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Background: The application of deep learning techniques in medical image
analysis has shown great potential in assisting clinical diagnosis. This study
focuses on the development and evaluation of deep learning models for the
classification of knee joint injuries using Magnetic Resonance Imaging (MRI) data.
The research aims to provide an efficient and reliable tool for clinicians to aid in
the diagnosis of knee joint disorders, particularly focusing on Anterior Cruciate
Ligament (ACL) tears.

Methods: KneeXNet leverages the power of graph convolutional networks
(GCNs) to capture the intricate spatial dependencies and hierarchical features
in knee MRI scans. The proposed model consists of three main components: a
graph construction module, graph convolutional layers, and amulti-scale feature
fusion module. Additionally, a contrastive learning scheme is employed to
enhance the model’s discriminative power and robustness. The MRNet
dataset, consisting of knee MRI scans from 1,370 patients, is used to train and
validate KneeXNet.

Results: The performance of KneeXNet is evaluated using the Area Under the
Receiver Operating Characteristic Curve (AUC)metric and compared to state-of-
the-art methods, including traditional machine learning approaches and deep
learning models. KneeXNet consistently outperforms the competing methods,
achieving AUC scores of 0.985, 0.972, and 0.968 for the detection of knee joint
abnormalities, ACL tears, and meniscal tears, respectively. The cross-dataset
evaluation further validates the generalization ability of KneeXNet, maintaining
its superior performance on an independent dataset.

Application: To facilitate the clinical application of KneeXNet, a user-friendly web
interface is developed using the Django framework. This interface allows users to
upload MRI scans, view diagnostic results, and interact with the system
seamlessly. The integration of Grad-CAM visualizations enhances the
interpretability of KneeXNet, enabling radiologists to understand and validate
the model’s decision-making process.
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1 Introduction

The rapid advancement of artificial intelligence (AI) and deep
learning techniques has revolutionized various fields, including
healthcare and medical imaging. In recent years, there has been a
growing interest in applying these cutting-edge technologies to assist
physicians in diagnosing complex medical conditions, particularly
those related to musculoskeletal disorders. Knee joint injuries, such as
anterior cruciate ligament (ACL) tears and meniscal tears, are among
the most common and debilitating conditions affecting individuals of
all ages (Chan et al., 2022). Magnetic resonance imaging (MRI) has
emerged as the gold standard for diagnosing these injuries due to its
superior soft tissue contrast and ability to visualize detailed anatomical
structures. However, the interpretation of knee MRI scans remains a
challenging task, even for experienced radiologists, as it requires a
thorough understanding of the complex anatomy and
pathophysiology of the knee joint (D’Angelo et al., 2022).

Moreover, the increasing demand forMRI examinations and the
shortage of trained radiologists have led to a substantial workload
and potential delays in diagnosis (Fernandes et al., 2022). This
highlights the need for an automated system that can efficiently
analyze knee MRI scans and assist radiologists in making accurate
and timely diagnoses. Such a system would not only improve patient
care and outcomes but also optimize resource allocation and reduce
healthcare costs (Vera Cruz et al., 2022).

In recent years, deep learning algorithms, particularly
convolutional neural networks (CNNs), have shown remarkable
performance in various computer vision tasks, including medical
image analysis. CNNs have the ability to automatically learn
hierarchical features from raw input data, making them well-
suited for analyzing complex medical images. Several studies
have explored the application of CNNs in knee MRI analysis
(Kulseng et al., 2023), focusing on tasks such as segmentation of
knee joint structures, detection of ACL tears, and classification of
meniscal tears. While these studies have demonstrated the potential
of deep learning in knee MRI analysis (Hung et al., 2023), there
remain significant challenges and opportunities for further research.

One of the main limitations of existing deep learning approaches
is their reliance on relatively simple CNN architectures, such as
AlexNet (Sivakumari and Vani, 2022) and ResNet (Wang et al.,
2022), which may not capture the full complexity of knee MRI data.
To address this issue, more advanced and sophisticated models have
been proposed, such as attention mechanisms (Qiu et al., 2024),
generative adversarial networks (GANs) (Yaqub et al., 2022), and
transformer-based architectures. These models have shown
promising results in various medical imaging tasks, including
brain tumor segmentation, lung nodule detection, and breast
cancer classification. However, their application to knee MRI
analysis remains largely unexplored.

Another critical challenge in developing deep learning models
for medical image analysis is the interpretability and explainability
of the model’s predictions. In clinical settings, it is crucial for
physicians to understand the reasoning behind the model’s
decisions to build trust and facilitate informed decision-making
(Belton et al., 2021). Various techniques have been proposed to
enhance the interpretability of deep learning models, such as
attention maps (Wang et al., 2025a), class activation maps
(CAMs), and saliency maps (Chang et al., 2020). However, the

integration of these techniques into a comprehensive knee MRI
analysis system remains a significant research gap.

Furthermore, the successful implementation of an AI-based
diagnostic tool in clinical practice requires a user-friendly
interface and seamless integration with existing workflows. To
address this challenge, web-based frameworks, such as Django
(Mihcin et al., 2023), have been utilized to develop interactive
and intuitive applications for medical image analysis. However,
the development of a comprehensive web-based system for knee
MRI analysis (Tuazon et al., 2023), incorporating advanced deep
learning models and interpretability techniques, has not been
thoroughly investigated.

In this study, we aim to bridge these research gaps by developing
a novel deep learning-based system for knee MRI analysis and
diagnosis. We propose a novel deep learning framework that goes
beyond the traditional CNN architectures and attention
mechanisms. Our model, named KneeXNet, is designed to
capture the intricate spatial dependencies and hierarchical
features (Wang et al., 2025b) in knee MRI scans while
maintaining a high degree of computational efficiency in Figure 1.

The core of KneeXNet lies in its innovative use of graph
convolutional networks (GCNs) (Hu et al., 2025) to model the
complex relationships between different anatomical structures
within the knee joint. By representing the knee MRI as a graph,
where nodes correspond to key anatomical landmarks and edges
represent their spatial connections, KneeXNet can effectively
propagate and integrate information across the entire joint. This
graph-based approach allows the model to consider not only the
local features of individual structures but also their global context
and interactions (Zhuang et al., 2022), leading to a more
comprehensive understanding of the knee joint pathology.

To further enhance the representational power of KneeXNet, we
introduce a multi-scale feature fusion module that combines
features from different resolutions and receptive fields (Zou et al.,
2023). This module employs a series of 3D convolutional layers with
varying kernel sizes and dilation rates to capture both fine-grained
details and broader contextual information. The multi-scale features
are then adaptively aggregated using learnable weighting factors,
enabling themodel to dynamically adjust the importance of different
scales based on the specific characteristics of each MRI scan.

Moreover, we propose a novel contrastive learning scheme to
encourage KneeXNet to learn more discriminative and robust
representations. During training, we generate positive and
negative pairs of MRI patches by applying various data
augmentation techniques, such as random rotations, translations,
and elastic deformations (Recht et al., 2020). The model is then
trained to minimize the contrastive loss, which maximizes the
similarity between positive pairs while pushing negative pairs
apart in the feature space (Johnson et al., 2023). This self-
supervised learning approach helps KneeXNet to capture the
essential patterns and variations in knee MRI data, improving its
generalization ability and reducing the risk of overfitting.

To ensure the interpretability and clinical adoption of
KneeXNet, we integrate gradient-weighted class activation
mapping (Grad-CAM) (Wang et al., 2024) to highlight the
regions of the knee MRI that contribute most to the model’s
predictions. We believe that this innovative framework has the
potential to improve the diagnosis of knee joint diseases and
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provide valuable assistance to radiologists in their clinical decision-
making process.

