterns of any
missing muscle among the 10 muscles, with low error and
moderate-to-strong correlation.

By collecting surface EMG data from 10 upper limb muscles, we
constructed and calibrated individualized EMG-driven NMSK models
for each participant (see Figure 4). The results demonstrated that the
model could accurately calculate shoulder adduction-abduction
moment, shoulder flexion-extension moment, and elbow flexion-
extension moment. However, the model exhibited limited accuracy
in predicting shoulder internal-external rotation moment. This

limitation may be attributed to several factors. First, the study did
not fully capture the activation signals of all muscles involved in
shoulder internal-external rotation, particularly the deep muscles
(e.g., teres minor). Second, shoulder internal-external rotation
involves multifunctional muscles such as the IF, TMj, PM, and LD,
which may prioritize optimizing moments for other DOFs, thereby
reducing their contribution to internal-external rotation moment.
Additionally, the potential roles of the BB and TB in shoulder
internal-external rotation moment were not considered in the
model, which may further limit its prediction accuracy for this DOF.

Based on the above model, this study established a synergy-
assisted EMG-driven NMSK model to evaluate upper limb muscle
activation patterns during the DP motion in cross-country sit-
skiing. The study specifically examined how four synergy analysis
methods (NMF, PCA, ICA, FA) influence the model’s muscle

FIGURE 6
Overall RMSE, r, and MAE between the predicted missing muscle activations by the synergy-assisted EMG-driven NMSK model using different
synergistic assistancemethods under varying synergy numbers and the experimental measurements. Red represents NMF, yellow represents PCA, purple
represents ICA, gray represents FA. * indicates significant differences between groups (p < 0.05). Muscle abbreviations: AD, anterior deltoid; BB, biceps
brachii; BRD, brachioradialis; IF, infraspinatus; LD, latissimus dorsi; MD, middle deltoid; PD, posterior deltoid; PM, pectoralis major; TB, triceps
brachii; TMj, teres major.
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activation prediction accuracy. Since synergy analysis capability is
closely related to the choice of synergy number, systematically
evaluating the impact of synergy number on model prediction
performance is essential. The results demonstrated that the NMF
method consistently achieved optimal muscle activation prediction
performance across all tested synergy numbers (Figures 5, 6). This
superiority originates from its unique algorithmic properties: by
enforcing non-negativity constraints on both basis vectors and
activation coefficients, NMF strictly adheres to the physiological
characteristics of muscle activation, effectively preventing non-
physiological negative values and thereby significantly enhancing
the physiological plausibility and interpretability of the results.
Moreover, the NMF method exhibits exceptional noise
robustness and can accurately identify muscle synergy patterns
without imposing strict distributional assumptions (Tresch et al.,
2006; Ebied et al., 2018; Zhao et al., 2022). This approach has been
widely adopted in sports and upper limb movement analysis,
demonstrating reliable predictive performance (Baifa et al., 2021;
Wang et al., 2021). Notably, although Tahmid et al.’s study did not
conduct systematic comparisons with other synergy methods, their
application of NMF for upper limb muscle prediction also yielded
excellent results (Tahmid et al., 2024).

Building upon these findings, this study conducted a systematic
discussion on the predictive performance of the NMF synergy-
assisted EMG-NMSK model. The results showed that when the
synergy number was set to 5, the model could predict the activation
of any missing muscle among the 10 muscles with low error and
moderate-to-strong correlation (Figure 8; Supplementary Table S4).
This finding is consistent with the results of Ao et al., who reported
optimal prediction performance with a synergy number of 5 or 6 in
lower limb gait studies (Ao et al., 2020). The model exhibited high
accuracy in predicting shoulder muscle activation patterns, which
typically have single-peaked and less complex activation profiles.
However, the prediction accuracy for elbow muscles was relatively
lower. For example, the BB had an r of 0.62 ± 0.28 and an RMSE of
0.26 ± 0.12, while the BRD had an r of 0.38 ± 0.36 and an RMSE of
0.29 ± 0.13. These results are comparable to those reported by
Tahmid et al. in studies of five-degree-of-freedom shoulder-elbow
movements (Tahmid et al., 2024). The lower accuracy may be due to
the model including only three functional elbow muscles, which
could lead to compensatory contributions from other muscles to
satisfy the experimental elbow flexion-extension moment.

