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Biocatalyst-mediated reactions have led to revolutionary transformations in the
organic synthesis of pharmaceuticals, drugs, and other chemicals. Nicotinic acid
(vitamin B3) is an essential precursor for nicotinamide adenine dinucleotide
(NAD+) biosynthesis and is vital for numerous metabolic processes. Since the
human body cannot synthesize nicotinic acid, it relies on external sources.
Therefore, nicotinic acid synthesis has gained huge attraction. In recent years,
the industrial production of nicotinic acid has increasingly shifted from traditional
chemical methods to more biocatalytic processes, leveraging the power of
biocatalysts. This review highlights the biocatalyst-mediated synthesis of
nicotinic-acid- and nitrile-metabolizing enzymes through state-of-the-art
omics-based techniques to improve enzyme catalytic efficiency and stability
via various approaches. Future research prospects and challenges associatedwith
nicotinic acid production are also discussed.
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1 Introduction

Biocatalyst-mediated processes have provided an alternative approach to the organic
synthesis of pharmaceuticals, drugs, and other chemicals, which has changed the synthesis
trend. In the last 2 decades, the enzymatic process has gained huge attention in organic
synthesis due to its unique properties like one-step reactions, mild reaction conditions, high
selectivity, etc. (France et al., 2023). Vitamin B3 is generally known as niacin. It occurs in the
form of nicotinic acid and nicotinamide and is essential to perform cellular functions. In
human body, niacin is synthesized from the precursor molecule tryptophan, which is
obtained from food and other sources or directly from the diet (Schmitz and Lowenstein,
2019). In late 19th century, pellagra, a disease caused by vitamin B3 deficiency, was an
epidemic in southern United States, affecting more than three million people between
1906 and 1940, with more than 100,000 deaths recorded (Rajakumar 2000; Viljoen et al.,
2021). In southern California, 1,396 deaths were recorded in 1915 over a period of
10 months, and approximately 100,000 people were affected in 1916 (Sugita et al., 2013;
Schmitz and Lowenstein, 2019; Prabhu et al., 2021). To overcome the deficiency, niacin has
been used to treat pellagra (Denu, 2005; Schmitz and Lowenstein, 2019).

Nicotinic acid has also been widely investigated for various functions, such as its
effectiveness at treating patients with schizophrenia, bipolar type II disorder, and various
psychiatric states (Jonsson, 2018; Noda et al., 2020; Papafaklis et al., 2024). Nicotinic acid is
effective in treatment of combined hyperlipidemia and it acts as a lipid-modifying agent that
significantly affects lipoproteins, with reductions in lipoprotein levels of 20%–38%
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(McKenney, 2004). Nicotinic acid also plays a significant role in
growth and maintenance of the central nervous system. It helps
regulate cholesterol levels by lowering LDL cholesterol, increasing
HDL cholesterol, and maintaining triglyceride levels (Aim-High
Investigators, 2011; Zio et al., 2024). Nicotinic acid is an important
micronutrient, and food items such as chicken, fish, peanuts, brown
rice, whole wheat, mushrooms, green peas, and potatoes serve as
major nicotinic-acid-rich sources (Panda et al., 2017, https://www.
healthline.com/nutrition/foods-high-in-niacin). Medications with
vitamin B3 are also available to consumers, but nicotinic acid
extraction from food sources is limited. Therefore, industrial
production of nicotinic acid is achieved by chemical methods;
however, in recent years, many alternatives have been developed
because of the disadvantages of chemical production.

This review focuses on recent advances in the biocatalytic
production of nicotinic acid, highlighting the biosynthesis of
nicotinic acid and its production methods. It outlines two main
pathways for NAD+ synthesis in humans: de novo and salvage.
The article compares chemical and enzymatic methods for
nicotinic acid production, highlighting the advantages of
enzymatic synthesis. Various strategies to improve nicotinic
acid production are explored, including nitrilase engineering
and heterologous gene expression. Enzyme and genetic
engineering have shown promising results in enhancing yield
and efficiency. For example, mutated strains of Acidovorax facilis
and Pseudomonas putida demonstrated significantly higher
catalytic efficiency for nicotinic acid production. The review
also covers screening approaches for new nitrilases, discussing
conventional culture-dependent methods and advanced
techniques like metagenomics and proteomics. While
traditional methods rely on isolating and culturing
microorganisms, metagenomics allows for the analysis of
entire microbial communities without the need for cultivation.
Overall, the article emphasizes the potential of enzymatic
processes and genetic engineering in enhancing nicotinic acid
production for industrial applications. It highlights the ongoing

research efforts to improve yield, efficiency, and sustainability in
nicotinic acid synthesis.

2 Biosynthesis pathways of
nicotinic acid

The human body cannot directly synthesize nicotinic acid.
Therefore, humans depend on dietary intake to meet their
nicotinic acid requirements. Nicotinic acid is a precursor for
biosynthesis of nicotinamide adenine dinucleotide (NAD+), which
is an essential co-factor for cellular regulation to support various
metabolic functions (Belenky et al., 2007; Imai and Guarente, 2014;
Cantó et al., 2015; Garten et al., 2015). In human body, NAD+ is
synthesized through two pathways: de novo and salvage pathways
(Figure 1) (McReynolds et al., 2020).

2.1 De novo pathway

In mammalian cells, tryptophan 2,3-dioxygenase or
indoleamine 2,3-dioxygenas catalyze kynurenine pathway to
obtain NAD+ from dietary tryptophan (Figure 1). As an
intermediate, α-amino-β-carboxy-muconate-semialdehyde can be
cyclized to quinolinic acid, while α-amino-β-carboxy-muconate-
semialdehyde decarboxylase converts α-amino-β-carboxy-
muconate-semialdehyde to picolinic acid, which limits the flux
from tryptophan to NAD+ (Katsyuba et al., 2018). An important
step in the pathway to NAD+ biosynthesis is the conversion of
quinolinic acid to nicotinate mononucleotide by quinolinate
phosphoribosyltransferase (Youn et al., 2016; Badawy, 2017).
Dietary nicotinic acid can be converted to nicotinate
mononucleotide by nicotinic acid phosphoribosyltransferase
through the Preiss-Handler pathway (Marletta et al., 2015.
Nicotinamide mononucleotide adenylyl transferases catalyze the
production of nicotinamide adenine dinucleotides (NAADs).
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NAADs are later converted to NAD+ by NAD synthase
using glutamine as a nitrogen donor (Brazill et al., 2017; Xie
et al., 2020).