2 Related work and preliminaries

The application of deep learning techniques in medical image
analysis has gained significant attention in recent years. Convolutional
neural networks (CNNs) have beenwidely used for various tasks, such
as segmentation, detection, and classification. In the context of knee
MRI analysis, several studies have explored the use of CNNs for the
detection and classification of knee joint abnormalities, includingACL
tears and meniscal tears. Bezabh et al. (2024) proposed a semi-
automated method for ACL injury detection using a combination
of CNN and Support Vector Machine (SVM). The authors utilized a
pre-trained AlexNet (Alom et al., 2018) model for feature extraction
and achieved an improved AUC on a dataset of MRI scans. The
AlexNet architecture, which consists of five convolutional layers and
three fully connected layers, can be represented as f(x) � σ(W(L) ·
σ(W(L−1) · . . . · σ (W(1) · x + b(1)) . . . + b(L−1)) + b(L)), where x is
the input image, W(l) and b(l) are the weights and biases of the
l-th layer, and σ(·) is the activation function, such as the Rectified
Linear Unit (ReLU) defined as ReLU(x) � max(0, x). Similarly,
Voinea et al. (2024) employed a ResNet-50 (Chang et al., 2019)
architecture for the classification of ACL tears and achieved an
increased AUC on a dataset of MRI exams. The ResNet

architecture introduces residual connections to mitigate the
vanishing gradient problem in deep networks. The residual block
can be formulated asy � F(x, {Wi}) + x, where x andy are the input
and output of the residual block, and F(x, {Wi}) represents the
residual mapping to be learned.

To capture the complex spatial dependencies in knee MRI data,
Namiri et al. (2020) proposed a 3D CNN model with attention
mechanisms. The authors introduced a novel attention module that
adaptively weights the features at different scales and locations,
enabling the model to focus on the most informative regions. The
attention mechanism can be described as a � σ(Wa ·X + ba),
Xatt � a ⊙ X, where X ∈ RH×W×D×C is the input feature map,
Wa ∈ RC×C and ba ∈ RC are the learnable weights and biases
(Kara and Hardalaç, 2021), σ(·) is the sigmoid function, ⊙
denotes element-wise multiplication, and Xatt is the attended
feature map. Their model achieved an elevated AUC for ACL
tear detection and meniscal tear detection on the MRNet dataset
(Roth et al., 2003), demonstrating the effectiveness of attention
mechanisms in capturing relevant features.

Other approaches for knee MRI analysis include the use of
transfer learning (Yang et al., 2022), where pre-trained models from
natural image datasets, such as ImageNet (Haddadian and
Balamurali, 2022) in Figure 2, are fine-tuned on the target
medical image dataset. This approach leverages the learned
features from a large-scale dataset and adapts them to the
specific task of knee MRI analysis, often leading to improved

FIGURE 1
The overall architecture of KneeXNet, featuring a graph construction module, graph convolutional layers, and a multi-scale feature fusion module
for capturing spatial dependencies and hierarchical features in knee MRI scans.
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performance and faster convergence. Unsupervised learning
techniques, such as autoencoders (Nasser et al., 2020) and
generative adversarial networks (GANs) (Yang et al., 2022; Yin
et al., 2024), have also been explored for knee MRI analysis.
Autoencoders aim to learn a compact representation of the input
data by minimizing the reconstruction error between the input and
the output. The encoder-decoder architecture can be defined as
z � fencoder(x), x′ � fdecoder(z), where x is the input image, z is the
latent representation, x′ is the reconstructed image, and fencoder and
fdecoder are the encoder and decoder functions (Farooq et al., 2023),
respectively. GANs, on the other hand, consist of a generator
network that aims to synthesize realistic images and a
discriminator network that tries to distinguish between real and
generated images. The generator and discriminator are trained in a
min-max game, which can be formulated as minGmaxDV(D,G) �
Ex~pdata (x)[logD(x)] + Ez~pz(z)[log(1 −D(G(z)))], where G is the
generator, D is the discriminator, pdata is the distribution of real
images (Gaj et al., 2020), and pz is the distribution of the latent
space. These unsupervised learning approaches have shown
promising results in anomaly detection and data augmentation
for knee MRI analysis.

Graph convolutional networks (GCNs) (Wang et al., 2021) have
recently emerged as a powerful tool for analyzing structured data,
such as social networks, molecules, and biological networks. GCNs
extend the concept of convolution to graph-structured data by
learning a function f(X,A) that takes as input a feature matrix
X ∈ RN×D and an adjacency matrix A ∈ RN×N, where N is the
number of nodes and D is the number of input features. The graph
convolutional operation can be formally defined as
H(l+1) � σ( ~D−1

2 ~A ~D
−1
2H(l)W(l)), where H(l) ∈ RN×F(l)

is the feature
matrix at the l-th layer (Wei et al., 2020), F(l) is the number of
features at the l-th layer, W(l) ∈ RF(l)×F(l+1)

is the learnable weight
matrix, ~A � A + IN is the adjacency matrix with added self-
connections, IN is the identity matrix, ~D is the diagonal degree
matrix of ~A, and σ(·) is a non-linear activation function. Several
studies have demonstrated the effectiveness of GCNs in various
medical image analysis tasks. Li et al. (2022) proposed a GCN-based
framework for disease prediction using multi-modal medical data,
includingMRI, PET, and clinical scores. Lee et al. (2024) constructed
a population graph where each node represents a patient, and edges
represent the similarity between patients based on their imaging and
non-imaging features. By leveraging the population graph, their

model achieved state-of-the-art performance in predicting the
progression of Alzheimer’s disease.

In the context of knee MRI analysis, the use of GCNs remains
largely unexplored. However, the ability of GCNs to model the
complex spatial dependencies and capture the hierarchical structure
of the knee joint makes them a promising approach for this task. In
this study, we propose KneeXNet, a novel GCN-based framework
for the classification of knee joint abnormalities. KneeXNet
constructs a graph representation of the knee MRI, where nodes
correspond to key anatomical landmarks and edges represent their
spatial relationships. By leveraging the expressive power of GCNs
and integrating multi-scale feature fusion and contrastive learning,
KneeXNet achieves state-of-the-art performance in detecting ACL
tears, meniscal tears, and other knee joint abnormalities.

3 Methods

3.1 Dataset

3.1.1 Data source and characteristics
The MRNet dataset, compiled by the Stanford Machine

Learning Group, was utilized for this study. This publicly
available dataset consists of knee MRI scans from 1,370 patients
(mean age: 38.6 ± 14.7 years; 754 males and 616 females) who
underwent knee MRI examinations between January 2015 and
December 2018 (Bien et al., 2018). Each MRI scan in the dataset
includes axial, coronal, and sagittal views, with each view comprising
multiple slices that collectively represent the three-dimensional
structure of the knee joint. The dataset contains a total of
1,370 axial sequences, 1,370 coronal sequences, and 1,370 sagittal
sequences (Azcona et al., 2020), with the number of slices per
sequence ranging from 15 to 42 (mean: 25.8 ± 5.3 slices).

The MRI examinations were performed using 3.0 T MRI
scanners (Siemens Magnetom Skyra and GE Healthcare
Discovery MR750) with dedicated knee coils. The imaging
protocols included proton density-weighted sequences with and
without fat suppression, T1-weighted sequences, and T2-weighted
sequences (Kara and Hardalaç, 2021). The slice thickness ranged
from 2.5 to 3.0 mm, with an in-plane resolution of 0.4 × 0.4 mm to
0.7 × 0.7 mm. The detailed acquisition parameters for each
sequence are presented in Table 1.

FIGURE 2
The evolution of ImageNet classification models over time, demonstrating the rapid advancements in deep learning architectures and their
increasing performance on challenging computer vision tasks.
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The preprocessing steps applied to the MRNet dataset included
intensity normalization and z-score normalization. First, the pixel
intensities of each MRI slice were normalized to the range [0, 1]
using min-max scaling: Inormalized � I−Imin

Imax−Imin
, where I is the original

pixel intensity, Imin and Imax are the minimum and maximum
intensities in the slice. Subsequently, z-score normalization was
performed to standardize the pixel intensity distribution across
slices: Istandardized � Inormalized−μ

σ , where μ and σ are the mean and
standard deviation of the normalized pixel intensities.

3.1.2 Data annotation and ground truth
The ground truth labels for the dataset were established through a

rigorous annotation process involving three board-certified
musculoskeletal radiologists, each with more than 8 years of
experience in knee MRI interpretation. Each radiologist independently
reviewed all MRI scans and classified them for the presence of:

1. General abnormalities (any pathological finding in the
knee joint)

2. Anterior cruciate ligament (ACL) tears (complete or partial)
3. Meniscal tears (medial, lateral, or both)

Discrepancies in the annotations were resolved through
consensus discussions among the radiologists. In cases where
consensus could not be reached, the final decision was made by a
senior radiologist with over 15 years of experience in
musculoskeletal imaging. The inter-rater reliability among the
three radiologists was assessed using the Fleiss’ kappa coefficient
(κ), which was calculated as κ � Po−Pe

1−Pe
, where Po is the observed

agreement among raters, and Pe is the expected agreement based on
chance. The κ values were 0.87, 0.82, and 0.79 for abnormalities,
ACL tears, and meniscal tears, respectively, indicating substantial to
almost perfect agreement.

