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Introduction: The application of non-invasive brain-computer interfaces (BCIs)
in robotic control is limited by insufficient signal quality and decoding capabilities.
Enhancing the robustness of BCIs without increasing the cognitive load remains a
major challenge in brain-control technology.

Methods: This study presents a teleoperation robotic system based on hybrid
control of electroencephalography (EEG) and eye movement signals, and utilizes
vibration stimulation to assist motor imagery (MI) training and enhance control
signals. A control experiment involving eight subjects was conducted to validate
the enhancement effect of this tactile stimulation technique.

Results: Experimental results showed that during the MI training phase, the
addition of vibration stimulation improved the brain region activation response
speed in the tactile group, enhanced the activation of the contralateral motor
areas during imagery of non-dominant hand movements, and demonstrated
better separability (p = 0.017). In the robotic motion control phase, eye
movement-guided vibration stimulation effectively improved the accuracy of
online decoding of MI and enhanced the robustness of the control system and
success rate of the grasping task.

Discussion: The vibration stimulation technique proposed in this study can
effectively improve the training efficiency and online decoding rate of MI,
helping users enhance their control efficiency while focusing on control tasks.
This tactile enhancement technology has potential applications in robot-assisted
elderly care, rehabilitation training, and other robotic control scenarios.
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1 Introduction

BCI is a type of human-computer interaction system that enables direct interaction
between the brain and the external environment or equipment without relying on the
peripheral nerve and muscle systems (Vidal, 1973). Based on signal acquisition techniques,
BCIs are primarily divided into invasive and non-invasive BCIs. Non-invasive BCIs use
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electrodes placed on the scalp to acquire EEG signals, offering
advantages in terms of safety, convenience, and wide-ranging
applications. Common non-invasive BCI paradigms include MI,
Steady-state Visual Evoked Potentials (SSVEP), and Auditory
Evoked Potentials (AEP) (Hajcak et al., 2019; Norcia et al., 2015).
Among these, MI is the most widely used spontaneous EEG
paradigm, with broad applications in fields such as rehabilitation
and robotic control (McFarland and Wolpaw, 2017; Chaudhary
et al., 2016; Lian et al., 2024).

The use of BCI to realize the robust control of robots has always
been a popular research direction in the academic field. At present,
invasive BCI systems can control various functional tasks of robots,
such as handshaking and target tracking (Collinger et al., 2013;
Hochberg et al., 2012; Handelman et al., 2022). Non-invasive BCI
systems are limited by poor signal quality and spatial resolution.
They mainly employed passive elicitation paradigms, such as SSVEP
(Yang et al., 2017; Chen et al., 2018) and P300 (Pathirage et al., 2013;
Hu et al., 2024), to control robots. However, the drawback of these
paradigms is that the control signals are induced by external stimuli,
whichmaymake the online control method less natural and result in
poor user experience. Simultaneously, the active BCI paradigm
based on sensorimotor rhythm has also been applied to the
control of robotic arms (Iáñez et al., 2010; Savić et al., 2023).
Owing to the low signal-to-noise ratio of EEG signals and the
limited number of instructions and decoding accuracy, it is
difficult for such paradigms to decode continuous motion with a
high information transmission rate and cannot smoothly control
robotic arms in three-dimensional space (Kim et al., 2015).

As a safe, low-cost, wearable, and highly acceptable tactile
stimulation method, vibration stimulation can influence the
somatosensory cortex by activating mechanoreceptors in the skin
(Klatzky, 2024). Previous studies have used tactile stimulation to
enhance the performance of the MI paradigm by closing the
sensory-motor loop (Yao et al., 2013; Zhang et al., 2022; 2021).
To achieve robust MI control, long-term training is always required
to improve decoding accuracy. Yao et al. applied vibration
stimulation to the ipsilateral hand during MI tasks, providing
tactile feedback to enhance neural feedback training efficiency
(Zhong et al., 2022). Ming et al. used a hybrid BCI paradigm
combining tactile stimulation and MI (Yi et al., 2017). They
integrated Event-related Synchronization/Desynchronization
(ERS/ERD) with steady-state somatosensory evoked potentials
(SSSEP) to improve the decoding rate of the hybrid paradigm by
approximately 14% compared to the pure MI paradigm. However,
most related studies have applied vibration stimulation in an open-
loop manner, and because the MI paradigm is spontaneous, it is
difficult to apply stimulation only to the imagined side. Additionally,
applying bilateral tactile stimulation is believed to not improve the
overall performance of the left-right hand MI paradigm.