2.2 Salvage pathway

To maintain cellular NAD+ levels, most NAD+ is recycled from
its precursors, such as nicotinamide mononucleotide, nicotinamide,
nicotinic acid, and nicotinamide riboside, in the salvage pathway
(Figure 1) (Braidy et al., 2019). Among these, nicotinamide
mononucleotides can be recycled from NAD+ consumption
reactions via both NAD+ -dependent deacylation and ADP
ribosylation into nicotinamide mononucleotides by nicotinamide
phosphoribosyltransferase. This catalyzes the rate-limiting reaction
in the salvage pathway (Wang et al., 2006). Equilibrative nucleoside
transporters import the precursor nicotinamide riboside to
transform it into a nicotinamide mononucleotide using
nicotinamide riboside kinases (NRK1/2) (Rajman et al., 2018).
Finally, nicotinamide mononucleotide adenylyl transferases

adenylate nicotinamide mononucleotide to yield NAD+ (Xie
et al., 2020; Zhou et al., 2002; Werner et al., 2002).

3 Nicotinic acid production

3.1 Chemical synthesis

Conventionally, nicotinic acid was produced using chemical
methods, such as ammoxidation or liquid-phase oxidation
(Figure 2), which require harsh production conditions (>150°C);
a high cost to fulfil the requirement of metal catalysts; expensive
equipment; and unwanted waste generation including by-products
and inorganic salts (hydrogen cyanide, sodium chloride, etc.).
However, this method provides modest yields (generally 80%–
90%) (Chuck, 2005; Raja et al., 2008; Jin et al., 2013; Lisicki
et al., 2022). The chemical synthesis of nicotinic acid offers a
high yield using a well-established process with commercially
available materials. However, it generates toxic NOx by-products;
requires high pressure and temperature; uses excess corrosive nitric

FIGURE 1
Schematic representation of NAD+ synthesis pathways, de novo from tryptophan via the kynurenine pathway or from nicotinic acid via the
Preiss–Handler pathway and the salvage pathway from nicotinamide (NAM) (Xie et al., 2020). Abbreviations: IDO, indoleamine 2,3-dioxygenase; QA,
quinolinic acid; NAMN, nicotinate mononucleotide; QPRT, quinolinate phosphoribosyl-transferase; NAPRT, nicotinic acid phosphoribosyltransferase;
NMNATs, nicotinamide mononucleotide adenylyl transferases; NADSYN, NAD synthase; NR, nicotinamide riboside; Trp, tryptophan; NADKs, NAD+

kinases; PARPs, poly (ADP-ribose) polymerases; NNT, nicotinamide nucleotide transhydrogenase; TDO, tryptophan 2,3-dioxygenase; SARM1, sterile
alpha and TIR motif-containing 1; NNMT, Nicotinamide N-methyltransferase; NMN, nicotinamide mononucleotide; PUFAs, polyunsaturated fatty acids;
NAM, nicotinamide; ACMSD, alpha-amino-beta-carboxy-muconate-semialdehyde decarboxylase).
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acid; has a low atom economy (25%); and is environmentally
unfriendly, producing more than 1 t of CO2 per t of niacin
(Lisicki et al., 2022).

3.2 Enzymatic synthesis

In contrast to chemical methods, the biocatalyst-mediated eco-
friendly synthesis of nicotinic acid is a significant method in
synthetic organic chemistry that has gained considerable
attention in recent years because of its high conversion rates
under mild reaction conditions (Table 1) (Gong et al., 2016;
Gong et al., 2018; Gong et al., 2012). The conventional process of
nicotinic acid production involves high energy consumption
because of its high reaction temperature (Fan et al., 2017).
Therefore, industries are adopting enzymatic processes to
produce nicotinic acid. In enzymatic synthesis, microbial
hydrolytic enzymes are the main producers of nicotinic acid
through the conversion of commercially available substrates, such
as 2-cyanopyridine, 3-cyanopyridine, 4-cyanopyridine,

nicotinamide, and isonicotinamide, in a single-step bioconversion
(Chuck, 2005). Mathew et al. (1988). Reported the first nitrilase-
catalyzed process for the production of nicotinic acid from 3-
cyanopyridine by Rhodococcus rhodochrous J1, with a 100% yield
(Mathew et al., 1988; Zheng et al., 2018). Subsequently, various
nitrilases (Table 2) were investigated for their ability to produce
nicotinic acid using different substrates (Figure 3) (Salman et al.,
2022). To date, various nitrilases, including Bacillus pallidus Dac521
(Almatawah and Cowan, 1999), Rhodococcus sp. NDB 1165 (Prasad
et al., 2007), Nocardia globerula NHB-2 (Sharma et al., 2006;
Malandra et al., 2009), Fusarium proliferatum ZJB-09150 (Jin
et al., 2013), have been reported to produce nicotinic acid via
whole-cell catalysis of 3-cyanopyridine hydrolysis. On the bench
scale, wild-type strains perform well; however, problems arise at the
industrial level. Most wild-type strains do not have the potential to
produce large-scale products for industrial production. Therefore,
enzyme and genetic engineering of such strains can help improve
yield. Previously reported nitrilases have several limitations,
including a low substrate tolerance and long bioconversion time
for the production of nicotinic acid.