When the synergy number was set to 5, the model achieved an
optimal balance between reconstruction capability and

FIGURE 7
The R2 value was calculated to evaluate the ability of the NMF method to reconstruct the measured muscle activation matrix after the removal of a
specific muscle’s EMG data under different synergy numbers. The purple line represents R2 = 0.95.^ indicates no significant differences between the
groups (p > 0.05). Muscle abbreviations: AD, anterior deltoid; BB, biceps brachii; BRD, brachioradialis; IF, infraspinatus; LD, latissimus dorsi; MD, middle
deltoid; PD, posterior deltoid; PM, pectoralis major; TB, triceps brachii; TMj, teres major.
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generalization ability, effectively capturing the main features of
muscle activation while avoiding overfitting and performance
degradation. The reasons for this phenomenon are as follows:
First, as the synergy number increases, the model’s ability to
reconstruct the original muscle activation matrix improves.
However, when the synergy number exceeds a certain threshold,
the reconstruction capability of NMF saturates (Santuz et al., 2020).
At the same time, the dimensionality reduction capability of synergy
analysis diminishes, leading to a significant increase in the number
of unknown parameters during optimization. This increase in
parameters makes the model more prone to fitting noise or
irrelevant details, thereby reducing its generalization ability. This
phenomenon explains why RMSE reached its lowest value when the
synergy number was 5 and increased when the synergy number was
further increased to 6 or 7. Second, the synergy-assisted method uses

the dimensionality-reduced activation matrix Hm derived from
known muscle activations as the motor primitive curve (Hm+x)
for the 10-muscle activation matrix. To further validate the impact
of synergy number on model prediction performance, we calculated
the RMSE and r between Hm and Hm+x (Supplementary Table S5).
The results showed that when the synergy number increased to 6 or
7, the r of the motor primitive curve significantly decreased (to
0.73 ± 0.33 and 0.72 ± 0.32, respectively, p < 0.05), while the RMSE
significantly increased (to 0.12 ± 0.07 and 0.11 ± 0.06, respectively;
p < 0.05). This indicates that although increasing the synergy
number can restore more activation curve information, the error
in Hm increases, leading to poorer prediction performance for
missing muscle activations.

Our study utilized a NMF synergy-assisted EMG-driven NMSK
model to evaluate joint moment estimation capabilities when

FIGURE 8
The RMSE, r, and MAE between the predicted missing muscle activations by the NMF synergy-assisted EMG-driven NMSK model under different
synergy numbers and the experimental measurements. The purple line represents r = 0.76. * indicates significant differences between groups (p < 0.05).
Muscle abbreviations: AD, anterior deltoid; BB, biceps brachii; BRD, brachioradialis; IF, infraspinatus; LD, latissimus dorsi; MD, middle deltoid; PD,
posterior deltoid; PM, pectoralis major; TB, triceps brachii; TMj, teres major.
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predicting the missing of individual muscles. The results indicated
that variations in the number of synergies did not significantly affect
moment estimation accuracy. However, among the muscles
examined, the PD, TB, and IF demonstrated significantly greater
impacts on the precision of moment predictions compared to other
muscles (Supplementary Tables S3–S6). Specifically, PD, with its
substantial moment arms for shoulder extension and abduction,
plays a critical role in generating arm adduction-abduction and
flexion-extension moments (Hik and Ackland, 2019). TB,
characterized by a large maximum isometric force and an
important moment arm for elbow extension, significantly
influences elbow flexion-extension moments (Itoi et al., 2008). IF,
a key component of the rotator cuff, is essential for shoulder stability
and internal-external rotation (Hik and Ackland, 2019). These
findings align with prior studies by Rabbi et al. and Steel et al.,
which emphasized that in scenarios involving fewer muscle
combinations, dominant synergy muscles or those with greater
maximum isometric force substantially affect predictive
performance (Steele et al., 2013; Rabbi et al., 2022). Notably,
while Ao et al. and Rabbi et al. focused on lower-limb movement
studies, their conclusion that selecting muscles with significant joint
moment contributions optimizes the accuracy of synergy-based
extrapolation for predicting remaining muscle activations and
joint forces using limited muscle data aligns with our findings
(Ao and Fregly, 2024; Rabbi et al., 2024). Our results provide a
foundation for future investigations into predicting the activation
patterns of remaining muscles during DP movements with reduced
muscle sets, highlighting the critical roles of PD, TB, and IF.

Despite the promising results, this study has certain
limitations. First, the model did not incorporate the activation
patterns of deep muscles in the shoulder and elbow joints, which
may have contributed to moment calculation errors. Second, the
BUET model used in this study constrained the sternoclavicular
and acromioclavicular joints, without considering their potential
influence on the results. Third, the small sample size (n = 3) limits
the generalizability of the findings. To address these limitations,
future studies will: (1) optimize the model structure to include
deep muscle activations; (2) relax joint constraints in the BUET
model to investigate their biomechanical effects; (3) explore
the feasibility of predicting a larger number of missing
muscle activations using fewer known activations; and (4)
validate the model with a larger cohort to establish its
generalizability.

5 Conclusion

This study developed an EMG-driven NMSK model tailored for
the DP technique in cross-country sit-skiing, capable of accurately
calculating the joint moments of the shoulder and elbow during
coupled movements. Furthermore, to address the issue of missing
muscle data in the collected dataset, a synergy-assisted EMG-driven
NMSK model was further developed. The results suggest that NMF
synergy-assisted method with the synergy number to 5 allows the
model to reasonably predict the activation patterns of any missing
muscles among the 10 muscles. However, given the limited number
of participants and the observed accuracy levels, these findings
should be interpreted with caution.
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