In current brain-controlled robot systems, tactile stimulation is
mainly used to provide feedback on control results or to increase the
number of commands. Peters et al. used a robotic arm to simulate
limb movements and enhance the decoding rate of the MI paradigm
by providing kinesthetic feedback (Gomez-Rodriguez et al., 2011a).
Kim et al. developed a wheelchair control system based on SSSEP,
where users controlled the wheelchairâ€™s left-right turning and
forward motion through selective vibration feedback provided by
actuators placed on the index fingers and toe (Kim et al., 2016). This

method achieved higher success rates and shorter times for obstacle
avoidance tasks than traditional MI control. However, such effective
tactile stimulation often requires large equipment or complex pre-
calibration procedures, making it challenging for large-scale
applications (Zeng et al., 2024; Gomez-Rodriguez et al., 2011b).
Therefore, the natural and efficient integration of tactile stimulation
into robot control systems to enhance the overall performance of
MI-BCI without increasing the cognitive load is an important
research issue.

The current mainstream control strategies for brain-controlled
systems mainly include process control and goal selection. In
process control, users can set the robotâ€™s detailed motion
parameters (e.g., direction, speed, and distance) using the BCI.
This control strategy is highly flexible, allowing users to freely
control the robot movements. However, even with invasive BCIs,
achieving dexterous control of robotic arms entirely through EEG
signals is challenging (Meng et al., 2016). The output of BCIs may
not be sufficiently reliable, and the limited number of commands
makes it difficult to complete fine-control tasks. In contrast, goal
selection control is relatively simpler, as users only need to select
specific task options without worrying about the detailed operation
process. However, this reduces the control authority of the user,
preventing them from intervening in the control process, which can
lead to frustration. Therefore, more research is focused on
combining both strategies, using technologies such as machine
vision to merge user control with autonomous robot control,
forming a shared control strategy that allows users to participate
as much as possible in the control process, while the robot
autonomously handles fine and accurate movement. Hybrid BCIs
that combine machine vision, autonomous positioning, and other
technologies have helped paralyzed patients complete object
grasping and moving tasks. However, studies have shown that
users do not expect all control tasks to be performed
automatically by assistive devices (Kim et al., 2011). Therefore, it
is crucial to improve user participation through tactile stimulation to
make the control interaction process more natural in brain-
controlled robotic systems.

To this end, this study designs a teleoperation robot system
based on the hybrid control of MI-BCI and eye movement signals.
The eye gaze signal compensates for the insufficient number of MI
commands, while vibration stimulation is naturally applied during
the control process to close the loop and modulate the activation of
the user’s sensorimotor cortex. Eight subjects were recruited for a
control experiment to validate the enhancement effect of vibration
stimulation on MI training and robot control efficiency. Based on
the experimental results, we discusses the integration methods and
application prospects of vibration stimulation with the
control system.

2 Methods

The brain-controlled teleoperation system proposed in this
study comprises eight modules. The EEG acquisition module
uses an EEG cap and amplifier to collect the subject’s real-time
EEG data. The eye movement acquisition module uses an eye tracker
to obtain the real-time fixation coordinates of the subject’s gaze on
the visual stimulus display screen. The information from these two
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modules is processed and analyzed by the signal analysis module,
which converts it into control commands for the remote robot as
well as the control commands for the vibration stimulation.
Vibration stimulation module includes two vibration actuators
that are controlled according to the commands transmitted by
the signal analysis module. The information transmission module
uses the TCP/IP protocol to facilitate communication between the
remote robot system and the main control system. It is also
responsible for transmitting real-time remote images captured by
the image acquisition module to the visual display module, which
shows the control perspective and graphical buttons on the software
interface. Finally, the robot control module uses pre-calibrated
position coordinates and control commands sent from the main
system to guide the robotic arm to complete the target grasping and
placement tasks.