FIGURE 2
Chemical synthesis of nicotinic acid.
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4 Strategies to further improve
nicotinic acid production

4.1 Nitrilase engineering for nicotinic acid
production

Many attempts have been made to produce nicotinic acid using
enzyme/genetic engineering. In addition to extensive research on
recombinant strains and genes associated with nitrilase, synthetic
biology has been used to construct microorganisms that
overproduce nitrilase for the production of nicotinic acid
(Table 2). The enzyme/genetic engineering of some microbes
enhances the bioconversion rate of 3-cyanopyridine/nicotinamide
to nicotinic acid. Wild-type strains have several limitations;
however, nitrilase-mediated processes also have some restrictions,
such as low catalytic efficiencies. To overcome this limitation, Li
et al. (2016) improved the catalytic efficiency of NitA from
Acidovorax facilis 72 W for nicotinic acid production through
site-directed mutagenesis. The mutated NitA-C2 (F168V-S192F)
showed a five-fold increase in specific activity towards 3-
cyanopyridine. Both nitrilases had an optimal pH in the range of
6.0–8.0 and an optimal temperature of 60°C, but NitA-C2 had
decreased stability. Whole-cell catalysis achieved 100%
conversion of 0.1 mol L−1 3-cyanopyridine. E. coli expressing
NitA-C2 demonstrated a three-fold higher conversion rate
(1.0 mmol min−1 g−1 wet cell weight) compared to the original
strain. These results suggest that mutated NitA-C2 is a promising
candidate for industrial-scale biological nicotinic acid production
(Li et al., 2016). Gong et al. (2017) performed site-saturation
mutagenesis of different amino acids (Asn40, Phe50, and
Gln207) in a recombinant nitrilase from Pseudomonas putida
CGMCC3830. The mutants N40G, F50W, and Q207E showed a
two-fold higher yield of nicotinic acid than the wild-type strain.
Double and triple mutations were introduced, and four mutants
(N40G/F50W, N40G/Q207E, F50W/Q207E, and N40G/F50W/
Q207E) were generated to increase the catalytic efficiency. The
triple-mutant N40G/F50W/Q207E showed 87% higher catalytic

efficiency than the wilt-type strain towards 3-cyanopyridine for
nicotinic acid production (Gong et al., 2017; Jin et al., 2024)
conducted a study to improve the nitrilase AfNIT for the
enzymatic hydrolysis of terephthalonitrile to 4-cyanobenzoic acid.
Virtual screening identified key mutation sites, resulting in a triple-
mutant with 3.8 times higher activity than the wild-type strain. The
mutant achieved 98.7% conversion of 150 g/L terephthalonitrile,
demonstrating potential for industrial biomanufacturing of 4-
cyanobenzoic acid (Jin et al., 2024). The specific activity of the
NitA gene from Acidovorax facilis 72 W increased by five-fold to
35 U/mg of protein after introducing the mutation (Li et al., 2016).
Yield improvements through engineering have proven that
mutagenesis has huge potential for future studies in which the
yield of nicotinic acid can be improved by several-fold at a
higher scale. Monika et al. (2023) conducted a study to improve
the nitrilase efficiency of Gordonia terrae by converting 3-
cyanopyridine to nicotinic acid through chemical mutagenesis.
The N-methyl-N-nitro-N-nitrosoguanidine generated mutant
MN12 showed a significant increase in nitrilase activity.
Optimization of the culture conditions further enhanced enzyme
production. Whole-cell catalysis achieved 100% conversion of
100 mM 3-cyanopyridine in 15 min under optimized conditions.
The mutant MN12 exhibited a higher product formation rate and
volumetric productivity than wild-type G. terrae. The recovered
product was confirmed to have high purity (>99.9%) using various
analytical methods. These results suggest that the mutant MN12 of
G. terrae is a promising biocatalyst for large-scale nicotinic acid
synthesis (Monika et al., 2023).

4.2 Heterologous gene expression for
nicotinic acid production

Fan et al. (2017) cloned and overexpressed a novel nitrilase gene
(REH16) from Ralstonia eutropha H16 in E. coli BL21 (DE3). The
recombinant strain completely hydrolyzed 100 mM 3-
cyanopyridine to nicotinic acid. In the fed-batch reaction mode,

FIGURE 3
Enzymatic synthesis. Conversion of nitrile substrates (2-cyanopyridine, 3-cyanopyridine, 4-cyanopyridine) to nicotinic acid by nitrilase or
conversion of amide substrates (nicotinamide, isonicotinamide) to nicotinic acid by amidase. Nitrilehydratase (Nhase) converts nitriles to nicotinamide.
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TABLE 1 Methods reported for nicotinic acid production—advantages and disadvantages.

Method Advantages Disadvantages References

Chemical High efficiency and yield: The industrial oxidation of 5-ethyl-2-
methylpyridine achieves 96% conversion and 91% yield
Commercially available raw materials: Available, e.g., 5-ethyl-2-
methylpyridine
Scalability: Chemical synthesis methods are suitable for large-scale
industrial production to meet market demands
Versatility: Different chemical approaches exist, such as oxidation
of 5-ethyl-2-methylpyridine and ammoxidation of 3-picoline,
allowing for flexibility in production methods
Direct routes: Some methods, such as the direct oxidation of 3-
picoline, offer more straightforward pathways to nicotinic acid

Environmental concerns: Most established chemical synthetic
methods use non-renewable materials derived from petroleum as
raw materials
Waste management: Chemical synthesis often results in large
quantities of toxic wastes, including spent catalysts, requiring
thorough management and significant expenses for disposal
Energy requirements: Requires high temperature and pressure,
leading to high energy consumption
Corrosive conditions: Some methods, such as the oxidation of 5-
ethyl-2-methylpyridine, involve highly corrosive reaction
environment
By-products: Processes such as the oxidation of 5-ethyl-2-
methylpyridine produce harmful by-products, such as NOx
Dependence on petroleum: The use of petroleum-derived raw
materials makes these processes susceptible to fluctuations in
petroleum prices and availability

Chuck 2005
Raja et al. (2008)
Jin et al. (2013)
Lisicki et al. (2022)

Enzymatic Milder reaction conditions: Requires mild conditions
Higher selectivity: Enzymes are highly specific, reducing unwanted
side reactions and improving product purity
Environmentally friendly: Biological processes generally produce
less toxic waste and use renewable resources
Potential for continuous production: Immobilized enzyme systems
allow for semi-continuous or continuous production
Versatility: Different microbial strains can be engineered to
optimize production pathways

Low yields
Feedback inhibition: NAD can inhibit enzymes such as aspartate
oxidase and NAD synthetase
Enzyme purification: Sometimes the purified form of the enzyme is
required for the process
Limited substrate tolerance
Slower conversion rates

Prasad et al. (2007)
Gong et al. (2017)
Gong et al. (2018)
Dai et al. (2022)
Monika et al., 2023
Liu et al. (2023)

Others Easily available in plants and animals Low extraction yield and availability of resources. Requires
advanced purification setup

Chen et al. (2008)
Çatak (2019)
Zhang et al. (2021)

TABLE 2 Wild-type strains reported for the production of nicotinic acid.

