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Introduction: Human balance control is regulated by complex temporal
processes that may be disrupted by injury or increased task difficulty.

Methods: We examined long-range temporal characteristics of force platform
recordings during quiet standing in 76 physically active participants with or
without lower-limb injury, and in 13 non-injured participants standing with
eyes closed or on one leg. Detrended fluctuation analysis (DFA) and wavelet
transform spectral analysis (WTS) were used to quantify the temporal dynamics of
postural control.

Results: All recordings showed long-range autocorrelated behavior, with a visible
crossover point separating random fluctuations at small time scales from
structured dynamics at higher time scales (100 ms to 1 s). Changes in scaling
behavior occurred only above the crossover point in response to altered stance
or injury. Specifically, standing on one leg increased DFA and WTS slopes, likely
due to enhanced amplitudes of characteristic peaks at approximately 250ms and
650 ms. Two distinct postural responses to injury emerged: (1) compensation -
characterized by increased amplitudes of all high-scale WTS modes and a
crossover shift to smaller scales; and (2) underachievement - marked by
decreased amplitudes and a shift of the crossover to larger time scales.

Discussion: These findings support the potential of DFA, WTS, and similar time
series techniques as sensitive tools for assessing subtle impairments in postural
control.
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1 Introduction

Participation in sports or recreational activities, besides the apparent health-related
benefits, is also associated with a high risk of injuries, particularly in professional athletes
(Emery and Pasanen, 2019). Most sport-related injuries are muscular or skeletal, affecting
soft tissue, bones, ligaments, and nerves, thus reducing performance by causing muscle
imbalances and asymmetries (Gimigliano et al., 2021). Although the type and intensity of
muscle or motor capacity reduction depend on the type and severity of the injury, almost all
of them affect the ability of athletes to maintain proper postural stability and balance. Since
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maintaining balance consists of movements around the ankle, knee,
and hip joints and is regulated by the harmonized activity of
corresponding muscles, injury, or reduction in the capacity of
any of these muscles, can potentially affect the ability to control
the balance efficiently (Panjan and Sarabon, 2010).

In general, balance can be considered locally as the ability of
muscles to maintain equilibrium around single joints, or generally as
the ability of body parts or of the overall body to achieve and
maintain some steady state (Panjan and Sarabon, 2010; Winter,
1995). It can be described as static when the goal is to maintain the
center of gravity (CoG) within the base of support with minimum
movement, or dynamic when the task is to keep the stable position
while performing given movements or tasks (Winter et al., 1990;
Ricotti, 2011). Therefore, most of the methods used to assess balance
have been focused on the trajectory of CoG, based on the idea that its
variability is closely related to the ability to control the CoG over the
base of support (Błaszczyk, 2016).

Thus, tests aimed to assess balance are usually based on tasks
that challenge the control of CoG over the base of support while
standing still on both legs and/or on one leg. Different
approaches are used to quantify the amount, variation, and
direction of the body sway (movement of CoG) or weight
distribution between the legs (for a more detailed description
of tests and derived variables please see (Panjan and Sarabon,
2010)). The rationale for assessment of balance as a part of
performance examination among populations of athletes is
based on the presumption that good balance represents one of
the main prerequisites of an efficient athletic performance, but
also on the fact that among other factors, good balance depends
on the efficient synergistic action of the involved muscles (Behm
and Anderson, 2006; Hrysomallis, 2011; Zemková, 2014).

In recent years, technological advances in rehabilitation—such
as robotic-assisted systems, virtual reality environments, and
wearable sensor technologies—have shown considerable promise
in promoting motor recovery, particularly within gait training
protocols (Ciobanu et al., 2018). While these approaches
primarily target locomotor function, similar principles are
increasingly being applied to postural balance rehabilitation,
which remains the central focus of the present study.

Movements of the body or its CoG are nowadays most
commonly measured on a force platform which measures the
center of pressure (CoP) of the whole human body (Panjan and
Sarabon, 2010). Records from a force platform are by nature
complex outputs of fluctuating internal (body) drivers acting on
different time scales. As such, they have been proven to be
stochastic and long-range autocorrelated (Collins and De
Luca, 1994), as are many other physiological records (Blesić
et al., 1999; Milošević et al., 2002; Blesic et al., 2011; Stanley
et al., 1999; Hausdorff et al., 2001; Wayne et al., 2013). In this
paper, we examined long-range features of force platform data in
quiet standing with or without injury, and in non-injured
standing with eyes closed and on one leg only. To achieve
this, we used the detrended fluctuation analysis (DFA) and the
wavelet transform spectral analysis (WTS). DFA and WTS were
applied to quantify the temporal dynamics of force platform data
scaling exponents and characteristic times from their spectral
decomposition, and to show how those parameters change with
task or injury. It was already shown before that such time series

parameters may provide a complementary and, in some
instances, more sensitive and discriminating metric (compared
to classical approaches) for characterizing human posture, and
may serve as new indicators of change (Wayne et al., 2014).