2.1 Teleoperation robot system design

The EEG and eye-gaze based remote control system designed in
this study is shown in Figure 1a. The remote control system
consisted of an EEG signal acquisition module and an eye
movement signal acquisition module. The EEG acquisition
module used a BP EEG acquisition device (ActiCAP Systems,
BrainProducts GmbH, Germany) to acquire real-time EEG data
from 20 channels (FC5, FC1, C3, CP5, CP1, CP6, CP2, Cz, C4, FC6,
FC2, FC3, C1, C5, CP3, CPz, CP4, C6, C2, and FC4)Â based on the
international 10/20 system, which primarily covers sensory-motor-
related areas of the frontal and parietal lobes. The sampling
frequency was 1,000 Hz and the electrode impedance was
maintained below 15 kω during EEG acquisition. All electrode
channels used the FCz channel as the reference and the FPz
channel as the ground. The signal was filtered using a
0.1–100 Hz analog bandwidth filter and a 50 Hz notch filter to
reduce interference. A portable eye tracking system (Eyelink
Portable Duo) was used to track the user’s eye movements and
gaze. This eye tracker utilizes pupil and corneal reflections to track
eye movement, with a sampling rate of 2000 Hz and an accuracy of
0.15°. The eye movement system includes a Host PC that helps the
experimenter perform eye movement calibration, adjust thresholds,

and record data. Another computer was used to display real-time
images and a control interface at the control end. A head support
bracket was used to stabilize the user’s head, ensuring that the
relative distance between the eyes, eye tracker, and control display
remained constant. The gaze fixation signals captured by the eye
tracker were the coordinates of the user’s gaze on the control display
screen. In this study, gaze fixation within a region for more than 0.5 s
was defined as a gaze event.

The EEG signals collected by the EEG system were transmitted
in real time to MATLAB software via a wired connection between
the control computer and the EEG amplifier. A custom MATLAB
program was used to filter and decode the EEG signals online,
generating control commands to move the robotic arm during the
target selection phase. The real-time gaze position information from
the eye movement acquisition system was used to determine the
user’s control intention, control the grasping task, and switch the
direction and control mode of the robotic arm’s movement. The
framework of the entire remote operation robotic grasping system is
illustrated in Figure 2. The control commands generated by the
remote control system were sent to the robot’s control computer via
the TCP/IP protocol. The robot executed control commands based
on precalibrated coordinates. After each control command was
executed, the end position coordinates were used to determine
the relative position for grasping, completing the tasks of
grasping, and placing objects A, B, and C automatically.

Vibration stimulation was provided by two piezoelectric actuators
(PHAT423535XX, Fyber Labs Inc., Korea). These actuators were fixed
on the median nerves of the left and right wrists using medical tape.
The vibration frequencywas set at 200Hz, which is within the optimal
perception range of the skin for vibration stimulation. This frequency
can effectively activate tactile receptors such as Meissner corpuscles.
The amplitude was adjusted based on the intensity that was clearly felt
by the subjects during the pre-experiment but did not interfere with
the MI task. The control interface displayed on the screen, which the
subjects gazed at during the control process, is shown in Figure 1b.
The interface includes real-time control images and three white
rectangles corresponding to the forward, backward, and finish
commands. The eye tracker collects the relative position
coordinates of the user’s gaze on the control interface, with
different regions corresponding to different commands. The

FIGURE 1
Actual scenes of local control (a), visual control interface (b), and remote robot platform (c).
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colored shading added in Figure 1b helps to intuitively explain the
division of gaze regions, where the yellow and green regions
correspond to the left and right target areas, respectively, and the
red region corresponds to the grasping task determination area.

For the robot platform, a brain-controlled robotic arm
(KINOVA Ultra Lightweight Robotic Arm 7 DOF Spherical) and
a three-finger gripper (Gripper Series KG3) were used to perform
the grasping and placement tasks. The gripper was mounted at the
end of the robotic arm. The robot and its work environment are
illustrated in Figure 1C. KINOVA7 is a lightweight robotic arm with
seven degrees of freedom, capable of high-precision and high-speed
motion control in three-dimensional space, enabling it to perform
complex and delicate tasks. The KG3 gripper is an underactuated,
multifunctional three-finger gripper that can handle objects of
various sizes and shapes. A depth camera (Realsense D455) was
fixed to the wrist of the gripper to capture real-time images from the
end of the robotic arm, providing a clear control view that was
transmitted to the remote control screen. This enables the user to
receive real-time updates from the perspective of the gripper.

2.2 Experimental procedure

To validate the effectiveness of the brainwave-eye movement-
controlled teleoperation robot system, eight right-handed subjects
were recruited for the experiment. All of them were healthy and had
no known mental or physical diseases. They were all right-handed.
Among them, 5 were male and the average age was 26 years old. The
subjects used the left and right hand MI paradigms as control signals,
while eye movement fixation was used as a mode-switching method to
control the robotic arm to perform grasping tasks. To validate the
effectiveness of the system, the subjects were required to complete the
grasping and placement of objects at three fixed positions in a specified
sequence. During the whole experiment, the subjects maintained a stable
sitting posture, with their chin placed on a fixed support and both hands

relaxed on the desk, and kept their wrists away from the table to avoid
contact with the actuators. This study adhered to the principles of the
Helsinki Declaration and was approved by the Ethics Committee of the
First Affiliated Hospital of Nanjing Medical University (2020-
SR-362.A1).