Microbes Substrate/
concentration

Nicotinic acid
production conditions

Mode of
reaction

Nicotinic acid
yield

Reference

Rhodococcus
rhodochrous J1

200 mM 3-cyanopyridine Temp: 25°C, pH: 8.0
Time: 26 h

Fed Batch 100% Mathew et al. (1988)

Bacillus pallidus Dac521 100 mM 3-cyanopyridine Temp: 50°C–60°C, pH: 8.0
Time: 100 h

Fluidized bed bioreactor 100% Almatawah and
Cowan (1999)

Nocardia globerula NHB-2 40 mM 3-cyanopyridine Temp: 25°C, pH: 7.5
Time: 9 h

Fed Batch 98.6% Sharma et al. (2006)

Rhodococcus sp. NDB 1165 1.6 M 3-cyanopyridine Temp: 40°C, pH: 8.0
Time: 26 h

Fed Batch 100% Prasad et al. (2007)

Aspergillus niger K10
F. solani

50 mM 4- cyanopyridine Temp: 35°C–40°C, pH: 8.0
Time: 2–38 h

Continuous stirred
membrane reactor

>90%
98%

Malandra et al. (2009)

Nocardia globerula NHB-2 300 mM 3-cyanopyridine Temp: 25°C, pH: 8.0
Time: 200 min

Fed Batch 57% Sharma et al. (2011)

Rhodobacter sphaeroides
LHS-305

200 mmol L−1
3-cyanopyridine

Temp: 30°C, pH: 9.0
Time: 13 h

Batch 93% Yang et al. (2011)

Nocardia globerula NHB-2 700 mM 4-cyanopyridine Temp: 35°C, pH: 8.0
Time: 140 min

Fed batch 100% Sharma et al. (2012)

Fusarium proliferatum
ZJB-09150

60 mM 3-cyanopyridine Temp: 50°C–55°C, pH: 9.0
Time: 15 min

Shake-flask 98.9% Jin et al. (2013)

Rhodococcus
pyridinivorans SN2

10.5 g of 3-cyanopyridine Temp: 50°C–55°C, pH: 9.0
Time: 6.5 h

Biphasic fed batch 100% Kameswaran et al.
(2014)

Geobacillus subterraneus
RL-2a

0.72 M nicotinamide Temp: 70°C, pH: 6.5
Time: 400 min

Fed batch 100% Mehta et al. (2014)

Stenotrophomonas
maltophilia AC21

>70 mM
3-cyanopyridine

Temp: 45°C, pH: 8.0
Time: 6 h

Fed batch 90% Badoei-Dalfard et al.
(2016)
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1,050 mM 3-cyanopyridine was completely converted into nicotinic
acid in 20.8 h (Fan et al., 2017). Gong et al. (2018) cloned and
expressed the nitrilase gene from P. putida in E. coli BL21 (DE3)
(pET-3b-NIT) and generated high-density cultures for nicotinic acid
production. Furthermore, the recombinant strain was used to
catalyze 200 mM 3-cyanopyridine in fed-batch mode. After
290 min of incubation, 541 g·L-1 of nicotinic acid accumulated
through 22 batches. This is the highest nicotinic acid produced by
recombinant nitrilase in fed-batch mode (Gong et al., 2018). Zhu
et al. (2013) cloned and expressed a nitrilase gene from
Pseudomonas putida CGMCC3830 in E. coli through consensus-
degenerate hybrid oligonucleotide primer polymerase chain reaction
(PCR), degenerate PCR, and thermal asymmetric interlaced PCR.
After sequence analysis, it was observed that the open reading frame
comprised 1,113 bp encoding a protein of 370 amino acids. These

sequences showed a similarity of 61.6% with nitrilase from
Rhodococcus rhodochrous J1. The Km and Vmax values for 3-
cyanopyridine were determined to be 27.9 mM and 84.0 U/mg,
respectively (Zhu et al., 2013).

5 Screening approaches for new
nitrilases for nicotinic acid production

The screening of new nitrilases for nicotinic acid production can
be summarized in two techniques: conventional culture-dependent
approaches and advanced techniques, such as metagenomics and
proteomics. Overall, metagenomic and proteomic approaches offer
more comprehensive and functionally relevant insights into
microbial communities than traditional culture methods,

FIGURE 4
Schematic illustration of the conventional and proposed omics-based approaches for the discovery of enzymes utilized in the synthesis of nicotinic
acid (adopted and modified from Barglow et al., 2008; Zhu et al., 2022).
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although they have their own technical and analytical challenges.
The efficiency of the proteomic approach has gained considerable
attention for identifying various industrially important enzymes,
stimulating its use in the discovery of novel nitrilase-metabolizing
enzymes (Brenner, 2002; Pace and Brenner, 2001). Functional
proteomics has been used to gain structural insights into the
molecular recognition of nitrilase-1 (Nit1) and nitrilase-2 (Nit2)
(Barglow et al., 2008).