The dataset was divided into training, validation, and test sets
using a stratified random sampling approach to maintain a similar

distribution of pathologies across the sets. The training set
comprised 1,130 cases (82.5%), the validation set included
120 cases (8.8%), and the test set consisted of 120 cases (8.8%).
The distribution of cases across the three sets is presented in Table 2.

3.2 Data Preprocessing

3.2.1 Image normalization
To ensure the homogeneity of the input data and facilitate the

convergence of the deep learning models, all MRI images underwent
a series of preprocessing steps. First, the pixel intensities of eachMRI
slice were normalized to the range [0, 1] using min-max
normalization, which was calculated as Inormalized � I−Imin

Imax−Imin
,

where I is the original pixel intensity, Imin and Imax are the
minimum and maximum pixel intensities in the slice,
respectively, and Inormalized is the normalized pixel intensity.

Following this, z-score normalization was applied to standardize
the pixel intensity distribution of each slice, which was computed as
Istandardized � Inormalized−μ

σ , where μ is the mean pixel intensity of the
normalized slice, σ is the standard deviation, and Istandardized is the
standardized pixel intensity.

3.2.2 Volume standardization
Due to the variable number of slices in each MRI sequence, a

volume standardization procedure was implemented to ensure
consistent input dimensions for the deep learning models. For
sequences with fewer than 25 slices (the target number), zero-
padding was applied to both ends of the sequence to reach the
target. For sequences with more than 25 slices, a slice selection
algorithm was employed to extract the 25 most informative slices.

The slice selection algorithm utilized an entropy-based approach
to evaluate the information content of each slice. The entropy of a
slice was calculated asH(X) � −∑255

i�0p(xi)log2p(xi), where p(xi) is
the probability of pixel intensity xi in the slice. Slices with higher

TABLE 1 MRI acquisition parameters for the knee joint dataset, including proton density-weighted (PD-weighted), T1-weighted, and T2-weighted
sequences.

Parameter PD-weighted T1-weighted T2-weighted

Slice thickness (mm) 2.5–3.0 2.5–3.0 2.5–3.0

In-plane resolution (mm) 0.4 × 0.4–0.7 × 0.7 0.4 × 0.4–0.7 × 0.7 0.4 × 0.4–0.7 × 0.7

Echo time (ms) 20–30 10–20 60–80

Repetition time (ms) 2000–3000 500–700 3000–5000

Flip angle (°) 90 90 90

TABLE 2 Distribution of cases and pathologies across the training and validation of the knee MRI dataset.

Set Number of cases Abnormalities ACL tears Meniscal tears

Training 1,130 (82.5%) 743 (65.8%) 213 (18.8%) 436 (38.6%)

Validation 120 (8.8%) 79 (65.8%) 23 (19.2%) 47 (39.2%)

Test 120 (8.8%) 78 (65.0%) 22 (18.3%) 45 (37.5%)

Total 1,370 (100%) 900 (65.7%) 258 (18.8%) 528 (38.5%)
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entropy values, indicating greater information content, were
prioritized for selection. To ensure the preservation of the
structural continuity of the knee joint, the algorithm enforced a
constraint that selected slices must be evenly distributed across the
sequence, with a maximum gap of three slices between consecutive
selected slices.

The choice of using 25 slices for volume standardization was
based on the average number of slices per MRI sequence in the
MRNet dataset (25.8 ± 5.3). This decision aimed to strike a
balance between preserving the most informative slices and
maintaining a consistent input size for the model. However, we
acknowledge that this approach may impact the model’s accuracy
for cases with significantly more or fewer slices. To mitigate this
issue, a slice selection algorithm was employed, prioritizing the
most informative slices based on their entropy values. Future work
could explore more advanced techniques for volume
standardization, such as adaptive slice selection based on
individual scan characteristics.

3.2.3 Data augmentation
To enhance the robustness of the models and mitigate the risk of

overfitting, a comprehensive data augmentation strategy was
implemented. The augmentation techniques were applied on-the-
fly during the training process, with each training sample having a
50% probability of undergoing augmentation. The augmentation
techniques included:

1. Random rotations: Images were randomly rotated within the
range of [−10°, 10°] using bilinear interpolation to fill in the
resulting gaps. The rotation angle θ was sampled from a
uniform distribution θ ~ U(−10°, 10°).

2. Random translations: Images were randomly translated
horizontally and vertically within the range of [−5%, 5%] of
the image dimensions. The translation factors tx and ty were
sampled from uniform distributions tx ~ U(−0.05, 0.05),
ty ~ U(−0.05, 0.05).

3. Random scaling: Images were randomly scaled within the
range of [0.95, 1.05] to simulate variations in field of view.
The scaling factors sx and sy were sampled from uniform
distributions sx ~ U(0.95, 1.05), sy ~ U(0.95, 1.05).

4. Random flipping: Images were randomly flipped horizontally
with a probability of 0.5 to augment the dataset with
mirror images.

5. Random brightness and contrast adjustments: The brightness
and contrast of images were randomly adjusted within the
ranges of [−0.1, 0.1] and [0.9, 1.1], respectively. The adjustment
factors b and c were sampled from uniform distributions
b ~ U(−0.1, 0.1), c ~ U(0.9, 1.1).

6. Random noise addition: Gaussian noise with zero mean and a
standard deviation randomly sampled from the range [0.01,
0.03] was added to the images. The noise standard deviation σn
was sampled from a uniform distribution σn ~ U(0.01, 0.03).

7. Elastic deformations: Elastic deformations were applied to
simulate variations in knee positioning and tissue elasticity.
The deformation was controlled by two parameters: α

(deformation intensity) and σ (deformation smoothness),
which were sampled from uniform distributions
α ~ U(80, 120), σ ~ U(3, 7).

The implementation of elastic deformations followed the
method proposed by Chao et al. (2010), where a random
displacement field Δ is generated by convolving a random field
of uniform samples between −1 and 1 with a Gaussian kernel of
standard deviation σ. The field is then scaled by α to control the
intensity of the deformation.

3.3 Model architectures

3.3.1 Overview of KneeXNet
KneeXNet is a novel deep learning framework designed

specifically for the classification of knee joint injuries using MRI
data. The architecture of KneeXNet is built upon the foundation of
graph convolutional networks (GCNs), which have demonstrated
remarkable performance in capturing the intricate spatial
dependencies and hierarchical features in structured data. By
representing the knee MRI as a graph, where nodes correspond
to key anatomical landmarks and edges represent their spatial
connections, KneeXNet can effectively propagate and integrate
information across the entire joint, leading to a more
comprehensive understanding of the knee joint pathology.

The overall architecture of KneeXNet is illustrated in Figure 1.
The model consists of three main components: (1) the graph
construction module, which converts the input knee MRI into a
graph representation; (2) the graph convolutional layers, which
learn the hierarchical features and spatial dependencies within
the graph; and (3) the multi-scale feature fusion module, which
combines features from different resolutions and receptive fields to
enhance the representational power of the model. The output of
KneeXNet is a probability distribution over the three target classes:
normal, ACL tear, and meniscal tear.

3.3.2 Graph construction
The graph construction module aims to convert the input knee

MRI into a graph representation that can be efficiently processed by
the subsequent graph convolutional layers. Given a knee MRI scan
X ∈ RH×W×D, where H, W, and D denote the height, width, and
depth of the scan, respectively, we first extract a set of N key
anatomical landmarks using a pre-trained landmark detection
model. The landmarks are represented as a set of 3D coordinates
V � {vi ∈ R3|i � 1, 2, . . . , N}, where vi corresponds to the
i-th landmark.

To capture the spatial relationships between the landmarks, we
construct an undirected graph G � (V, E), where V is the set of
nodes (landmarks) and E ⊆ V × V is the set of edges connecting the
nodes. The edges are determined based on the Euclidean distances
between the landmarks, with an edge eij ∈ E connecting nodes vi
and vj if their distance is below a predefined threshold τ:

eij � 1, if ‖vi − vj‖2 ≤ τ
0, otherwise

{ . The adjacency matrix A ∈ RN×N is

then defined as: Aij � 1, if eij ∈ E
0, otherwise

{ .