Before the control experiment began, the subjects completed an
MI training task to train the online classifier. They sequentially
performed training for the visual-assistance (VA) and tactile-
assistance (TA) groups to avoid the carryover effects of tactile
stimulation from influencing the experimental results. Each
group consisted of 20 trials of MI for both the left and right
hand. The time structure of a single trial is illustrated in
Figure 3. In the VA group, the single trial flow was as follows:
The screen displayed a white cross for 3 s, indicating that the subject
could relax. During the third to fourth seconds, a white circle
appeared in the center of the white cross, prompting the subject
to prepare for the MI task. A white arrow pointing left or right was
then displayed for 3 s, prompting the subject to perform the left- or
right-hand MI task. The TA group followed the same time structure
as the VA group, with the distinction that from the third second, 1 s
vibration stimulation was applied to the median nerve of the wrist of
the hand about to perform the imagery task. EEG data from 4.5 to
6.5 s of each trial were used to train the online classifier, with the
Common Spatial Pattern (CSP) algorithm for feature extraction and
Linear Discriminant Analysis (LDA) for classification. The
classifiers trained using both groups of data were used for online
classification in the VA control and TA control experiments.

The control experiment was divided into VA and TA two
groups, based on the presence or absence of vibration
stimulation. In the VA group, the subjects controlled the robotic
arm’s movement by imagining the motion of the left or right hand,
using the LDA classifier trained with visual assistance to decode the
imagined data in real time. In the initial state, the control mode of
the robotic arm was as follows: if the subject imagined the left hand
movement, the robotic arm moved 5 cm to the left and 45°

FIGURE 2
System framework of brain-controlled teleoperation robot.
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horizontally; if the subject imagined the right hand movement, the
robotic arm moved 5 cm to the right and 45° horizontally. The time
flow for a single control task is illustrated in Figure 4. First, the
subject hears a beep sound lasting 0.3 s, signaling the start of the task.
The subject then focuses their attention, begins to gaze at the target
object, and imagines the hand movement. The gaze coordinates
during the first second after the beep sound were collected, and the
average of these coordinates was calculated to determine the main
gaze point for that second. The position of the coordinates was
checked to determine whether they fell within one of the three
command regions. If so, the corresponding mode switch is executed
based on the userâ€™s gaze. If the gaze is in the “Forward” or
“Backwards” region, the left or right handMI command controls the

robotic arm to move forward or backward, starting from the next
command. If the gaze is in the “Finish” region, the current control
task is terminated, and the robotic arm automatically returns to its
initial position. To avoid misjudging the imagery time, subjects were
required to continuously imagine within 4 s after the beep sound,
but only the EEG data from the second to the fourth second were
used for online classification. The classification results were
converted into control commands and transmitted to the remote
robot. A long beep lasting 1 s was heard at the fourth second,
signaling the subject to rest. After a 3-s rest, the next control
task began.

The difference in the TA group compared to the VA group
during the robotic arm control was that whenever the gaze

FIGURE 3
Schematic diagram of the time structure for a single trial of MI training.

FIGURE 4
The time structure for a single trial of robot control.
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coordinates collected in the first second fall within the yellow or
green shaded area shown in Figure 1b, a 1 s vibration stimulation
was applied to the left or right wrist. If the gaze was in the blue area,
vibration stimulation was applied to both wrists for 1 s to prompt the
subject to remain focused. The remaining procedure was identical to
that in the VA group.

After each command was issued to the robotic arm, the robot
calculated the expected arrival coordinates based on the current end-
effector position. If the target position exceeds the control range or
enters a nontarget grasping zone, a limit is triggered, and the robotic
arm will not execute the movement. If the expected arrival position
falls within the designated grasping range of the target, the robotic
arm automatically performs position adjustment control after
completing the movement, moving the gripper so that the target
is centered on the gripper. The distanceDi between the end-effector
position of the robotic arm and target point was calculated as
Formulate 1:

Di �
�������������������
xR − xi( )2 + yR − yi( )2√

(1)

where xR, yR are the coordinates of the end-effector position, and xi,
yi are the coordinates of the i-th target.