The stochasticity of human quiet standing and in associated
tasks or disorders has been assessed before (Collins and De Luca,
1994; Wayne et al., 2013; Wayne et al., 2014; Duarte and Zatsiorsky,
2001; Shimzu et al., 2002; Chagdes et al., 2009; Kirchner et al., 2012;
Maze et al., 2016). Assessments of monofractal (including DFA)
CoP characteristics of human postural sway have found that force
platform recordings of quiet standing exhibit scaling behaviour, with
crossovers in scaling and non-stationary dynamics (manifested, in
the case of DFA scaling, in values of scaling exponents larger than 1)
on time scales larger than 1 s (Collins and De Luca, 1994; Duarte and
Zatsiorsky, 2001). To manage found data non-stationarity some of
these researches additionally analysed time series of force platform
increments (Kirchner et al., 2012), thus examining a more stationary
data, or adopted the hypothesis that observed range of DFA
exponents is within the range of error of the 1/f noise (Duarte
and Zatsiorsky, 2001). Both DFA and spectral analysis of standing
data found the crossover in CoP scaling to be in the time range
between 10 ms and 1 s (Duarte and Zatsiorsky, 2001; Kirchner et al.,
2012; Collins et al., 1995). It was shown that the position of the
crossover changes with experimental conditions (such as standing
with eyes closed or open), or with age (Kirchner et al., 2012).
Additionally, studies have demonstrated that both monofractal
and multifractal features of human quiet standing changed with
training (Wayne et al., 2014), in the presence of balance disorders
and pathologies (Maze et al., 2016), or with task and age (Chagdes
et al., 2009). Finally, systematic assessments of surrogate data proved
that the observed CoP behaviour was not a result of any feature of
the methods used: DFA exponents of the shuffled surrogate
sequences were around 0.5 for all subjects and conditions (Blesić
et al., 1999; Kirchner et al., 2012). Namely, since all long-range
correlations are destroyed by the shuffling procedure, the
corresponding shuffled series will have scaling exponents of the
random time series (Kantelhardt et al., 2001).

In this paper, we analysed recordings from two force platforms,
to assess balance dynamics for each leg separately (Harrison et al.,
2021). Due to the length of the recordings and constrains on data
analysis posed by the finite size effects (see Data and Methods
below), we analysed DFA and WTS features of time series in our
dataset in time ranges of 2 ms to 1 s (or 1–500 Hz). This gave us
insight into scaling behaviour in lower ranges of time scales
compared to those reported in the literature to date (Duarte and
Zatsiorsky, 2001; Kirchner et al., 2012). The inclusion of WTS
analysis in our approach enabled identification of characteristic
spectral (temporal) modes that constitute human posture in this
time range.

Building on this methodological framework, the main
motivation for this study is to enhance our understanding of
how injuries and altered standing tasks affect the temporal
dynamics of balance control in physically active individuals.
Despite extensive existing research, the precise changes in
balance control mechanisms following injury, as well as
during challenging balance tasks, are not fully understood,
particularly regarding the underlying temporal structure of
postural sway.
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Therefore, the specific aims of this study were: 1. To characterize
and quantify the temporal scaling behavior of balance control signals
(force platform data) using advanced time series analytical methods,
namely, Detrended Fluctuation Analysis (DFA) and Wavelet
Transform Spectral (WTS) analysis. 2. To identify how specific
conditions (standing with eyes closed, standing on one leg only) and
injuries (to the knee or ankle) alter the scaling dynamics, particularly
focusing on long-range temporal correlations and characteristic
spectral modes of sway.

We hypothesized that: 1. Changes in balance tasks (such as eyes-
closed and single-leg stance) would lead to distinct alterations in
scaling exponents and characteristic spectral peaks, indicative of
modified neuromuscular control strategies. 2. Injuries to the lower
extremities would result in identifiable patterns of compensation or
underachievement in postural control, reflected through significant
changes in the long-range temporal characteristics and spectral
modes in the force platform data.

The findings from testing these hypotheses aim to demonstrate
that DFA and WTS analyses could serve as more sensitive and
informative tools for clinical assessments, rehabilitation monitoring,
and injury prevention strategies by identifying subtle but significant
shifts in balance control mechanisms that are typically undetected
by conventional measures.

This paper is organized as follows: in the following section we
provide essential information on experimental settings and participants
to our experiments, together with a brief introduction to the two
methods of time series analysis used. In the third section we
describe our results. In the final section we provide discussion of
our findings and propose directions for future research.

2 Materials and methods

2.1 Participants

Data from 93 physical active participants - 49 females (body
weight 64 ± 7 kg; body height 174 ± 8 cm; age 22 ± 5) and 44 males
(body weight 81 ± 8 kg; height 185 ± 7 cm; age 24 ± 2), were analysed
in this study. All participants were physically active through their
academic curriculum, which included approximately six to eight
physical activity classes per week. Participants were free of any
muscle-skeletal or neurological disease and had not taken any
medications for at least 6 months prior to study participation.
They were instructed to avoid any strenuous exercise for 2 days
before the testing sessions. Prior to testing, participants were
informed about the research purpose and procedures and
provided written informed consent which was in accordance with
the Declaration of Helsinki and approved by the University of
Belgrade Institutional Review Board (02-273/21-1). Participants’
characteristics are summarized in Table 1. As part of the
individual data collection, participants reported any history of
knee, ankle, or other lower extremity injury.