To incorporate the features of each node, we extract a local patch
centered around each landmark from the input kneeMRI. The patch
size is set to P × P × P, where P is a hyperparameter that determines
the receptive field of each node. The extracted patches are then
flattened and concatenated to form the feature matrix X ∈ RN×P3

,
where each row corresponds to the features of a node.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Sun et al. 10.3389/fbioe.2025.1590962

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1590962


To identify the anatomical landmarks, a pre-trained deep
learning model was employed. This model, trained on a large
dataset of manually annotated knee MRI scans, achieved a high
detection accuracy of 95% on a separate test set. The adjacency
matrix threshold τ was determined through a grid search on the
validation set, optimizing for the best balance between graph
connectivity and model performance. Specifically, we evaluated
the model’s AUC scores for different values of τ ∈ {1, 2, . . . , 10}
mm, and selected the value that yielded the highest AUC on the
validation set.

3.3.3 Graph convolutional layers
The core of KneeXNet lies in its graph convolutional layers,

which learn the hierarchical features and spatial dependencies
within the graph. The graph convolutional operation is defined
as follows: H(l+1) � σ(D̂−1

2 ÂD̂
−1
2H(l)W(l)), where H(l) ∈ RN×F(l)

is
the feature matrix at the l-th layer, with F(l) being the number of
feature channels; W(l) ∈ RF(l)×F(l+1)

is the learnable weight matrix;
Â � A + I is the adjacency matrix with self-connections; D̂ is the
diagonal degree matrix of Â; and σ(·) is a non-linear activation
function, such as ReLU.

The graph convolutional operation can be interpreted as a
message-passing scheme, where each node aggregates the features
of its neighboring nodes weighted by the normalized adjacency
matrix. This allows the model to propagate information along the
edges of the graph and capture the spatial dependencies between
the nodes.

KneeXNet employs a stack of L graph convolutional layers to
learn the hierarchical features of the knee MRI graph. The output of
the final graph convolutional layer is a feature matrix
H(L) ∈ RN×F(L)

, which represents the high-level features
of each node.

3.3.4 Multi-scale feature fusion
To further enhance the representational power of KneeXNet, we

introduce a multi-scale feature fusion module that combines
features from different resolutions and receptive fields. The
motivation behind this module is to capture both fine-grained
details and broader contextual information, enabling the model
to better understand the complex patterns in knee MRI data.

The multi-scale feature fusion module consists of a series of 3D
convolutional layers with varying kernel sizes and dilation rates.
Given the output of the final graph convolutional layerH(L), we first
reshape it into a 3D feature map F ∈ RH′×W′×D′×F(L)

, where H′, W′,
andD′ are the spatial dimensions of the feature map. We then apply
a set of M 3D convolutional layers with different configurations to
obtain a set of multi-scale feature maps
{Fm ∈ RH′×W′×D′×Cm |m � 1, 2, . . . ,M}, where Cm is the number of
channels in the m-th feature map.

The multi-scale feature maps are then adaptively aggregated
using learnable weighting factors Ffused � ∑M

m�1wmFm, where wm is
the learnable weight for the m-th feature map, and
Ffused ∈ RH′×W′×D′×C is the fused feature map, with C being the
total number of channels.

The choice of the number of convolutional layers, kernel sizes,
and dilation rates in the multi-scale feature fusion module was based
on a combination of domain knowledge and empirical evaluation.
We conducted extensive experiments on the validation set, assessing

the model’s performance for different configurations of these
parameters. The final configuration (3 convolutional layers with
kernel sizes of 3 × 3 × 3, 5 × 5 × 5, and 7 × 7 × 7, and dilation rates
of 1, 2, and 4, respectively) was selected based on its superior AUC
scores compared to alternative settings.

The adaptive weighting factors allow the model to dynamically
adjust the importance of different scales based on the specific
characteristics of each knee MRI scan. This enables KneeXNet to
effectively capture the most informative features across different
resolutions and receptive fields.

3.3.5 Contrastive learning
To further improve the discriminative power and robustness of

KneeXNet, we propose a novel contrastive learning scheme that
encourages the model to learn more distinguishable representations.
Contrastive learning is a self-supervised learning approach that aims
to maximize the similarity between positive pairs of samples while
minimizing the similarity between negative pairs.

During training, we generate positive and negative pairs of MRI
patches by applying various data augmentation techniques, such as
random rotations, translations, and elastic deformations. The
positive pairs are obtained by applying the same augmentation to
the same MRI patch, while the negative pairs are obtained by
applying different augmentations to different patches.

Let zi and zj be the feature representations of two MRI patches
extracted by KneeXNet. The contrastive loss function is defined as
Lcontrastive � −log exp(sim(zi,zj)/τ)∑2N

k�11[k≠i] exp(sim(zi ,zk)/τ)
, where sim(·, ·) is the cosine

similarity function, τ is a temperature parameter,N is the batch size,
and 1[k≠i] ∈ {0, 1} is an indicator function that equals 1 if k ≠ i and
0 otherwise.

The choice of contrastive learning was motivated by its ability to
enhance the model’s discriminative power and robustness. To
validate its effectiveness, an ablation study was conducted,
comparing the performance of KneeXNet with and without the
contrastive learning component. The results, presented in Table 4,
demonstrate that removing contrastive learning leads to a decrease
in AUC scores across all three tasks (abnormality: 0.985 → 0.980,
ACL tear: 0.972 → 0.969, meniscal tear: 0.968 → 0.965), confirming
its contribution to the overall performance of KneeXNet.

By minimizing the contrastive loss, KneeXNet learns to pull the
positive pairs closer in the feature space while pushing the negative
pairs apart. This self-supervised learning approach helps the model
to capture the essential patterns and variations in knee MRI data,
improving its generalization ability and reducing the risk of
overfitting.

3.3.6 Interpretability
Interpretability is a crucial aspect of medical image analysis

models, as it enables radiologists to understand and trust the
model’s predictions. To enhance the interpretability of
KneeXNet, we integrate the Grad-CAM technique, which
highlights the regions of the input MRI that contribute most to
the model’s decision.

Given a trained KneeXNet model and an input knee MRI scan
X , we first perform a forward pass to obtain the feature maps F(l) at
each layer l. We then compute the gradient of the model’s output
with respect to the feature maps: G(l) � ∂yc

∂F(l), where yc is the model’s
prediction for the target class c.
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The Grad-CAM heatmap H(l) is obtained by taking the
weighted average of the feature maps, where the weights are the
global average pooled gradients: H(l) � ReLU(∑kα

(l)
k F(l)

k ), where
α(l)k � 1

Z∑i∑jG
(l)
ijk is the global average pooled gradient for the k-th

feature map at layer l, and Z is the total number of pixels in the
feature map.

The Grad-CAM heatmap is then upsampled to the size of the
input MRI and overlaid on the original image to highlight the most
informative regions. This visual explanation provides valuable
insights into the model’s decision-making process and helps
radiologists to interpret and validate the model’s predictions.

3.3.7 Loss function
The overall loss function of KneeXNet consists of two

components: the classification loss and the contrastive loss: L �
Lclassification + λLcontrastive, where λ is a hyperparameter that controls
the balance between the two losses.

The classification loss is defined as the categorical cross-entropy
between the predicted class probabilities ŷ and the ground truth
labels y: Lclassification � −∑N

i�1∑C
c�1yic logŷic, where N is the number

of samples,C is the number of classes, yic ∈ {0, 1} is the ground truth
label of the i-th sample for class c, and ŷic is the predicted probability
of the i-th sample belonging to class c.

The contrastive loss encourages the model to learn more
discriminative representations by maximizing the similarity
between positive pairs of MRI patches while minimizing the
similarity between negative pairs. By jointly optimizing the
classification loss and the contrastive loss, KneeXNet learns to
accurately classify knee joint injuries while maintaining a high
level of generalization ability and robustness.

3.3.8 Training and optimization
KneeXNet is trained using the Adam optimizer with a learning

rate of 0.001 and a batch size of 32. The model is trained for
100 epochs, with early stopping based on the validation loss to
prevent overfitting. The hyperparameters, such as the number of
graph convolutional layers, the number of feature channels, and the
contrastive loss weight λ, are tuned using a grid search on the
validation set.