Once the robotic arm completes the grasping posture adjustment, it
enters the grasping and placement control phase. The subject controlled
the stepping of the gripper by gazing at the grasping target (the red
shaded area at the center of the screen, Figure 1b). Each second of gaze
triggers tightening of the gripper. The degree of tightening was
determined by the subject’s current attention level, which was
quantified by the ratio of the alpha to beta rhythm power from the
Cz channel of the EEG. If the subject determines that the object has been
successfully grasped, they gaze at the “Finish” area. If the system detects
that the subject has gazed at the “Finish” area for more than 1 s, the
grasping is considered successful and the target object is automatically
grasped and moved to the placement area. After completing the
placement, the robotic arm automatically returned to the initial
position and waited for the subject to press a button to initiate the
next grasping control. The difference between the vibration group and
the visual group is that, for each gripper tightening, a 0.4 s vibration
stimulus is applied to both wrists of the subject. Prior to the formal
grasping experiment, each subject practiced controlling the robotic
arm’s movement three to five times to familiarize themselves with the
experimental procedure, thus minimizing the impact of skill differences
on the experimental results.

2.3 Data analysis methods

To analyze the effects of vibration stimulation on MI training and
the control system, we performed an offline analysis of EEG signal
features under different task conditions. The differences in control
efficiency were compared based on the time spent and grasping success
rate in various control tasks. Finally, the attention level of the subjects
was assessed based on the ratio of alpha and beta rhythm energies in the
Cz channel during the grasping task.

In the offline EEG analysis, the SOBI algorithm-based automatic
artifact removal (AAR) toolbox (Gómez-Herrero, 2007) was applied
to eliminate artifacts such as eye blinks. The signal was then band-
pass filtered from to 5–40 Hz to exclude non-relevant frequency

bands and re-referenced using the common average reference
(CAR) algorithm. Spatial filtering of the imagined signals was
performed using the CSP algorithm, followed by the training of
an LDA classifier. The between-class scatter matrix and Euclidean
distance of the central points for each pair of classes were calculated
using the Formulates 2, 3:

~mi � 1
ni

∑
y∈Di

y (2)

~SB � ~m1 − ~m2| | (3)

In addition to the feature distribution, we also compared the
time-frequency characteristics of the training task. The event-related
spectral perturbation (ERSP) was calculated using short-time
Fourier transform (STFT) with a Hanning window of 200 ms.
The formula used is as follows:

ERSP f, t( ) � 1
n
∑n
k�1

Fk f, t( )2( ) (4)

where n is the trial number andFk(f, t) represents the spectral estimate
at frequency f and time t for the k-th trial. Data from the second to
third seconds of each trial were used as reference data. To analyze the
spatial distribution of brain activation during the imagination task, the
ERSP values of all electrode channels within the selected frequency
bands during 4.5–6.5 s of each trial were averaged and used to generate
ERSP topography distribution. To observe the temporal dynamics of
brain activation during the imagination task, the C3 and C4 channels,
representing the left and right sensorimotor cortices, were used to
calculate the ERD from the first to the seventh second of each trial, with
the 1.5–2.5 s data selected as the baseline.

In the teleoperation control task, subjects were allowed up to three
attempts to grasp each target. If the target was not successfully grasped
after three attempts, the task was considered a failure. If the duration of
a single attempt exceeded 150 s, or if the subject voluntarily abandoned
the attempt, it was considered a failure. The time taken by each subject
to move the robotic arm from the initial position to the target grasping
range and the time spent adjusting the arm posture after successful
grasping were recorded to compare the control efficiency differences
between the different control groups.

The ratio of the fast and slow rhythm energies in the EEG reflects
the attention level to some extent. In this study, the attention level of
the user was assessed by measuring the ratio of the alpha and beta
rhythm powers in the Cz channel. A fast Fourier transform (FFT)
was performed on 5 s of data after the first grasp attempt to calculate
the power spectral density of that segment, from which the average
power in the 8–12 Hz and 13–30 Hz frequency bands was extracted
to compute the alpha-to-beta ratio. The alpha and beta ratios were
averaged across all successful grasping trials for the three target tasks
for each subject; this value was used as the subject’s average attention
level during the grasping task.