2.2 Experimental procedures

Participants were instructed to stand still on two force platforms
(AMTI BP600400, Advanced Mechanical Technology, Inc.
Watertown, MA 02472–4800 United States) that sampled the
horizontal (x and y) and vertical (z) components of the resultant

TABLE 1 Characteristics of participants of standing recording.

Variable 10s Quiet standing 10s Eyes closed and one leg
only standing

1.5s quiet standing before jump

Non-
injured

Injured Non-
injured

Knee
injury

Ankle
injury

Other

N 8 5 8 40 22 10 4

Age (years) 20 ± 2 20 ± 2 20 ± 2 22 ± 5 22 ± 4 23 ± 5 22 ± 4

Gender (n)

Male 2 1 2 21 9 6 2

Female 6 4 6 19 13 4 2

Injury side (n)

Left -- 2 -- -- 10 3 2

Right -- 3 -- -- 12 7 2

Body height (cm)

Male 187 ± 1 178 187 ± 1 182 ± 6 185 ± 8 189 ± 7 185 ± 1

Female 167 ± 11 169 ± 7 167 ± 11 171 ± 10 174 ± 10 172 ± 9 173 ± 2

Body weight (kg)

Male 81 ± 1 80 81 ± 1 78 ± 9 85 ± 9 81 ± 8 80 ± 12

Female 71 ± 7 70 ± 4 71 ± 7 61 ± 7 67 ± 8 62 ± 8 61 ± 0.4

Physical activity (hrs/
week)

8-10 8-10 8-10 8-10 8-10 8-10 8-10
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ground reaction force at 1,000 Hz, separately for each leg. In the first
experimental setting, 13 non-injured participants were required to
perform three tasks that involved: 1) quiet standing with eyes open,
2) quiet standing with eyes closed, and 3) one-leg standing with arms
relaxed (please see Table 1). After assuming the requested position,
the task lasted for 10 s. A minute rest was given between the trials
while rests between different tasks lasted 2 min.

In another set of experiments, 76 participants (see Table 1) were
instructed to stand still on two force platforms for 2 s, as explained
above, as an introduction to the countermovement jump exercise.
The initial 1.5-s segments of the quiet standing from this experiment
were used for time series analysis in this paper.

2.3 Data analysis

We used the detrended fluctuation analysis of the second order
(DFA2) and wavelet transform spectral analysis (WTS) to
investigate our data dynamics.

Detrended fluctuation analysis is a variant of a conventional
fluctuation analysis, adapted for the analysis of non-stationary, non-
linear data (Peng et al., 1994). In DFA, a fluctuation function F(n) is
calculated as a root mean square variation about the constantly
changing local trend instead of the record’s mean, as is done in
conventional fluctuation analysis (Peng et al., 1994). This is the first
modification that DFA analysis utilizes on data series. It introduced
the ‘detrending’ into the method, and ensures that, by calculating
variation around the local trend, only intrinsic variations are
examined by the method (Peng et al., 1994). In addition, F(n) is
calculated for a series of cumulative sum profiles yi � ∑i

k�1xk − �x
(for i � 1...N, N a number of data points in a data series, and
�x � 1/N∑N

k�1xk) rather than the original record xi (Peng et al.,
1994). This is the second modification that the method introduces to
the original time series, and it arises from the original method design
that stems from one-dimensional random walk theories (Peng et al.,
1992). Namely, in the one-dimensional random walk theories it is
the ‘walk’ rather than the current position of the data point that is of
interest to the theory, which can it that way be derived from the
methods developed in statistical physics (Peng et al., 1992). These
two modifications are done as data pre-processing of the method.
The detrended fluctuation function is then calculated as:
(n) �

����������������������
1

(N−n+1)l∑N−n+1
i�1 ∑n

l�1yn,i(l)2
√

. The local trend can be either
a polynomial fit calculated on data segments of window size n, for
n � (1...N − 1) (Kantelhardt et al., 2001), or a moving average
calculated on window size n (Carbone, 2009). If the polynomial
detrending is used, as we did in our analysis, the order of subtracted
polynomial defines the order of the analysis (DFAm). It is
considered that trends of order m − 1 can be viewed as
eliminated from the original record in DFAm (Kantelhardt et al.,
2001; Kantelhardt et al., 2006).

The DFA method proved to be more stable than the
conventional autocorrelation (ACF) or Fourier power spectra
(PwS) analyses, with less noise and less pronounced finite-size
effects (Bunde and Lennartz, 2012). It was shown in numerous
repeated applications (Blesić, 2020), that due to the inherent power-
law data dynamics in most of the real-world records - physiological
and movement data included (Blesic et al., 2011) - F(n) appears as
F(n) ~ nα, a straight line on log–log plots of dependence of F (n) of

the time scale n. In such cases the slope α of this function, the DFA
scaling exponent, is used to quantify the analysed series. It has been
shown that 0.5 < α≤ 1 for stationary series (Peng et al., 1994), while
the values α≥ 1, which will be of partial interest to records used in
this paper, imply the existence of intrinsic non-stationarities in data
(Höll et al., 2016). In the latter case F(n) usually exhibits crossovers,
abrupt changes in log-log slope, while α≥ 1 may mean that the
underlying process is of a composite nature (Höll and Kantz, 2015)
that may result from an independent influence of different internal
regimes on fast and slow time scales (Kantelhardt, 2009), or due to
the interaction with correlated process or processes (Livina et al.,
2003; Chen et al., 2002). Seemingly non-stationary behaviour can
also result from the exceedingly high influence of periodic or quasi-
periodic processes at some characteristic time or time scale (Blesić
et al., 1999). If this is the case, these regular trends should be
removed from the data prior to analysis (Kantelhardt, 2009). Finally,
non-stationarities can be signs of an underlying multifractal
dynamic (Kantelhardt, 2009).