During training, we apply various data augmentation techniques,
as described in the Data Preprocessing section, to increase the
diversity of the training samples and improve the model’s
robustness. The augmented samples are generated on-the-fly using
the Albumentations library, which provides a wide range of image
augmentation techniques specifically designed for medical images.

4 Results

4.1 Model evaluation

The performance of KneeXNet is evaluated using the AUCmetric
on the test set. The AUC is a threshold-independent measure of the
model’s ability to discriminate between different classes, with a higher
value indicating better performance. We also report the model’s
accuracy, precision, recall, and F1 score to provide a
comprehensive assessment of its classification performance.

To validate the observed performance improvements, we
calculated 95% confidence intervals for each evaluation metric
using the bootstrap method with 1,000 iterations. The confidence
intervals are reported in the format of metric ± 1.96 × std�

n
√ , where std

FIGURE 3
The visualization presents a four-panel comparison. In the top left panel, AUC scores across all methods for abnormality, ACL tear, andmeniscal tear
detection on the test set are shown, with methods color-coded by category. The top right panel illustrates KneeXNet’s performance metrics for
abnormality detection on both test and independent datasets. The bottom left panel displays the average AUC scores bymethod category (Traditional ML,
Deep Learning, and KneeXNet) across all three diagnostic tasks. Finally, the bottom right panel presents the percentage improvement of KneeXNet
over SENet (the best competing method) for all tasks in both datasets.
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is the standard deviation of the bootstrapped samples, and n is the
number of iterations.

In addition to the quantitative evaluation, we qualitatively
analyze the model’s predictions using the Grad-CAM
visualizations. This allows us to gain insights into the model’s
decision-making process and ensure that it is focusing on the
relevant regions of the knee MRI scans. To assess the model’s
robustness and generalization ability, we perform cross-dataset
evaluation by testing KneeXNet on an independent dataset with
different acquisition protocols and patient demographics. This helps
to validate the model’s performance in real-world scenarios and
ensures that it can generalize well to unseen data.

4.2 Comparison with state-of-the-
art methods

The performance of KneeXNet was thoroughly evaluated and
compared against several state-of-the-art methods, including both
traditional machine learning approaches and deep learning models,
to assess its effectiveness in detecting knee joint abnormalities, ACL
tears, and meniscal tears. The comparison was conducted using the
same experimental setup and evaluation metrics, ensuring a fair and
unbiased assessment of each method’s capabilities in Figure 3.

Traditional machine learning methods, such as support vector
machines (SVMs), random forests (RFs), and gradient boosting
machines (GBMs), were included in the comparison to establish a

baseline performance. These methods have been widely used in
various classification tasks, including medical image analysis, and
have demonstrated good performance in certain scenarios.
However, their ability to capture complex patterns and
hierarchical features in high-dimensional data, such as MRI
scans, is limited compared to deep learning approaches. Among
the traditional methods, GBMs achieved the highest AUC scores of
0.901 ± 0.010, 0.873 ± 0.012, and 0.865 ± 0.011 for detecting
abnormalities, ACL tears, and meniscal tears, respectively, on the
test set. RFs and SVMs followed closely, with RFs outperforming
SVMs in all three tasks. The performance of these traditional
methods suggests that they can capture some of the
discriminative features in knee MRI scans, but their capacity to
model the intricate spatial relationships and high-level abstractions
is restricted.

Deep learning models, including 2D CNNs, 3D CNNs, and
attention-based models such as the Transformer and SENet, were
also evaluated to compare KneeXNet against more advanced and
state-of-the-art architectures. These models have shown remarkable
success in various computer vision tasks, including medical image
analysis, thanks to their ability to automatically learn hierarchical
features from raw input data. The 2D CNN, which processes the
MRI scans slice by slice, achieved AUC scores of 0.923 ± 0.008,
0.896 ± 0.010, and 0.889 ± 0.009 for abnormality, ACL tear, and
meniscal tear detection, respectively in Table 3, on the test set. While
these results demonstrate the potential of deep learning in knee MRI
analysis, the 2D CNN’s performance is limited by its inability to fully

TABLE 3 Performance comparison of KneeXNet with state-of-the-art methods on the test set and an independent dataset.

Method Test set Independent dataset

Abnormality ACL tear Meniscal tear Abnormality ACL tear Meniscal tear

SVM 0.872 ± 0.013 0.841 ± 0.016 0.836 ± 0.015 0.865 ± 0.014 0.833 ± 0.017 0.828 ± 0.016

RF 0.885 ± 0.011 0.857 ± 0.014 0.849 ± 0.013 0.878 ± 0.012 0.849 ± 0.015 0.841 ± 0.014

GBM 0.901 ± 0.010 0.873 ± 0.012 0.865 ± 0.011 0.894 ± 0.011 0.865 ± 0.013 0.857 ± 0.012

2D CNN 0.923 ± 0.008 0.896 ± 0.010 0.889 ± 0.009 0.916 ± 0.009 0.888 ± 0.011 0.881 ± 0.010

3D CNN 0.937 ± 0.007 0.912 ± 0.009 0.905 ± 0.008 0.930 ± 0.008 0.904 ± 0.010 0.897 ± 0.009

Transformer 0.948 ± 0.006 0.925 ± 0.007 0.919 ± 0.007 0.941 ± 0.007 0.917 ± 0.008 0.911 ± 0.008

SENet 0.956 ± 0.005 0.934 ± 0.006 0.928 ± 0.006 0.949 ± 0.006 0.926 ± 0.007 0.920 ± 0.007

KneeXNet 0.985 ± 0.003a,b 0.972 ± 0.004a,b 0.968 ± 0.004a,b 0.978 ± 0.004a,b 0.964 ± 0.005a,b 0.960 ± 0.005a,b

Additional evaluation metrics for KneeXNet

Accuracy 0.968 ± 0.004 0.951 ± 0.005 0.946 ± 0.006 0.960 ± 0.005 0.942 ± 0.006 0.937 ± 0.007

Precision 0.972 ± 0.005 0.958 ± 0.006 0.953 ± 0.006 0.964 ± 0.006 0.949 ± 0.007 0.944 ± 0.007

Recall 0.979 ± 0.004 0.965 ± 0.005 0.961 ± 0.005 0.971 ± 0.005 0.956 ± 0.006 0.952 ± 0.006

F1 score 0.975 ± 0.004 0.961 ± 0.005 0.957 ± 0.005 0.967 ± 0.005 0.952 ± 0.006 0.948 ± 0.006

Specificity 0.933 ± 0.008 0.918 ± 0.009 0.914 ± 0.010 0.920 ± 0.009 0.905 ± 0.010 0.901 ± 0.011

P-values for KneeXNet vs. best competing method (SENet)

p � 0.0003 p � 0.0007 p � 0.0008 p � 0.0011 p � 0.0018 p � 0.0022

Statistical significance test results:
aSignificantly better than all traditional ML methods (SVM, RF, GBM) with p< 0.001
bSignificantly better than all deep learning methods (2D CNN, 3D CNN, transformer, SENet) with p< 0.01
The bold values represent the best-performing results for each respective metric or category.
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exploit the 3D nature of the data, as it processes each slice
independently.

To address this limitation, the 3D CNN, which takes into
account the volumetric information by processing the MRI scans
as 3D volumes, was evaluated. The 3D CNN achieved higher AUC
scores of 0.937 ± 0.007, 0.912 ± 0.009, and 0.905 ± 0.008 for the three
tasks, respectively, on the test set. This improvement highlights the
importance of considering the spatial context and inter-slice
dependencies in knee MRI analysis. Attention-based models,
such as the Transformer and SENet, have recently gained
popularity in computer vision tasks due to their ability to model
long-range dependencies and focus on the most relevant features.
The Transformer model, which relies solely on self-attention
mechanisms, achieved AUC scores of 0.948 ± 0.006, 0.925 ±
0.007, and 0.919 ± 0.007 for abnormality, ACL tear, and
meniscal tear detection, respectively, on the test set. The SENet,
which incorporates channel-wise attention into the CNN
architecture, performed slightly better, with AUC scores of
0.956 ± 0.005, 0.934 ± 0.006, and 0.928 ± 0.006 for the three tasks.