5.1 Conventional culture-
dependent approach

The conventional culture-dependent approach includes the
isolation of natural nitrilase/amidase-producing microorganisms
that hydrolyse 3-cyanopyridine/nicotinamide into nicotinic acid
and optimization of the conditions for nicotinic acid synthesis
(Table 1). In this approach, microorganisms exhibiting the
desired enzyme are enriched by the addition of a substrate and
under suitable cultivation conditions. The selected strains are
further taxonomically classified, and molecular characterization
of the enzyme is performed. The nitrilase-catalyzed conversion of
3-cyanopyridine into nicotinic acid has low substrate tolerance,
which creates a problem for higher production at the pilot scale,
resulting in enzyme imbibition, thereby decreasing the rate of
bioconversion. Therefore, the application of fed-batch reactions
under such conditions may be beneficial. The strain Nocardia
globerula NHB-2 was utilized for the production of nicotinic acid
from 3-cyanopyridine (100 mM) using a fed-batch reaction at a
40 mL scale with 20 feedings. After completion of the reaction,
1,136 mM nicotinic acid was obtained. Upon process scale-up to a
1 L scale (100 mM 3-cyanopyridine) with 10 feedings (0.1 mol in
20 min) in 200 min, the rate of nicotinic acid formation reached
24.6 g h-1 g-1 dry cell weight (DCW) (Sharma et al., 2011).
Similarly, S. maltophilia AC21 strain was utilized for nicotinic
acid production in a fed-batch mode. After six feeding of 3-
cyanopyridine (>70 mM), 96% (565 mM) nicotinic acid was
produced without any enzyme inhibition. Furthermore, a fed
batch was scaled-up to 1 L scale (420 mM of 3-cyanopyridine fed
in six feedings of 70 mM at 40 min), and after 10 h of incubation,
90% of 3-cyanopyridine was converted to nicotinic acid (Badoei-
Dalfard et al., 2016). The fed-batch reaction (500 mL, 100 mM 3-
cyanopyridine feed) of strain Ralstonia eutropha H16 was
performed in two stages. After 13 feedings of 1,050 mM 3-
cyanopyridine in 20.8 h of incubation, 129.2 g/L of nicotinic
acid was obtained (Fan et al., 2017). Recombinant nitrilase from
E. coli BL21 (DE3) (pET-3b-NIT) was used in a fed-batch reaction
(200 mM 3-cyanopyridine). After 17 feedings in 410 min,
conversion reached up to 22.90 g·h-1 (Gong et al., 2018). The
conventional approach relies on screening and culturing
microbes in a controlled laboratory environment, using
enrichment cultivation to grow the microbes under specific
conditions to isolate functional organisms. This method allows
researchers to target and study microbes with specific roles, such
as pollutant degradation. However, it has a significant limitation,
as many microbes cannot be cultured under laboratory
conditions, leading to an incomplete understanding of
microbial diversity (Kapinusova et al., 2023; Garg et al., 2024).

5.2 Metagenomics

Advanced techniques, such as metagenomics and proteomics,
may be reliable for increasing the possible hit rate in the mining of
nitrile-metabolizing enzymes. The flowchart presented in Figure 4
describes the various approaches used to mine nitrilase-
metabolizing enzymes from the environment. The metagenomic
approach bypasses the need for culture by directly extracting and
sequencing DNA from environmental samples. This approach
identifies genetic regions that are conserved across species,
enabling the detection of a wide range of organisms, including
non-culturable organisms. During the expression of uncultured
microbes, protein expression faced difficulties; therefore,
addressing the complexity of protein expression patterns requires
a multi-faceted approach, integrating enzyme and genetic
engineering with advanced screening techniques. Enzyme
engineering, exemplified by site-directed mutagenesis, can
enhance catalytic efficiency, as demonstrated by the five-fold
increase in activity of Acidovorax facilis NitA mutants (Li et al.,
2016). Heterologous gene expression, such as cloning nitrilases from
Ralstonia eutropha in E. coli, offers controlled production
environments (Fan et al., 2017). High-throughput sequencing
technologies allow for the rapid and comprehensive analysis of
microbial genomes, providing a more accurate representation of
microbial diversity. The major advantage of metagenomics is its
ability to capture the entire microbial community, although the
sheer volume of data can present challenges for analysis and
interpretation (Nwachukwu and Babalola, 2022). Furthermore,
optimizing culture conditions and employing fed-batch reactions
refine protein production, enhancing yields and bioconversion rates.
These strategies, when combined, offer a robust framework for
improving nicotinic acid production by enhancing yields,
efficiency, and sustainability. Riffiani et al. (2017) screened
nitrilase genes in contaminated soil from the Lombok gold mine
using a metagenomic approach. DNA was extracted from the soil
samples and amplified using the H1F-H1R primers. BLASTN
analysis revealed high homology between the amplified fragment
and the nitrilase gene of Rhodococcus rhodochrous strain tg1-A6,
confirming the presence of nitrilase genes in the soil sample (Riffiani
et al., 2017). Soares Bragança et al. (2017) used a metagenomic
approach to discover novel nitrile-hydrolyzing enzymes from soil
samples in Ireland. Nitrile compounds are versatile intermediates
that are important in pharmaceutical and chemical industries. A
fosmid DNA library was created from metagenomic DNA and
screened in E. coli for enzyme activity using β-hydroxynitriles as
substrates. This resulted in the identification of 33 active clones.
Gene screening for nitrilase, nitrile hydratase, and amidase was
performed using PCR, resulting in partial gene sequences. Ongoing
studies aim to determine the complete sequences for cloning and
expression, with the goal of realizing the commercial potential of
these enzymes for various industrial applications (Soares Bragança
et al., 2017). Sunder et al. (2020) identified nine bacterial nitrilases
using genome mining and evaluated their activities on 23 industrial
nitrile substrates. Nitrilases from Zobellia galactanivorans,
Achromobacter insolitus, and Cupriavidus necator have
demonstrated high activity and have been used as whole-cell
biocatalysts in lab-scale processes. These enzymes efficiently
convert various nitriles, including 4-cyanopyridine,
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iminodiacetonitrile, and mandelonitrile, with high yields and with
rapid reaction times. Z. galactanivorans nitrilase produced 1.79 M
isonicotinic acid in 3 h, A. insolitus nitrilase achieved 86%
conversion of iminodiacetonitrile in 1 h, and C. necator nitrilase
performed enantioselective hydrolysis of mandelonitrile in 4 h.
These results suggest significant potential for these nitrilases in
large-scale industrial biocatalytic applications for the green
synthesis of pharmaceutical precursors and fine chemicals
(Sunder et al., 2020). Achudhan et al. (2023) conducted
ametagenomic study aimed at discovering novel nitrilases from
coal metagenomes using in silico mining to address the
environmental and health risks posed by toxic nitriles. The coal
metagenomic DNA was sequenced, assembled, and annotated. The
nitrilase sequences were identified and analyzed for phylogeny,
conserved regions, and physicochemical properties. The 2D and
3D structures were predicted using various tools, including
AlphaFold2. A novel nitrilase from unclassified
Alphaproteobacteria was identified, and its 3D structure was
predicted with high confidence (95.8%) and was verified through
molecular dynamics simulation. Molecular docking analysis
revealed binding affinities similar to other prokaryotic nitrilases,
with minimal deviation (±0.5), suggesting potential applications in
nitrile degradation (Achudhan et al., 2023). Metagenome mining
enables targeted exploration of unique genetic sequences to identify
novel biocatalysts without multiple rounds of evolution. This
approach complements the traditional methods for discovering
sustainable catalysts. This provides researchers with optimized
starting points for the evolution of promiscuous biocatalysts and
increases our understanding of enzyme classes, including conserved
residues. This knowledge facilitates the faster evolution of
specialized enzymes. Metagenomics is expected to remain a
powerful tool in biocatalytic research, offering efficient pathways
for developing enzymes for various applications in sustainable
chemistry (Hogg et al., 2024).