The advantages of using DFA and WTS over the more
conventional statistical approaches (such as the calculation of
Fourier power spectra) for the analysis of records from natural
complex systems, including characterization of effects of tracking
injuries are manyfold, and stem from the methods design (please see
(Blesić et al., 2019) and references therein). The DFA, by way of
detrending as preprocessing, produces a time series that fluctuates
much less than the original, while preserving its statistical properties
(Stanley, 2000). In this way it partially resolves the problem of direct
calculations of the Fourier power spectra that are hindered by the
level of noise present in a typical natural record (please see Figure 1B
below). In this way DFAmethod provides a function that is allowing
for clearer and less noisy presentation and interpretation of the
results on log–log graphs.

Furthermore, pure long-range autocorrelated behavior rarely
occurs in natural records. The corresponding DFA2 functions,
depicted on the log–log graphs, tend to display transient
crossovers in scaling that stem from occurrences of different
intrinsic drivers of the analyzed behaviour (Blesić et al., 2019).
When the effects of such irregularities are visible on DFA2 curves
but are not comparatively strong to change the global behavior of
DFA2 functions. We then use WT analysis to investigate them.

The wavelet transformation method was introduced to achieve
signal localization and decomposition in both time and frequency
(Wilczok, 2000). This method has been proven to possess the
optimal joint time–frequency localization (Torrence and Compo,
1998) and can thus be used to effectively detect locations and spatial
distribution of singularities in time series (Mallat and Hwang, 1992).
Wavelet transformation is a two-dimensional time or space and
scale decomposition of any signal or discrete series with functions
constructed by expanding by time scale and translating along real
time (or space) of a specifically chosen original wavelet function
(Torrence and Compo, 1998). Decomposition along the real time in
addition to time scale (analogues to frequency in Fourier analysis)
allows for visualisation and inspection of local temporal components
of the analysed signal (Torrence and Compo, 1998; Addison, 2018).
This enables calculation of the local wavelet power spectra (lWTS),
which are the localized contributions of the analysed time series
energy at a specific time scale and at specific point in real time.
Global wavelet power spectra EW(n) (WTS) are calculated when
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local wavelet power spectra are integrated over the real time
(Torrence and Compo, 1998; Addison, 2018). WTS are
mathematically comparable to Fourier power spectra (Perrier
et al., 1995). For data with inherent power-law dynamics both
WTS and PwS are of the power-law type, with the same power-
law exponent β that can be related to the DFA2 exponent α through
the scaling relation α � (β + 1)/2 (Peng et al., 1993). This makes two
methods – DFA2 and WTS – comparable (Blesić, 2020).

To obtain statistically significant results and avoid effects of records’
finite sizes on DFA2 statistics we calculated them between the time
scales of n = 5 and n =N/5. Similarly, to obtain relevant statistical results
for the WTS analysis, we calculated WTS functions between the time
scales of n = 1 and n =N/5. In our dataset, with time series length of N =
10,000 data points for 10 s measurements or N = 1,500 for 1.5 s
recordings, this limits time range of our investigations to tmax � 2s
(tmax � 0.3s). We used this scale range for visualization of our results.
In drawing conclusions, however, we limited ourselves to a more
rigorous, maximum statistically meaningful scale of nmax � N/10
(Kantelhardt et al., 2006). The error to calculation of
DFA2 exponents, which depends on N, is estimated from (Bashan
et al., 2008), and in this paper equals to 0.05. Finally, to assess the
significance of our WTS results we used tests of significance for
detection of cycles in WTS (Torrence and Compo, 1998); we used
this technique against the analysed signals as noise backgrounds.

3 Results

In Figure 1 we present one force platform record in quiet
standing used in this study, in the form of raw data (Figure 1A)
with their PwS spectrum (Figure 1B) given as a log-log plot of
dependence on time scale instead of frequency (so that it could be
compared with WTS spectra). The raw data show noisy behaviour
with visible multimodal variability of the low frequency underlying
trend that is present in all records in our dataset. The PwS spectrum
of this record shows possible crossover in power-law (scaling)
behaviour at time scales around 100 ms, with the probable
existence of at least two peaks at the higher time scales, after
the crossover.