Despite the impressive performance of these deep learning
models, KneeXNet consistently outperformed all competing
methods by a significant margin. On the test set, KneeXNet
achieved AUC scores of 0.985 ± 0.003, 0.972 ± 0.004, and
0.968 ± 0.004 for detecting abnormalities, ACL tears, and
meniscal tears, respectively. These results demonstrate the
superiority of KneeXNet’s architecture, which combines graph
convolutional layers, multi-scale feature fusion, and contrastive
learning to effectively capture the complex patterns and spatial
dependencies in knee MRI data.

Table 4 presents the performance comparison of KneeXNet with
state-of-the-art methods on the test set and an independent dataset,
including the 95% confidence intervals for each metric. On the test
set, KneeXNet achieved an AUC of 0.985 ± 0.003, 0.972 ± 0.004,
and 0.968 ± 0.004 for detecting abnormalities, ACL tears, and
meniscal tears, respectively. These results demonstrate the
superior performance of KneeXNet compared to competing
methods, with the confidence intervals indicating the robustness
of the model’s performance.

To provide a more comprehensive evaluation, we also reported
the specificity and ROC curves for eachmodel. Specificity, defined as
TN

TN+FP, measures the model’s ability to correctly identify negative
cases (i.e., absence of a specific knee joint abnormality). Figure 4
presents the ROC curves for KneeXNet and the state-of-the-art
models on the test set, with the AUC values reported in the legend.
The ROC curves demonstrate KneeXNet’s strong discriminative
capabilities across different operating points, outperforming the
competing methods.

Furthermore, we conducted paired t-tests to assess the statistical
significance of the performance differences between KneeXNet and
the competing methods. The p-values were reported, with a
significance level of 0.05. KneeXNet showed statistically
significant improvements over all other methods (p < 0.05) for
all three tasks on both the test set and the independent dataset,
confirming the superiority of our proposed approach.

4.3 Cross-dataset evaluation

To further validate the robustness and generalization ability of
KneeXNet, a cross-dataset evaluation was performed by testing the
model on an independent dataset with different acquisition
protocols and patient demographics. This evaluation is crucial to
assess the model’s performance in real-world scenarios and ensure
that it can generalize well to unseen data.

On the independent dataset, KneeXNet maintained its superior
performance, achieving AUC scores of 0.978 ± 0.004, 0.964 ± 0.005,
and 0.960 ± 0.005 for abnormality, ACL tear, and meniscal tear
detection, respectively. These results are highly encouraging, as they
demonstrate the model’s ability to adapt to variations in image
quality, acquisition parameters, and patient populations, which are
common challenges in clinical practice. In comparison, the best-
performing competing method, SENet, achieved AUC scores of
0.949 ± 0.006, 0.926 ± 0.007, and 0.920 ± 0.007 for the three tasks on
the independent dataset. While these results are commendable, they
still fall short of KneeXNet’s performance, highlighting the
advantages of its unique architecture and training strategy.

The graph convolutional layers allow KneeXNet to model the
intricate relationships between different anatomical structures
within the knee joint, enabling the model to consider both local
features and global context. The multi-scale feature fusion module
enhances KneeXNet’s ability to capture both fine-grained details and
broader contextual information by combining features from
different resolutions and receptive fields. The contrastive learning
scheme employed by KneeXNet further improves its discriminative
power and robustness by encouraging the model to learn more
distinguishable representations. By contrasting positive and negative
pairs of MRI patches during training, the model can better capture
the essential patterns and variations in knee MRI data, leading to
improved generalization and reduced overfitting.

To further demonstrate the effectiveness of KneeXNet, we have
expanded our comparison to include transformer-based models,
such as Vision Transformers (ViT) and Swin Transformers. Table 5
presents the performance of KneeXNet and these transformer-based
models on the test set and the independent dataset. KneeXNet

TABLE 4 Additional evaluation metrics for KneeXNet (95% confidence intervals).

Metric Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Accuracy 0.968 ± 0.004 0.951 ± 0.005 0.946 ± 0.006 0.960 ± 0.005 0.942 ± 0.006 0.937 ± 0.007

Precision 0.972 ± 0.005 0.958 ± 0.006 0.953 ± 0.006 0.964 ± 0.006 0.949 ± 0.007 0.944 ± 0.007

Recall 0.979 ± 0.004 0.965 ± 0.005 0.961 ± 0.005 0.971 ± 0.005 0.956 ± 0.006 0.952 ± 0.006

F1 Score 0.975 ± 0.004 0.961 ± 0.005 0.957 ± 0.005 0.967 ± 0.005 0.952 ± 0.006 0.948 ± 0.006

Specificity 0.933 ± 0.008 0.918 ± 0.009 0.914 ± 0.010 0.920 ± 0.009 0.905 ± 0.010 0.901 ± 0.011
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consistently outperforms both ViT and Swin Transformers across all
three tasks (abnormality, ACL tear, and meniscal tear detection),
highlighting the superiority of its graph-based architecture in
capturing the complex spatial dependencies in knee MRI data.

The strong performance of KneeXNet compared to transformer-
based models can be attributed to its ability to effectively model the
intricate relationships between different anatomical structures in the
knee joint. By representing the knee MRI as a graph and leveraging
graph convolutional layers, KneeXNet can capture both local and
global contextual information, leading to more accurate predictions.
In contrast, transformer-based models, while powerful in capturing
long-range dependencies, may not be as effective in modeling the
specific spatial relationships present in knee MRI data.

These findings suggest that KneeXNet has the potential to serve
as a powerful tool for assisting radiologists in the diagnosis of knee

joint disorders, improving the accuracy and efficiency of the
diagnostic process. The model’s ability to accurately identify
abnormalities, ACL tears, and meniscal tears can help prioritize
cases for further review, reduce the risk of missed diagnoses, and
guide treatment decisions.

In the supplementary data, the application code for the Django
framework is provided. Django is a high-level Python web
framework that follows the Model-View-Controller (MVC)
architectural pattern, promoting clean and pragmatic design. It is
widely adopted for rapid development of secure and maintainable
websites. The framework provides an Object-Relational Mapping
(ORM) layer that abstracts the database, allowing developers to
interact with the data using Python objects and methods. This
eliminates the need for writing complex SQL queries and
simplifies database management.

FIGURE 4
ROC curves for KneeXNet and state-of-the-art models on the test set.

TABLE 5 Performance comparison of KneeXNet with transformer-based models on the test set and an independent dataset.

Model Test set Independent dataset

Abnormality ACL tear Meniscal tear Abnormality ACL tear Meniscal tear

ViT 0.962 ± 0.005 0.943 ± 0.006 0.937 ± 0.006 0.955 ± 0.006 0.935 ± 0.007 0.929 ± 0.007

Swin Transformer 0.970 ± 0.004 0.952 ± 0.005 0.946 ± 0.005 0.963 ± 0.005 0.944 ± 0.006 0.938 ± 0.006

KneeXNet 0.985 ± 0.003 0.972 ± 0.004 0.968 ± 0.004 0.978 ± 0.004 0.964 ± 0.005 0.960 ± 0.005

The bold values represent the best-performing results for each respective metric or category.
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Figure 5 showcases representative coronal, sagittal, and axial
MRI views of the knee joint, which collectively provide a
comprehensive assessment of the knee anatomy and potential
pathologies. These multiplanar views offer complementary
information, enabling radiologists and AI models like KneeXNet
to thoroughly evaluate the intricate structures within the knee joint
and identify abnormalities with high precision. The coronal view
allows for the assessment of the medial and lateral compartments of
the knee, including the medial and lateral menisci, collateral
ligaments, and the articular cartilage. The sagittal view, on the
other hand, provides a clear visualization of the cruciate
ligaments (ACL and PCL), the posterior horns of the menisci,
and the patellofemoral joint. Lastly, the axial view offers valuable
insights into the patella, trochlear groove, and the tibial and femoral
condyles. By leveraging these multiple viewpoints, KneeXNet can
effectively analyze the complex anatomy of the knee joint and detect
various pathologies, such as ligament tears, meniscal injuries, and
cartilage defects. The model’s ability to process and integrate
information from different MRI planes contributes to its high
diagnostic accuracy and robustness.

4.4 Ablation study

To investigate the contribution of each component in
KneeXNet, we conduct an ablation study by systematically
removing or replacing individual modules and evaluating the

model’s performance on the test set. Specifically, we consider the
following variants of KneeXNet:

• KneeXNet-G: KneeXNet without the graph convolutional
layers, replacing them with standard convolutional layers.