3 Results

3.1 MI training

In this study, a pre-trained LDA classifier was used to decode MI
control commands online, and the classifier wasmore effective when

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Zhang et al. 10.3389/fbioe.2025.1591316

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1591316


trained with features that exhibited better separability. Table 1 lists
the LDA classifier results from the VA and TA training tasks for all
subjects, showing the Euclidean distances between the centers of the
feature mappings for the left and righthand MI tasks. This metric
reflects the inter-class separability of the two feature sets. The larger
the inter-class distance and the smaller the intra-class distance, the
better the separability of the two features. From the table, it is evident
that the inter-class distance in the TA training group was
significantly larger than that in the VA training group (p =
0.017). In six out of the eight subjects, the inter-class distance
increased, with many subjects showing more than a twofold
increase in distance. Even the two subjects who showed a
reduction in distance did not exhibit significant weakening.

Figure 5 shows the feature distribution across the two training
groups for all the subjects. The red and blue circles correspond to the
features of the TA training group, and the yellow and green circles
correspond to the features of the VA training group. It is clear from
the figure that the two classes of features in the VA group are
somewhat entangled, leading to errors in classification. In contrast,
the TA training group showed greater inter-class separability, with
more tightly clustered intra-class distributions, leading to better
classification performance.

Figure 6 shows the average ERSP topographies during theMI tasks
for all subjects in the VA and TA training groups. The brain activation
patterns for the left and right hand MI tasks, as presented in the
topographies, indicate that the addition of vibration feedback did not
significantly change the activation pattern for the right-handMI, which
remained similar to that of the VA group. However, for left-hand MI,
activation in the contralateral sensorimotor cortex was significantly
enhanced in the TA group, exhibiting a more pronounced contralateral
lateralization. Consequently, the separability of the activation patterns

between the two tasks was greater in the TA training group. In the VA
group, the left-hand MI produced a relatively weak ERD phenomenon
on both sides, but the differences were not significant. In the TA group,
the contralateral differences were significantly increased, and the level of
difference was more balanced for the right-hand task.

Figures 7a,b show the average ERD curves for all subjects in
the VA and TA training groups, respectively, illustrating the ERD
changes during the left and right hand MI tasks at the C3 and
C4 channels. The purple dashed lines correspond to the time
points when the “prepare” image or vibration stimulation began,
and the green dashed lines indicate the start of the MI. The
horizontal yellow and orange dashed lines indicate ERD levels
of −40% and 0%, respectively. From the figures, we can observe
that the two training groups did not show significant differences
in the ERD levels during the MI task. The contralateral ERD
reached approximately −50% in both groups, suggesting that the
addition of vibration stimulation did not significantly enhance
brain activation levels during subsequent MI tasks. During the
3–4 s preparation period, the VA group only produced a weak
ERD on both sides, which nearly returned to baseline levels
before the imagery began. However, in the TA group, the
introduction of unilateral vibration stimulation caused the
subjects to focus earlier on the side of imagery, and the
stimulation also activated the sensory-motor areas on both
sides. As a result, the vibration group reached higher ERD
activation levels during the preparation phase, which allowed
them to reach the ERD peak more quickly than the VA group
after imagery began, especially in the contralateral brain regions,
with a difference of approximately 0.5 s. Thus, the TA group
showed a higher ERD duration and average ERD during the
imagery period than the VA group.

TABLE 1 The LDA inter class spacing of all subjects.

Group S1 S2 S3 S4 S5 S6 S7 S8 Ave ± Std

VA 0.739 0.481 0.457 0.446 0.657 0.547 0.525 0.457 0.539 ± 0.10

TA 1.399 0.352 0.468 1.089 1.279 1.144 0.956 0.324 0.874 ± 0.41

FIGURE 5
The feature distribution of all subjects in TA (a) and VA (b) training tasks.
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FIGURE 6
The average ERSP spatial distribution in VA training (a) and TA training (b) of all subjects during MI.

FIGURE 7
The average ERD curve of all subjects in VA (a) and TA (b) training.
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3.2 Robot control

Table 2 presents the time spent by all subjects to grasp different
targets and the number of times tasks were abandoned/failed during
the control experiment. The target grasp time shown in the table
refers to the fastest time from the start of control to the successful
grasp of the target in a single attempt. Failures indicated that the
subject failed to grasp the target in all three attempts. Abandonment
counts refer to the number of times a task was abandoned because it
exceeded 150 s or was voluntarily abandoned by the subject. Because
each target allowed only three attempts, the maximum number of
abandonments was nine. From the table, it is evident that the failure
and abandonment rates in the VA group were significantly higher
than those in the TA group, especially for left-sided targets. In the
VA group, four subjects failed to complete the grasp, whereas only
one subject failed in the TA group.