In Figure 2 we present a typical result from our DFA2 and WTS
analysis of standing still on a force platform data, for an individual
who did not report recent injuries (from this point on, the ‘non-
injured’ record or case). In all the force platform records that we
analysed we found that DFA2 curves, as those depicted in Figure 2A,
are approximately straight lines on log–log graphs. The scaling that
we observed always exhibited crossover at timescales in the range of
50–100 ms, with scaling exponents below the crossover α1 equal to
0.5 (or β1 ≈ 0, for correspondingWTS functions), in all the analysed
cases. This indicates completely random behaviour (distribution of
force) in the small time scales area. In the larger time scales region,

FIGURE 1
(A) An example of a force platform recording in quiet standing, of a z-axis (vertical direction) variations of the right leg. This raw data example shows
noisy behaviour with visible multimodal variability (quasi harmonic behaviour of the low frequency underlying trend) which is present in all records in our
dataset. (B) Log-log plot of Fourier power spectrum of the record in (A), given as dependence of PwS on the characteristic time scale. The PwS presents
with a possible crossover that is marked by a vertical green line, and two peaks after the crossover, at 250 and at around 550ms, that are marked by
the vertical light grey lines.
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above the crossover, our non-injured records showed increase in
slopes of DFA2 curves to values of α2 between 1.1 and 1.7 (that is,
1.2≤ β2 ≤ 2.1). Since values of α2 were larger than 1 in all our data,
we performed DFA2 analysis on the series of increments Δxi �
xi+1 − xi (i � 1...N − 1) of the original series; if the original record
has scaling exponent α> 1, the exponent of the series of increments
Δxi should be αΔ � 1 − α (Livina et al., 2003). We present this result
in the inset of Figure 2A. It is apparent from this graph that series of
increments of the force platform data do not show crossover in
behaviour and that values of αΔ that we obtained are reduced by
more than 1. This suggests that values of α2 > 1 in the region above
the crossover point may be caused by a highly autocorrelated, non-
trivial nonstationary regime.

The results of the global WTS analysis of a typical non-injured
record, given in Figure 2B, show that WTS functions displayed
existence of several characteristic peaks, or characteristic times of
recorded behaviour, at 10, 20 and 50 ms in time ranges below the
crossover point, and at around 250, 650 and 1200 ms, in higher time
scales area. The amplitudes of WTS peaks were always more
pronounced on z-axis than on the x- and y-axis. In addition, the
scaling (DFA2 and WTS slopes) on x- and y-axis was always the
same (within the range of error), which prompted us to focus on y-
and z-axis only in our further analysis, assuming no loss of insight if
we were to represent movements in horizontal plain by y-axis only.

To test how this behaviour changes with the loss of balance due
to task or injury, we analysed several recordings of individuals who
were not reporting injury and were standing on the force platform
with their eyes closed and on one leg only, and of persons who
reported injuries before or at the time of recording (data called ‘eyes
closed’, ‘only right/left leg’, and ‘injured’ in what follows). Results of
these analyses are shown in Figure 3, where the DFA2 and WTS
functions for these different cases are given in comparison with the

non-injured (and eyes open) record. Typical DFA2 results,
presented in Figure 3A1,B1,C1, show clear change in the
behaviour in non-injured standing on one leg and in cases of
injury to one of the legs, in the higher time scales region, above
the crossover point. There it is visible that the slopes of the
DFA2 functions increase for both axes on the used-for-standing
leg, when standing on one leg only (see Figure 3B1), or in the case of
both axes for the uninjured (opposite) leg, and sometimes vertical
(z-) axis for the leg with the reported injury (see Figure 3C1).
DFA2 curves for the typical case of standing with eyes closed
(Figure 3A1) do not show significant (within the range of error)
change of slopes in comparison with the ‘eyes open’ case.
Nevertheless, corresponding global WTS functions, shown in
Figure 3A2,B2,C2, do show that even when DFA2 dynamics is
unchanged, in the ‘eyes closed’ cases, the characteristic WTS peaks
become more prominent in both small- and higher-time scales,
while in cases of standing on one leg only or in cases of injury some
of the peaks in the region above the crossover become increasingly
prominent, and cause the observed significant change of the
DFA2 and WTS slopes. It is also visible from Figure 3B2,C2 that
the change of slopes (and thus the scaling) is caused by changes of
amplitude of different characteristic temporal modes: for standing
on one leg only (see Figure 3B2) significant change stems from
increased amplitudes of peaks at around 250 and 650 ms, while in
the case of injury given in Figure 3C2 the change is caused by
activation of all the higher modes, including those larger than
1200 ms. Finally, it is visible from both DFA2 and WTS results
how positions of crossovers shift to smaller time scales in all cases.

Of all the different settings presented in Figure 3, we further
investigated how different kinds of injuries affect DFA2 and WTS
results for force platform data. To this end, we analysed 29 records of
upright standing in preparation for countermovement jump, in

FIGURE 2
(A) DFA2 and (B)WTS functions of a typical non-injured record in standing, for one (right) leg and all three axes. In (A) slopes of DFA2 functions are
given as red lines, with values of corresponding DFA2 exponents. Those are the same for all three axes below the crossover and are different for horizontal
and vertical plain above the crossover. In the inset to (A) result of the DFA2 analysis for a series of increments (solid line) for z-axis are given in comparison
to DFA2 result of the original series (dotted line), together with DFA2 exponent αΔ . In (B) values of WTS exponents are given for each function (axis),
with vertical lines that serve as visual guides to examine characteristic peaks (modes) of muscle or movement activation.
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FIGURE 3
DFA2 and global WTS functions for three test conditions: (A1,A2) represent a non-injured person standing with eyes closed (compared to the eyes-
open baseline); (B1,B2) show results for a non-injured person standing on one leg only (right or left leg); and (C1,C2) show results for a person with an
injury to the left knee. Panels (A1,B1,C1) display DFA2 functions, while (A2,B2,C2) show the corresponding WTS functions.