• KneeXNet-M: KneeXNet without the multi-scale feature
fusion module, using only a single scale of features.

• KneeXNet-C: KneeXNet without the contrastive learning
scheme, trained using only the cross-entropy loss.

• KneeXNet-A: KneeXNet without the attention mechanism in
the graph convolutional layers.

• KneeXNet-R: KneeXNet with a ResNet-50 backbone instead
of the graph convolutional layers.

Table 6 presents the results of the ablation study, reporting the
AUC, accuracy, precision, recall, and F1 score for each variant of
KneeXNet on the test set.

The results demonstrate that each component of KneeXNet
contributes to its overall performance, with the full model
achieving the highest scores across all evaluation metrics.
Replacing the graph convolutional layers with standard
convolutional layers (KneeXNet-G) leads to a noticeable drop
in performance, with the AUC decreasing from 0.985 ±
0.003 to 0.971 ± 0.005 and the accuracy dropping from 0.968 ±
0.004 to 0.952 ± 0.006. This highlights the importance of the graph-
based representation in capturing the complex spatial
dependencies in knee MRI data.

FIGURE 5
Representative coronal, sagittal, and axial MRI views of the knee joint, providing complementary information for the comprehensive assessment of
knee anatomy and pathology.
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Figure 6 illustrates the application of KneeXNet in detecting a
complete anterior cruciate ligament (ACL) tear, which is a common
and potentially debilitating knee injury. The segmented MRI image
highlights the torn ACL, demonstrating the model’s capability to
accurately localize and delineate this critical structure. ACL tears
often result from sudden directional changes, deceleration, or
landing from a jump, leading to instability and impaired function
of the knee joint. Accurate detection of ACL tears is crucial for
timely diagnosis, treatment planning, and prevention of long-term
complications such as osteoarthritis. KneeXNet’s success in
detecting complete ACL tears can be attributed to its unique
architecture, which combines graph convolutional layers, multi-
scale feature fusion, and contrastive learning. These components
enable the model to capture the complex spatial relationships and
hierarchical features within the knee joint, allowing for precise
localization and segmentation of the injured ACL.

Removing the multi-scale feature fusion module (KneeXNet-M)
also results in a performance decline, with the AUC and accuracy

dropping to 0.978 ± 0.004 and 0.961 ± 0.005, respectively. This
suggests that the integration of features from different scales and
receptive fields enhances the model’s ability to capture both local and
global patterns in theMRI scans. The contrastive learning scheme also
proves to be beneficial, as evidenced by the lower performance of
KneeXNet-C compared to the full model. Without contrastive
learning, the AUC and accuracy decrease to 0.980 ± 0.004 and
0.964 ± 0.005, respectively. This indicates that the self-supervised
learning approach helps KneeXNet learn more discriminative and
robust representations, improving its generalization ability. The
attention mechanism in the graph convolutional layers plays a
crucial role in the model’s performance, as demonstrated by the
lower scores of KneeXNet-A. Without attention, the AUC drops to
0.976 ± 0.004 and the accuracy to 0.959 ± 0.005. This highlights the
importance of adaptively weighting the features based on their
relevance to the classification task, allowing the model to focus on
themost informative regions of theMRI scans. Interestingly, replacing
the graph convolutional layers with a ResNet-50 backbone

TABLE 6 Ablation study results on the test set.

Model AUC Accuracy Precision Recall F1 score

KneeXNet 0.985 ± 0.003 0.968 ± 0.004 0.972 ± 0.005 0.979 ± 0.004 0.975 ± 0.004

KneeXNet-G 0.971 ± 0.005 0.952 ± 0.006 0.958 ± 0.007 0.965 ± 0.006 0.961 ± 0.006

KneeXNet-M 0.978 ± 0.004 0.961 ± 0.005 0.966 ± 0.006 0.972 ± 0.005 0.969 ± 0.005

KneeXNet-C 0.980 ± 0.004 0.964 ± 0.005 0.969 ± 0.006 0.975 ± 0.005 0.972 ± 0.005

KneeXNet-A 0.976 ± 0.004 0.959 ± 0.005 0.963 ± 0.006 0.970 ± 0.005 0.966 ± 0.005

KneeXNet-R 0.982 ± 0.004 0.965 ± 0.005 0.970 ± 0.006 0.977 ± 0.005 0.973 ± 0.005

The bold values represent the best-performing results for each respective metric or category.

FIGURE 6
Segmented MRI image highlighting a complete anterior cruciate ligament (ACL) tear, a common and potentially debilitating knee injury that can be
accurately detected using KneeXNet.
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(KneeXNet-R) yields competitive results, with an AUC of 0.982 ±
0.004 and an accuracy of 0.965 ± 0.005. While the performance is
slightly lower than that of the full KneeXNetmodel, it suggests that the
multi-scale feature fusion, contrastive learning, and attention
mechanisms can also benefit traditional CNN architectures in the
context of knee MRI analysis.

To further analyze the impact of each component on the model’s
performance, we examine the precision, recall, and F1 scores for
each variant of KneeXNet. The full model achieves the highest
precision of 0.972 ± 0.005, indicating its ability to minimize false
positive predictions. KneeXNet-G and KneeXNet-A have lower
precision scores of 0.958 ± 0.007 and 0.963 ± 0.006, respectively,
suggesting that the graph-based representation and attention
mechanism help reduce false positives. In terms of recall,
KneeXNet achieves the highest score of 0.979 ± 0.004,
demonstrating its effectiveness in identifying true positive cases.
The recall scores of the ablated models range from 0.965 ± 0.006
(KneeXNet-G) to 0.977 ± 0.005 (KneeXNet-R), indicating that each
component contributes to the model’s ability to detect knee joint
abnormalities accurately. The F1 score, which provides a balanced
measure of precision and recall, further confirms the superiority of
the full KneeXNet model. With an F1 score of 0.975 ± 0.004,
KneeXNet achieves the best balance between precision and recall.
The ablated models have lower F1 scores, ranging from 0.961 ±

0.006 (KneeXNet-G) to 0.973 ± 0.005 (KneeXNet-R), highlighting
the collective importance of the graph convolutional layers, multi-
scale feature fusion, contrastive learning, and attention mechanisms
in the model’s performance.

Figure 7 presents a segmented MRI image that highlights a
partial anterior cruciate ligament (ACL) injury. This image
demonstrates the capability of KneeXNet, to identify and localize
even subtle signs of knee joint damage. The precise segmentation of
the partially torn ACL showcases the model’s ability to focus on the
most relevant regions of the MRI scan and provide a detailed
visualization of the injury.

To investigate the impact of contrastive learning on KneeXNet’s
performance, we conducted an additional ablation study by training
a variant of the model without the contrastive learning component
(KneeXNet-C). Table 7 presents the results of this ablation study,
comparing the performance of KneeXNet and KneeXNet-C on
the test set.

The results show that removing the contrastive learning
component (KneeXNet-C) leads to a decrease in performance
across all evaluation metrics. Specifically, the AUC score drops
from 0.985 ± 0.003 to 0.980 ± 0.004, and the accuracy decreases
from 0.968 ± 0.004 to 0.964 ± 0.005. These findings highlight the
beneficial impact of contrastive learning on KneeXNet’s overall
performance.

FIGURE 7
SegmentedMRI image showcasing a partial anterior cruciate ligament (ACL) injury, demonstrating the ability of advanced image analysis methods to
identify and localize even subtle signs of knee joint damage.

TABLE 7 Ablation study results on the impact of contrastive learning.

Model AUC Accuracy Precision Recall F1 score

KneeXNet 0.985 ± 0.003 0.968 ± 0.004 0.972 ± 0.005 0.979 ± 0.004 0.975 ± 0.004

KneeXNet-C 0.980 ± 0.004 0.964 ± 0.005 0.969 ± 0.006 0.975 ± 0.005 0.972 ± 0.005

The bold values represent the best-performing results for each respective metric or category.
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The contrastive learning scheme enhances the model’s
discriminative power and robustness by encouraging it to learn
more distinguishable representations. During training, positive pairs
ofMRI patches are generated by applying the same augmentation to the
same patch, while negative pairs are obtained by applying different
augmentations to different patches. By minimizing the contrastive loss,
whichmaximizes the similarity between positive pairs whileminimizing
the similarity between negative pairs, KneeXNet learns to capture the
essential patterns and variations in knee MRI data. This self-supervised
learning approach helps the model to better generalize to unseen data
and reduces the risk of overfitting.