5.3 Proteomics

Proteomics is an advanced approach that can play an important role
in the discovery of novel enzymes. It directly detects and quantifies protein
expression from an extensive repository of microbial sources for
biotechnological applications (Bers et al., 2011; Sturmberger et al.,
2016). The proteomic approach (Figure 4) focuses on studying
proteins produced by microbial communities to understand their
functional roles. It uses in silico tools for protein identification, and
mass spectrometry for direct protein analysis, thereby enabling
comparative studies of protein expression under different
environmental conditions. Proteomics links genetic data with actual
biological activities and offers insights into the structure, function, and
evolutionary relationships ofmicrobial proteins (Birhanu, 2023). Typically,
a highly conserved cysteine nucleophile, a glutamate base, is the main
target when screening for potential nitrilase-metabolizing enzymes,
because all nitrilases exhibit a common catalytic mechanism that
contains a highly conserved cysteine nucleophile, glutamate base, and
conserved active-site lysine that completes the catalytic triad (Zhu et al.,
2022). Although this approach provides detailed functional information, it
is limited by complexity of the protein expression patterns and need for
advanced analytical tools. Choi et al. (2016) conducted proteomic and

functional analyses, which revealed that Arabidopsis nitrilases are crucial
for plant defense against Pseudomonas syringae pv. Tomato (Pst). AtNIT2,
AtNIT3, and AtNIT4 are induced by Pst infection, with AtNIT2 and
AtNIT4 showing significant induction by avirulent Pst DC3000 (avrRpt2).
Transgenic andmutant nitrilase lines exhibit increased susceptibility to Pst
andHyaloperonospora arabidopsidis. NIT2 overexpression leads to higher
Pst growth in the leaves. The nit2 mutation enhances Pst growth in
salicylic acid (SA)-deficient plants. Arabidopsis nitrilase 2 is involved in
indole-3-acetic acid signaling for defense and R-gene-mediated resistance.
It regulates SA-mediated resistance to avirulent Pst, but is not required for
defense against virulent Pst (Choi et al., 2016). As summarized in Table 3,
many genes encoding nitrilases transform nitrile/amide substrates into
nicotinic acid. The exploitation of E. coli has rapidly increased in omics
technologies for nitrilase-producing strains because it is a selective and
efficient approach to identifying nitrilase-metabolizing genes and their
expression in E. coli as a host. In recent years, omics has gained significant
attention for nitrilase production. Several recombinant nitrilases have been
successfully cloned and characterized to produce nicotinic acid with
improved specific activity by several-fold (Gong et al., 2017).
Pseudomonas putida CGMCC3830 showed 84.0 U/mg specific activity
towards 27.9 mM 3-cyanopyridine (Zhu et al., 2013).