TABLE 2 Values of the difference Δα2 of the DFA2 slopes above the crossover point averaged over groups of data differentiated by the type of injury, given
with the values of Δβ2 of the corresponding differences in WTS slopes. Values of Δα2 (Δβ2) that are outside of the range of error are given in bold. The
compensation discussed in the text is marked in blue.

Injury Location Injury Type Injured Side Response – group average Δα2 (Δβ2)
(Standing)

right y right z left y left z

Knee injuries General R −0.17 (-0.34) 0.01 (0.02) −0.09 (-0.18) −0.05 (-0.10)

L 0.05 (0.10) 0.19 (0.38) 0.00 (0.00) 0.02 (0.04)

ACL R −0.04 (−0.08) 0.18 (0.36) 0.10 (0.20) 0.13 (0.26)

L −0.16 (-0.32) 0.00 (0.00) −0.27 (-0.54) −0.14 (-0.28)

Severe R −0.33 (-0.66) −0.07 (-0.14) −0.31 (-0.62) −0.10 (-0.20)

L 0.21 (0.42) 0.31 (0.62) 0.11 (0.22) 0.20 (0.40)

Ankle injuries General R −0.05 (-0.10) 0.03 (0.06) −0.04 (−0.08) 0.01 (0.02)

L – – – –

Severe R 0.11 (0.22) 0.12 (0.24) −0.04 (−0.08) 0.11 (0.22)

L −0.04 (−0.08) 0.13 (0.26) −0.24 (-0.48) −0.03 (-0.06)
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individuals who reported recent or current (related to the time of
recording) injury to one leg. We compared their DFA2 and WTS
results with the average DFA2 andWTS behaviour (that is, values of
average slopes α1 and α2, or β1 and β2) for the non-injured cases in
the same dataset. As in previous cases, we did not find differences
between injured and average non-injured dynamics in slopes of
DFA2 or WTS functions in areas below the crossover point. We
found differences in the higher times scales area; their values,
defined as Δα2 � α2,injury − α2av,non−injury, given as averages within
groups of similar types of injuries, are reported in Table 2.

In Table 2 injuries of the knee are differentiated as ‘general’, in
cases where we did not have specification of the types of injury,
‘ACL’, and ‘severe’ (such as dislocation or tear). It is important to
note here that due to the small sample size all the reported statistics
in Table 2 were calculated for 2–5 separate records in any injury
groups and is thus generally poor; we present it only as a report, not
as an indicator of any causation or statistical significance, and thus
we are presenting just values averaged over the groups, without any
error measurement. The only error that is presented here is the error
to the DFA2 calculation that is due to the size of the data series N,
which is explained in the Methods section of this paper. This is
however a methodological, and not a statistical error.

All knee injuries in our sample show the similar kind of
behaviour as the one depicted in Figure 3C2: the injury of one

leg can lead to what we labelled ‘compensation’, or pronounced
engagement of muscle groups or movement regimes that results in
increased values of scaling exponents α2, on both axes of the
opposite (non-injured) leg and on the z-axis of the injured leg.
Values of Δα2 for these injury groups, given in Table 2, suggest that
this behaviour in our dataset may be present in ‘general’ knee
injuries of the left leg and ACL injuries of the right leg. Contrary
to the knee injuries, injuries of the ankle, distinguished in our sample
as ‘general’ and ‘severe’ (such as break) (see Table 2), seem to lead to
compensation on both axes of the same leg and on the vertical (z-)
axis of the opposite leg, and only for injuries of the right leg. In
addition to these responses, it is visible from Table 2 that some of the
injuries of both knee and ankle can result in ‘underachievement’
above the crossover, which leads to lower values of α_2 than those of
the average non-injured behaviour. In some of the cases this
happens for both axes of both – injured and non-injured legs.

Examples of WTS functions of the ‘compensation’ on the
opposite leg and ‘underachievement’ on both legs are given in
Figure 4. We chose to use WTS functions for this illustration, for
WTS functions are giving us access to not only data scaling (slope of
the functions), but also characteristic peaks. The positions and the
amplitudes of characteristic peaks of WTS functions may thus be
used to understand the observed differences in scaling behavior with
injury. To enable comparative assessment, we added the

FIGURE 4
Comparison of “compensation” (upper row) versus the “underachievement” (lower row) behaviour, given as WTS functions in relation to the
averaged non-injured WTS dynamics.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Radić et al. 10.3389/fbioe.2025.1589072

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1589072


corresponding values of WTS exponents differences Δβ2 to Table 2
as well. These were calculated from the scaling equation that
connects two scaling exponents α and β - α � (β + 1)/2. Using
WTS, it is visible from Figure 4 how ‘underachievement’ in our
dataset is probably caused by the inability to engage muscles or
muscle groups responsible for the characteristic peak at about
250 ms. It is also visible how this inability to engage may move
the position of the crossover to higher time scales in cases of
‘underachievement’. On the other hand, the ‘compensation’,
presented in the upper raw of Figure 4, is caused by increase of
the amplitude of the characteristic peak at 250 ms, together with
increase of the higher scale peaks that are outside of our range of
analysis. This rise in peak amplitudes then shortens the range of
scales before the crossover in behavior, compared to the averaged
uninjured WTS behaviour.