Table 3 presents the average ratio of alpha to beta rhythm power at
the Cz channel for all subjects during the execution of all grasping tasks.
The addition of vibration tactile stimulation significantly improved
subjects’ motor attention levels (p = 0.047), with only one subject
showing an increase in the TA group. The Cz channel is located in the
central sensory-motor area, and most subjects exhibited a decrease in
both alpha and beta rhythm energy when concentrating on the grasping
tasks. In the TA group, most subjects showed a greater reduction in
alpha than beta rhythm, leading to a decrease in the alpha-to-beta
power ratio, reflecting an increase in attention levels.

4 Discussion

One of themajor challenges in brain-controlled robot systems is the
use of EEG signals to switch control modes or toggle tasks on and off
Han et al. (2020). Among the existing EEG control signals, several types
of brain states have been used as brain switches, such as Event-Related
Potential (ERP) and SSVEP. However, most related research is still in
the feasibility analysis stage, with relatively few brain switches applied to
practical control systems. Consequently, researchers have turned to
using alternative signals, such as blinks, swallowing, and
electromyography (EMG) signals, to complement brain switches. In
this study, we used eye-gaze fixation signals as a switch signal to toggle
the control modes by determining the location of the gaze on the

interface. This switchingmethod benefits from the flexibility of eye gaze
fixation, as it does not require the user to make actual movements,
making it especially suitable for patients with conditions such as stroke
or paralysis that limit their mobility. In this study, the eye-gaze
acquisition was accurate, and its robustness was high, with rare
occurrences of control process disruptions.

To compare whether the addition of vibration stimulation could
improve training efficiency, we limited the number ofMI training trials,
resulting in insufficient data. This also resulted in a higher
misclassification rate during online control. However, the addition of
vibration stimulation significantly increased the inter-class separability
of the training features, which in turn improved the MI decoding
accuracy in the online control. This finding is crucial for improving
control efficiency. Previous research has indicated that multimodal
feedback, especially visual and tactile feedback, is beneficial for MI
training and decoding. For example, Wrist vibration stimulation can
enhance activation in the contralateral sensorimotor cortex and
improve the decoding accuracy of MI for the non-dominant or
hemiparetic hand Shu et al. (2018). Studies have combined hand
motion animations and electrical stimulation with MI training to
improve sensorimotor cortex activation and classification
performance during the MI (Wang et al., 2019). However, such
studies typically apply stimulation during the MI task itself, and
some studies have replaced visual feedback with tactile feedback as
MI task guidance, but these approaches did not show a significant effect
on MI performance (Hehenberger et al., 2021).

The application of vibration stimulation before starting MI to
assist in focusing on the side of the upcoming imagery differs
fundamentally from previous studies, where vibration stimulation
was applied during the MI task Osborn et al. (2020); Batistić et al.

TABLE 2 The time spent by the subject performing robot control.

Subject Target A/s Target B/s Target C/s Fail times

VA TA VA TA VA TA VA TA

S1 Fail 46.1 49.5 48.3 86.5 49.6 3 0

S2 Fail 45.3 47.8 53.6 97.1 74.3 4 2

S3 55.2 Fail 48.5 Fail 56.5 65.4 4 7

S4 46.1 45.7 Fail Fail Fail 57.3 6 4

S5 45.8 45.5 48.2 47.8 Fail 48.4 3 1

S6 Fail 46.7 Fail 46.6 72.8 64.2 8 2

S7 46.8 48.6 51.2 49.1 50.9 68.1 1 2

S8 Fail 47.3 47.5 49.7 57.7 50.5 3 0

TABLE 3 The average attention level of all subjects during the grasping.

Group S1 S2 S3 S4 S5 S6 S7 S8 Ave
± Std

VA 1.76 5.26 3.67 1.56 3.62 1.89 4.14 3.25 3.14
± 1.22

TA 1.53 3.22 2.69 2.57 3.15 1.45 2.75 2.89 2.53
± 0.64
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(2023). Similarly, vibration assistance did not significantly enhance
the activation level during the subsequent MI task, particularly in the
right-hand MI. However, the enhancement of contralateral
sensorimotor cortex ERD in the left-hand task should be
attributed to the vibration stimulation compensating for the
imbalance in non-dominant hand MI capabilities. Tactile cues on
the non-dominant hand helped users engage more naturally in the
imagery, mentally shifting their focus to the left side, and reducing
the psychological bias towards the dominant hand. Furthermore, the
addition of vibration stimulation allowed the subjects to identify the
imagined side without visual attention, bypassing the mental process
of converting visual commands into movements. This likely led to a
stronger focus on imagery, a faster imagery rate, and improved
spatial awareness. Owing to the enhancedMI training with vibration
assistance, the control efficiency in the vibration group was
significantly higher than that in the visual group. From the
control results, it is clear that many subjects could not complete
the left-side target grasp, possibly due to the weaker MI ability of the
non-dominant hand (Tecchio et al., 2006). The addition of vibration
stimulation helped mitigate this psychological bias and balanced the
MI abilities of both hands.