6 Immobilization of nitrilase for
nicotinic acid production

The immobilization (Figure 5) of nitrilase has also been
performed by various researchers to increase the stability and
reusability of enzymes on an industrial scale (Teepakorn et al.,
2021; Liu et al., 2012; Dong et al., 2017). For commercial use of
nitrilase, researchers have utilized various matrices for nitrilase
immobilization. The most common matrices used for nitrilase
immobilization are alginate and agar. Natural polymers are often
chosen because of their biocompatibility, ease of use, and ability to
form stable gels under mild conditions. Recombinant Escherichia
coli was immobilized using an alginate (2.5%) matrix, and
immobilized cells were reused for up to 25 cycles with 100%
activity. Finally, immobilized cells were used for a 250 mL batch
reaction (1 M 3-cyanopyridine), and after 5 h of incubation, a
nicotinic acid yield of 93% was obtained (Pai et al., 2014). An
efficient biocatalytic process for nicotinic acid production was
developed using recombinant E. coli JM109 cells containing
nitrilase gene from Alcaligenes faecalis MTCC 126. The freely
suspended cells demonstrated high substrate and product
tolerance without inhibition. Whole-cell immobilization further
enhances substrate tolerance, stability, and reusability during
repeated production cycles. Under optimized conditions (37°C,
100 mM Tris buffer, pH 7.5), immobilized biocatalyst achieved
100% conversion of 1 M 3-cyanopyridine to nicotinic acid within
5 h, using 500 mg/mL fresh cell mass. The high tolerance and
stability of immobilized whole-cell biocatalyst makes it a promising
candidate for industrial applications in nicotinic acid production
(Pai et al., 2014). A recombinant E. coli strain expressing nitrilase
from Acidovorax facilis 72 W was constructed using a dual-site
expression plasmid, which showed higher levels of soluble
expression than the pET21a plasmid. The whole cells were
immobilized using sodium alginate/glutaraldehyde/polyethylene
imine, resulting in 95% activity recovery, improved stability, and
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82% activity retention after 2 months of storage. A semi-continuous
packed-bed bioreactor using these immobilized cells achieved
efficient nicotinic acid production, with a space-time yield of
1,576 g/(L·d) at a substrate concentration of 0.8 M. The
bioreactor maintained 100% conversion over 41 batches,
producing 95 g of nicotinic acid at 90% yield. This technology
has significant potential for industrial applications (Liu et al., 2023).
Hariharan et al. (2021) investigated a nitrile-hydrolyzing enzyme
from Nocardia globerula, NHB-2, that converts toxic nitriles into
valuable amides and acids. Propionitrile at 0.3% v/v was found to be
the optimal inducer. A Box–Behnken design was used to optimize
the biotransformation of 3-cyanopyridine to nicotinic acid, with
optimal conditions of a substrate concentration of 210 mM, a resting
cell concentration of 30 U/mg DCW, and a conversion time of
70 min. Agar-immobilized cells showed improved thermal stability
compared to free cells. A packed-bed reactor with immobilized cells
was used for continuous nicotinic acid production, and substrate
was recycled. The immobilized cells maintained 40% of their initial
activity after three reuse cycles (Hariharan et al., 2021). Li et al.
(2015) compared immobilized and free cells of Gibberella
intermedia CA3-1 for the conversion of 3-cyanopyridine to
nicotinic acid. Among the four tested samples, sodium alginate
was identified as an optimal entrapment matrix. Optimal conditions
for immobilization were determined to be 2% alginate, 0.6% CaCl2,

0.4 g cell/g alginate, and a 1.8 mm bead size. The immobilized cells
demonstrated excellent substrate tolerance up to 700 mM 3-
cyanopyridine and significantly improved thermal stability
compared with free cells. They maintained efficiency for 28 batch
cycles, producing 205.7 g/(g DCW) of nicotinic acid while retaining
80.55% enzyme activity. These results highlight the potential of
immobilized G. intermedia CA3-1 cells for industrial-scale nicotinic
acid production (Li et al., 2015).

Various matrices have been used for nitrilase immobilization
using methods such as cross-linking and covalent bonding.
Teepakorn et al. (2021) used a packed-bed reactor (40 mg of
porous polymethyl-methacrylate beads) in continuous mode for
production of nicotinic acid. The biotransformation reaction was
performed using immobilized NitComm, NitPhym, and 3-
cyanopyridine (10 mM). After 30 days of incubation, activity of
immobilized NitComm decreased, and 35.1% bioconversion was
achieved. In contrast, immobilized NitPhym showed complete
bioconversion after 30 days of operation (Teepakorn et al., 2021).
Khatik et al. (2022) conducted a study to optimize nitrilase for the
hydroxylation of 2-chloroisonicotinonitrile to 2-chloroisonicotinic
acid. ES-NIT-102 was identified as the best nitrilase and it was
immobilized as a cross-linked enzyme aggregate (CLEA). The
optimized nitrilase-CLEA showed improved stability and retained
higher activity at elevated temperatures than the free nitrilases.

TABLE 3 Recombinant strains reported for the production of nicotinic acid.

Native
microbes

Recombinant
host

Enzyme Substrate and
concentration

Nicotinic acid
production
conditions

Mode of
reaction

Nicotinic
Acid yield

Reference

Pseudomonas
putida X3 mutant

- Nitrilase 4.6 mol/L
4-cyanopyridine

Temp: 40°C, pH: NA
Time: 630 min

Batch 100% of
isonicotinic
acid

Qian et al.
(2021)

Pantoea
sp. (Pa-Ami)

E. coli BL21(DE3) Amidase 370 mM chlorinated
nicotinamides

Temp: 40°C, pH: 8.0
Time: 450 min

Fed-batch 94.2% Pai et al. (2014)

Pseudomonas
putida

E. coli BL21 (DE3) (pET-
3b-NIT)

Nitrilase 200 mM 3-
cyanopyridine

Temp: 30°C, pH: 7.2
Time: 290 min

Fed batch 99.87% Gong et al.
(2018)

Ralstonia
eutropha H16

E. coli BL21(DE3) Nitrilase 1,050 mM 3-
cyanopyridine

Temp: 37°C, pH: 6.6
Time: 20.8h

Fed batch 99.95% Fan et al. (2017)

Acidovorax facilis
72W ATCC 55746

E. coli BL21 (DE3-pET-
nitA-C2)

Nitrilase 0.1 mol L-1 3-
cyanopyridine

Temp: 37°C, pH: 7.0
Time: 10 min

Batch 100% Li et al. (2016)

A. faecalis MTCC
126

E. coli JM109 Nitrilase 1 M 3-cyanopyridine Temp: 37°C, pH: 7.5
Time: 5 h

Batch 93% Pai et al. (2014)

Pseudomonas
putida
CGMCC3830

E. coli strains JM109 &
Rosetta-gami (DE3)

Nitrilase 10–150 mM
cyanopyridine

Temp: 40°C, pH: 7.5
Time: 15 min

Shake-flask NA Zhu et al. (2013)

Immobilized
NitCom

- Nitrilase 10 mM 3-cyanopyridine Temp: 50°C, pH: 7.4
Time: 30 days

Packed bed
reactor

87.5% Teepakorn et al.
(2021)

Rhodococcus zopfii
(RzNIT/W167G)

Escherichia coli Nitrilase 300 mM 2-
chloronicotinonitrile

- Batch 90% Dai et al. (2022)

Gordonia terrae Gordonia terrae mutant
MN12

Nitrilase 100 mM 3-
cyanopyridine

Temp: 40°C, pH: 8.0
Time: 15 min

Batch 100% Monika et al.
(2023)