4 Discussion

In this paper we analysed time series of force platform
recordings of various tasks involving quiet standing, in
individuals with or without injury to one leg, using DFA2 and
WTS analyses. Our aim was to assess scaling dynamics in our
dataset, to identify scaling and characteristic temporal spectral
parameters, and to examine how those change in data recorded
under different experimental conditions (standing with eyes closed
or on one leg only), or with injury. We found scaling behaviour in all
our data, with a visible crossover in scaling appearing at about
100 ms in non-injured quiet standing, a random behaviour on small
time scales and a distinct non-linearity in long-term autocorrelated
behaviour after the crossover area, on time scales in the range of
100 ms to 1 s. This result agrees with previous findings on CoP
scaling (Collins and De Luca, 1994; Duarte and Zatsiorsky, 2001;
Kirchner et al., 2012), in ranges of time scales where our research
overlaps with the other groups. From WTS analysis we identified
several characteristic peaks in scaling behaviour, at 10, 20 and 50 ms
in the area below the crossover point, and at about 250, 650 and
1,200 ms in the area above the crossover. The characteristic modes
that we found on higher time scales align with the frequency bands
of the identified major modal scales around 3.03, 1.51 and 0.76 Hz in
(Harrison et al., 2021) that were chosen as behaviourally relevant
and not obscured by the measurement noise there. We distinguished
found DFA2 exponents and WTS characteristic peaks as key
parameters of our analysis.

Under the changes in experimental conditions or in injury to
one leg, we found that only the scaling above crossover changes,
while random behaviour below the crossover remains unchanged. In
the case of standing with eyes closed we reported changes in the
amplitudes of the characteristic peaks in both small scales and higher
scales area that did not however led to change in the DFA2 slopes α2.
In cases of standing on one leg only and quiet standing with injury to
one leg, we found an increase in slopes after the crossover point
caused either by a visible change in amplitude of the characteristic
peaks at about 250 and 650 ms (or around 4 and 1.5 Hz), in standing
on one leg only, or by apparent continuous increase of amplitude of
all the characteristic modes above the crossover point, including
those outside the time scale range of our analysis, in injury. Increase
in α2 was observed before as the increase of energy content at low

frequencies (high time scales) while completing a cognitive task in
quiet non-injured standing (Kirchner et al., 2012), or in the
0.049–100 Hz interval (that partially overlaps with our time scale
range) for the eyes closed and tapping while standing tasks (Chagdes
et al., 2009), with the effect more pronounced in older adults in eyes
closed task and slightly less pronounced in the same population in
tapping task. Some previous ‘eyes-closed’ results are dissimilar to
our findings (Chagdes et al., 2009); further systematic assessment
with the usage of same analysis techniques and in the same time
scale areas may be done here by us, or by other groups. Finally, the
increase of spectral energy content that was found before implies the
shift in the position of the crossover point to smaller scales region
(Kirchner et al., 2012), which is the result that we also report for
standing on one leg only and in compensation for injury in
our dataset.

Probably the most important finding of this paper is that
DFA2 and WTS can distinguish injuries even in quiet standing,
which corroborates claims that these and similar techniques may
provide new, more sensitive discriminatory analysis framework for
human balance assessments (Wayne et al., 2013; Wayne et al., 2014).
We found two main types of response to injury: a) ‘compensation’,
seen as the increase in the value of α2, caused by the increase of all
the characteristic modes above the crossover point that causes a shift
of the position of crossover to smaller scales, and b)
‘underachievement’, which presents as a decrease of α2, possibly
caused by the decrease of amplitudes of the characteristic modes at
around 250 and 650 ms that brings about a shift of the position of
crossover point to higher time scales. Moreover, we found that
injury to the knee, if compensated (in scaling behaviour), leads to
compensation at the opposite (non-injured) leg and the vertical axis
of the injured leg, while contrary the injury to the ankle results in
compensation at the injured leg sometimes coupled with
compensation at the vertical axis of the opposite leg, if
compensation is present. This result needs further systematic
assessment for different kinds of injury and balance disorders; it
can nevertheless be already used to help understand the nature or
sources of scaling and characteristic modes in the high scales area.
Given the found difference in ways of compensation for the injuries
of the ankle and of the knee, we can stipulate that our results may
reflect the fact that injury to the ankle can still be compensated by
elevated balance control at the hip of the same (injured) leg (Panjan
and Sarabon, 2010; Winter et al., 1998), while the injury of the knee
may result in compensation on/from the opposite leg as well. Finally,
given the found increased engagement of characteristic WTS modes
at about 250 and 650ms in non-injured standing on one leg only and
decreased engagement of those WTS modes in all
“underachievement” leg injury responses, we may interpret this
WTS change as an effect of engagement of specific muscle groups. If
this is the case, we may speculate which of the muscles that
contribute when stable one-leg stance is hypo-active (i.e., gluteus
medius, tensor fasciae latae or lateral quadriceps) in this regard. For
example, it has been shown that individuals undergoing or
recovering from ACL reconstruction may have worse global
dynamic postural stability compared with healthy control (Staples
et al., 2020; Miko et al., 2021). This may represent the effect of the
ACL injury or pre-existing deficits that contributed to the injury
itself (Staples et al., 2020). Further work, by other groups or by us, on
finding the links between WTS peaks and engagement or activation
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of some of the muscle groups or balance control strategies will
represent an important way forward in understanding force
development in standing, balance, and injury.