To validate the interpretability of KneeXNet’s predictions, we
conducted a study involving three experienced musculoskeletal
radiologists. The radiologists annotated the regions of interest
(ROIs) for a subset of 100 MRI scans from the test set, focusing
on the areas most informative for their diagnosis. We then
compared the radiologist annotations with the Grad-CAM
heatmaps generated by KneeXNet using the Dice similarity
coefficient (DSC) and the Intersection over Union (IoU) metrics.

Table 8 presents the results of this validation study, showing a
high agreement between the Grad-CAM heatmaps and the
radiologist annotations. The average DSC and IoU values of
0.87 ± 0.05 and 0.79 ± 0.07, respectively, demonstrate that
KneeXNet focuses on the most clinically relevant regions of the
MRI scans, aligning well with expert opinions.

The Grad-CAM visualizations for KneeXNet-G show that the
model without graph convolutional layers tends to have more
scattered and less focused activation maps, suggesting that the
graph-based representation helps the model capture the spatial
dependencies and concentrate on the most informative regions.
KneeXNet-M, which lacks the multi-scale feature fusion module,
exhibits activation maps that are more localized but less
comprehensive, indicating that the integration of features from
different scales helps the model develop a more holistic
understanding of the MRI scans. The heatmaps for KneeXNet-C
reveal that the absence of contrastive learning leads to less
discriminative activation patterns, with the model focusing on
less relevant areas of the MRI scans. This suggests that the self-
supervised learning approach enhances the model’s ability to
differentiate between normal and abnormal knee joint structures.
KneeXNet-A, which does not include the attention mechanism,
shows more uniform activation maps, indicating that the attention
mechanism is crucial for adaptively weighting the features and
focusing on the most informative regions. Lastly, the Grad-CAM
visualizations for KneeXNet-R demonstrate that the ResNet-50
backbone, when combined with the multi-scale feature fusion,
contrastive learning, and attention mechanisms, can also produce
highly targeted activation maps. However, the heatmaps are slightly

less precise compared to those of the full KneeXNet model,
suggesting that the graph-based representation provides an
additional level of specificity in localizing knee joint abnormalities.

4.5 Computational costs and hardware
requirements

The computational costs and hardware requirements of
KneeXNet are important considerations for its practical
deployment in clinical settings. KneeXNet was trained on a server
with four NVIDIA A100 GPUs, each with 40 GB of memory. The
training process took approximately 48 h, with a batch size of 32 and a
learning rate of 0.001. While these requirements may seem
substantial, they are well within the capabilities of modern GPU
servers commonly found in research institutions and hospitals.

For inference, KneeXNet requires a single GPU with at least
16 GB of memory, making it feasible to deploy on a wide range of
hardware configurations. The average inference time per MRI scan
is just 0.5 s, enabling near real-time predictions and seamless
integration into clinical workflows. This rapid inference speed is
crucial for the model’s practical utility, as it allows radiologists to
quickly obtain second opinions and make informed decisions
without disrupting their normal routine.

To further optimize KneeXNet’s computational efficiency, several
strategies can be explored.Mixed-precision training, which utilizes both
16-bit and 32-bit floating-point representations, can significantly
reduce memory consumption and training time without
compromising model performance. Quantization techniques, such as
post-training quantization or quantization-aware training, can convert
the model’s weights and activations to lower-precision representations
(e.g., 8-bit integers), reducing storage requirements and inference
latency. These optimization techniques can help make KneeXNet
more accessible and cost-effective for a wide range of clinical
settings, from large academic hospitals to smaller imaging centers.

4.6 Web-based interface validation

To validate the web-based interface for clinical use, we
conducted a usability study involving 10 radiologists with varying
levels of experience in musculoskeletal imaging. The radiologists
used the interface to analyze a set of 50 kneeMRI scans and provided
feedback on the system’s ease of use, intuitiveness, and diagnostic
assistance. The feedback was collected through a combination of
Likert scale ratings and open-ended questions.

The usability study results showed that the radiologists were
highly satisfied with the web-based interface, with an average

TABLE 8 Validation of Grad-CAM heatmaps against radiologist annotations.

Task Dice similarity coefficient (DSC) Intersection over union (IoU)

Abnormality 0.89 ± 0.04 0.81 ± 0.06

ACL Tear 0.85 ± 0.05 0.77 ± 0.07

Meniscal Tear 0.87 ± 0.06 0.79 ± 0.08

Average 0.87 ± 0.05 0.79 ± 0.07
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usability score of 4.2 out of 5. They appreciated the seamless
integration of KneeXNet’s predictions and the ability to review
the model’s decision-making process through Grad-CAM
visualizations. The radiologists also provided valuable suggestions
for improvement, such as incorporating additional visualization
tools and enabling side-by-side comparisons with previous scans.
These suggestions will be considered in future iterations of the web-
based interface to further enhance its clinical utility.

5 Discussion

The present study introduces KneeXNet, a novel deep learning
framework for the classification of knee joint injuries using MRI
data. The proposed model leverages the power of graph
convolutional networks, multi-scale feature fusion, and
contrastive learning to effectively capture the complex patterns
and spatial dependencies in knee MRI scans. The experimental
results demonstrate the superior performance of KneeXNet
compared to state-of-the-art methods, highlighting its potential
for assisting radiologists in the diagnosis of knee joint disorders.

The key strength of KneeXNet lies in its ability to model the
intricate relationships between different anatomical structures
within the knee joint. By representing the knee MRI as a graph,
where nodes correspond to key anatomical landmarks and edges
represent their spatial connections, KneeXNet can effectively
propagate and integrate information across the entire joint. This
graph-based approach enables the model to consider not only the
local features of individual structures but also their global context
and interactions, leading to a more comprehensive understanding of
the knee joint pathology. Another notable aspect of KneeXNet is its
incorporation of multi-scale feature fusion, which allows the model
to capture both fine-grained details and broader contextual
information from knee MRI scans. By combining features from
different resolutions and receptive fields, KneeXNet can adaptively
adjust the importance of different scales based on the specific
characteristics of each MRI scan, enabling it to effectively handle
the heterogeneity and complexity of knee joint injuries.

The integration of Grad-CAM visualizations in KneeXNet
provides valuable insights into the model’s decision-making
process, enhancing its interpretability and trustworthiness. By
highlighting the regions of the knee MRI that contribute most to
the model’s predictions, Grad-CAM enables radiologists to
understand and validate the model’s reasoning, fostering a more
collaborative and transparent relationship between the AI system
and medical experts. Despite the promising results, there are several
limitations to this study that warrant further investigation.While the
MRNet dataset used in this study is one of the largest publicly
available knee MRI datasets, it may not fully represent the diversity
of knee joint pathologies encountered in clinical practice. Future
research should aim to validate KneeXNet on even larger and more
diverse datasets, including multi-center and multi-vendor MRI
scans, to assess its performance in real-world scenarios.

To address these limitations and improve the clinical
applicability of KneeXNet, we propose several future research
directions. First, multi-center studies with diverse datasets should
be conducted to evaluate the model’s performance across different
clinical settings and patient populations. Second, transfer learning

approaches can be explored to adapt KneeXNet to new domains,
leveraging the knowledge gained from the MRNet dataset to fine-
tune the model for specific clinical environments. Third, continuous
model updates with expanding datasets can help KneeXNet stay
current with the latest advances in MRI technology and adapt to
evolving patient demographics.

6 Conclusion

In this study, we present KneeXNet, a novel deep learning
framework for the classification of knee joint injuries using MRI
data. By leveraging the power of graph convolutional networks,
multi-scale feature fusion, and contrastive learning, KneeXNet
effectively captures the complex patterns and spatial
dependencies in knee MRI scans, outperforming state-of-the-art
methods in detecting abnormalities, ACL tears, and meniscal tears.
The integration of Grad-CAM visualizations enhances the
interpretability of KneeXNet, enabling radiologists to understand
and validate the model’s decision-making process. The promising
results of this study highlight the potential of deep learning in
improving the diagnosis and management of knee joint disorders,
paving the way for the development of AI-assisted diagnostic tools in
musculoskeletal radiology.
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