Acidovorax
facilis 72W

Escherichia coli Nitrilase 0.8 M 3-cyanopyridine Temp: 30°C, pH: 7.0
Time: 90 min

Semi-
Continuous
Packed-Bed
Bioreactor

90% Liu et al. (2023)
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Although substrate affinity slightly decreased, the immobilized
enzyme achieved 98% conversion and 94.72 g/L product (>99%
purity determined using high-performance liquid chromatography)
formation in 24 h. Nitrilase-CLEAs remain active for three cycles,
maintaining high conversion rates and product yields (Khatik et al.,
2022). An automated instrument for the preparation of
microspheres was developed to immobilize cells as efficient
biocatalysts. This process optimizes the concentration of the
polymer solution, crosslinking agents, and other conditions to
produce small, uniform, highly porous microspheres. The
conversion conditions for the transformation of 4-cyanopyridine
to isonicotinic acid were optimized to reduce mass-transfer
limitations and improve stability. The resulting immobilized
cellular microspheres demonstrated impressive durability and
efficiency, converting 4.6 mol/L of 4-cyanopyridine and
producing 566 g/L of isonicotinic acid over 23 continuous batch
cycles, demonstrating their potential as long-lasting and highly
effective biocatalysts (Qian et al., 2021). Long et al. (2019)
conducted a study to resolve the limitations of free nitrilase
enzymes in nitrile biotransformation by employing a
combination of immobilization of resting cells. Chitosan and
polyvinyl alcohol were used for encapsulation under optimized
conditions of 80 g/L polyvinyl alcohol, 40 g/L chitosan, and a
saturated boric acid solution containing 60 g/L sodium
tripolyphosphate. The immobilized cells showed significantly
improved thermal and storage stabilities compared with free cells.
In a feeding-batch reaction, immobilized cells produced 208 g/L
nicotinic acid from 3-cyanopyridine over 525 min. These results
provide a foundation for the practical application of nicotinic acid
bioproduction, potentially reducing production costs by improving
enzyme stability and reusability (Long et al., 2019). The cell-free
extract of Aspergillus niger K10 was immobilized on a HiTrap Butyl
Sepharose column. The immobilized enzyme showed stable activity
at pH 8.0°C and 35°C. It efficiently converted 3-cyanopyridine and 4-
cyanopyridine, while maintaining high activity for extended periods.

The process produced nicotinic acid and isonicotinic acid (molar
ratio ≈ 16:1) as the main products, with smaller amounts of their
respective amides (isonicotinic acid and isonicotinamide, with a
molar ratio ≈ 3:1) (Vejvoda et al., 2006). Malandra et al. (2009)
compared nitrilases from Aspergillus niger K10 and Fusarium solani
O1 for 4-cyanopyridine conversion in continuous-stirred
membrane reactors. F. solani O1 nitrilase showed higher stability
and selectivity at 40°C. Immobilized as CLEAs, it maintained >90%
conversion for 52 h. Using two reactors in series with F. solani
O1 nitrilase and Rhodococcus erythropolis A4 amidase increased
the isonicotinic acid purity from 98% to >99.9% by hydrolyzing
isonicotinamide by-product (Malandra et al., 2009). On citing
literature, it has been observed that, previously, for nitrilase
immobilization, most of the traditional matrixes like alginate
beads, crosslinked enzyme aggregates (CLEAs), and chitosan
matrixes dominate the field. However, alginate beads showed the
most promising results for nitrilase immobilization in terms of
reusability. Still, there is a significant lack of research utilizing
advanced nanomaterials, such as metal nanoparticle-based
supports, magnetic nanoparticles, carbon nanotubes (CNTs) and
their derivatives, or metal-organic frameworks (MOFs). Therefore,
the application of these novel nanomaterials for nitrilase
immobilization appears to be a promising area for future
research and development, potentially offering significant
improvements in enzyme stability, activity, and reusability.

7 Conclusions and future perspectives

The global niacin and nicotinic acid market is expecting steady
growth, with projections indicating an increase from USD
1.75 billion in 2023 to USD 2.36 billion by 2032, growing at a
compound annual growth rate (CAGR) of 3.3%–3.5%. The
pharmaceutical segment is driving significant demand owing to
the cholesterol-lowering properties and cardiovascular benefits of

FIGURE 5
Representation of enzyme immobilization and a packed reactor.
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niacin. Key market drivers include increasing consumer awareness
of health benefits, increasing prevalence of skin-related diseases,
increased use in pharmaceuticals and cosmetics, and expanding
applications in food fortification. The coronavirus disease (COVID-
19) pandemic accelerated market growth by boosting interest in health
supplements. North America holds a significant market share, driven
by its developed healthcare infrastructure and health-conscious
consumers. However, minor side effects may slightly inhibit growth.
Key players such as Lonza, DSM, and BASF are expanding their
production capacities, especially in high-demand regions, such as
China, to meet growing market needs (Business Research Insights,
2023 https://www.businessresearchinsights.com/market-reports/
niacin-and-niacinamide-market-107169 [Accessed 15 January 2025]).
The food and beverage industry has also contributed significantly to
market growth, with an increasing demand for functional foods and
dietary supplements that incorporate niacin and nicotinic acid. To fulfil
this demand, scientists have developed a biocatalyst-mediated process
for the production of nicotinic acid, and this enzyme-mediated
biocatalytic process is a potential alternative method to the current
chemical approach. Looking ahead, the market’s future appears
promising, with several key developments on the horizon.
Biocatalyst-mediated processes for nicotinic acid production have
emerged as potential alternatives to traditional chemical approaches.
Enzyme engineering has been employed to overcome the limitations of
wild-type strains and improve substrate tolerance, stability, and
conversion rates. Advanced screening techniques, such as
metagenomics and proteomics, are being used to discover new,
efficient biocatalysts. In addition, use of immobilized enzymes is
gaining attention for industrial applications, allowing enzyme reuse
and continuous processing. The integration of biocatalysis with flow
chemistry and microreactors offers new possibilities for process
intensification, potentially leading to improved reaction kinetics and
increased nicotinic acid production.
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