From our results it appears that the change of scaling in the
horizontal plane is more discriminative to the injury type than the
response in the vertical plane. It is important to note here that we chose
to assess postural dynamics of all three axes separately for we showed in
our previous work that the process of summation (such as
determination of CoP) superposes different scaling and modal
characteristics of the added signals, resulting in a DFA2 and WTS
outputs dominated by the signals exhibiting higher autocorrelations
(Blesić et al., 2019). It is already known that postural stability could be
greatly impaired with respect to injury or illness (Błaszczyk, 2016;
Staples et al., 2020; Miko et al., 2021); for example, anterior cruciate
ligament reconstructed individuals have greater postural instability
during the dual-cognitive condition that may indicate unique neural
processing deficits remain following ACL reconstruction (Miko et al.,
2021). Interestingly, similar patterns of postural stability were found
before (Bodkin et al., 2018) in comparisons between individuals
following ACL reconstruction and healthy individuals in a straight
knee single leg balance task. That study concluded (Bodkin et al., 2018)
that single-leg balance in a straight knee position may not be sensitive
enough to detect impairments in ACL reconstruction patients at the
time of return to sport progression. Although our injured participants
had various lower-limb injuries, our study suggest that change of scaling
could be sensitive enough to detect altered postural-control patterns.

Recent studies corroborate our findings: wavelet-based and
nonlinear metrics capture subtle balance impairments during
rehabilitation and sensory manipulations (Jafari et al., 2023;
Czaplicki et al., 2017; Kodama et al., 2022; Piri et al., 2025).

Although formal clinical thresholds for DFA or WTS metrics do
not yet exist, prior studies (e.g. (Duarte and Zatsiorsky, 2001;
Kirchner et al., 2012; Maze et al., 2016)), have demonstrated that
scaling exponents (α2) and wavelet power distributions differ
systematically between healthy and pathological conditions,
aging, and different task demands. This suggests that DFA and
WTS have the potential to serve as sensitive, non-invasive tools in
clinical settings for detecting subtle impairments in postural control.
However, defining normative ranges and pathological cutoffs will
require future studies.

Finally, our results do not settle the debate about the nature and
origins of non-stationarity in force platform data. This remains to be
further examined with access to longer time series (recordings) and/
or utilization of various non-linearity tests. In that regard, a test of
autocovariance difference (Höll et al., 2016) to assess whether values
of α2 > 1 are due to the existence of intrinsic non-stationarities that
were not removed from the data by the DFA algorithm could be
utilized in the future for these types of records. Additionally,
analyses of longer time series could unveil an imbalance between
different noise inputs or activation modes that may be source of
α2 > 1 as well. It can particularly enable examination of dominant
WTS modes that arise from the quasi-periodic drivers of the entire
body (such as breathing, heart rate, or metabolic processes) that we
already found to influence dynamic properties of motor neuronal
control (Blesić et al., 1999). This finding could then lead to removal
of these dominant modes from the data and substantial lowering of
value of the scaling exponent above the crossover point (Blesić
et al., 2019).

4.1 Limitations

This study has several limitations. First, the duration of some
force platform recordings was limited to 1.5 s, which may restrict the
detection of lower-frequency sway dynamics and long-range scaling
behavior. Studies suggest that shorter trial durations may not
provide stable or reliable measurements of postural control,
particularly for certain parameters sensitive to low-frequency
sway. Longer trials, typically ranging from 60 to 150 s, are
recommended to ensure the stability and reliability of
posturographic assessments (Richmond et al., 2023; Amoud
et al., 2007).

Second, injury data were obtained via self-report, introducing
potential recall and classification bias. While this method is
commonly used in sports and epidemiological research due to its
practicality (Fuller et al., 2006), it may not accurately capture the
precise timing, type, or severity of injury. Future studies by us or by
other groups should aim to incorporate clinically verified diagnoses
and longitudinal tracking to improve the accuracy of injury
classification and its relationship with postural control
adaptations (Fuller et al., 2006).

Finally, the most critical limitation lies in the small sample sizes
within injury subgroups (n = 2–5), which limited the statistical
power of group comparisons and precluded formal statistical
significance testing or effect size estimation. As a result, we
focused on descriptive findings and qualitative distinctions
revealed through DFA and WTS methods, which remain
sensitive to subtle alterations in balance control. While we fully
acknowledge the importance of statistical measures in strengthening
the validity of conclusions, reporting them under such constraints
could be misleading. We have explicitly noted this limitation in the
manuscript and emphasized the need for future studies with larger
and clinically validated cohorts. Such research would enable more
rigorous statistical evaluation and support broader generalization of
our findings.
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