Figure 8 shows the control trajectory plots for subject S1 when
grasping the three targets. The red circles and blue diamonds represent
the control trajectories of the TA and VA groups, respectively. The red
crosses indicate when the subject abandoned or failed to grasp the target,

and the red dashed lines show the automatic grasp range for each
target. The subject completed all three target grasps with 100%
accuracy in the TA group but successfully grasped only targets B
and C in the VA group. From the trajectory plots, it is clear that
the decoding rate of the VA group for the left-hand imagery task
was low, which prevented them from grasping target A.
Additionally, grasping target C required a leftward movement
command, but multiple misclassifications led to wasted time as
the movement was erroneously recognized as a rightward
direction. The subject also reported feeling frustrated and
anxious because of these misclassifications, which contributed
to his failure to grasp the target object. However, the addition of
vibration stimulation helped the subject focus better on the
imagined movement, with a stronger spatial direction sense.
The increased decoding accuracy also boosted his confidence,
enabling him to successfully grasp all three targets. Similarly,
many subjects struggled to maintain the same level of imagery
performance during the online control process as they did during
their training. This may be due to the lack of visual guidance, and
multiple misclassifications would cause the robot to deviate
significantly from the intended path, leading to greater
frustration and difficulty in maintaining stable imagery and
creating a negative cycle. In contrast, vibration stimulation
helped restore the feedback that the subjects experienced
during training, and unilateral stimulation provided better

FIGURE 8
The robot motion trajectories of subject S1 during the process of capturing target A (a), target B (b), and target C (c), respectively.
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spatial guidance, allowing them to focus more effectively on the
imagined side.

Neuroscientific research has shown that attention levels are related to
the “neural balance” of brainwave structures, which means that the
frequency of brainwaves produced by different brain regions should be
similar to each other. Generally, when attention is high, the brain generates
more beta waves (13–30 Hz), while low attention is associated with more
alpha waves (8–12 Hz) or theta waves (4–7 Hz). Attention can be
categorized into two types: top-down and bottom-up (Posner et al.,
1984; Leonards et al., 2000). Top-down attention refers to the active
concentration on a specific target or task, such as reading, writing, and
problem solving. Bottom-up attention refers to passive reactions to
external stimuli, such as hearing a sudden sound or seeing a flashing
light. Different types of attention involve distinct brain regions. The frontal
lobe is responsible for higher cognitive functions and active control, and is
thus associated with top-down attention, whereas the parietal lobe handles
sensory processing and spatial orientation, and is thus associated with
bottom-up attention. In this study, the Cz channel, located in the
sensorimotor cortex of the parietal lobe, showed that the addition of
vibration stimulation during each grasping task caused suppression of
alpha and beta rhythms in the sensorimotor cortex. The experimental
results showed that the alpha-to-beta ratio in the TA group was
significantly lower than that in the VA group, which may be because
the tactile input provided a more intuitive control experience for the
subject. The enhanced tactile feedback combined with the control effects
formed a sensory-motor feedback loop, subjectively increasing the
userâ€™s focus on the task. Therefore, the input of vibration
stimulation increases bottom-up attention, further improving the
userâ€™s attention level.

Finally, this study exclusively involved healthy subjects to
validate the feasibility of the system and the effectiveness of
tactile stimulation enhancement. In the future, this system and
its tactile augmentation technology hold promise for applications
in rehabilitation therapies for patients with brain injuries. Most
brain injury conditions may impair functional connectivity in
sensory- and motor-related brain regions, and active
rehabilitation training may contribute to improvements in
functional connectivity within these regions Arun et al. (2020).
Previous studies have demonstrated that combining multisensory
stimulation with active rehabilitation training can induce more
pronounced neural activation in the brain Du et al. (2022). The
strategic integration of tactile stimulation into brain-computer
interface systems, such as rehabilitation robot, may advance BCI
technology across multiple dimensions, including therapeutic
efficacy, user acceptance, and system robustness.

5 Conclusion

This study designed a teleoperation robotic system based on hybrid
EEG and eye-movement signal control, which combined robot position-
assisted control. The user is responsible for controlling primary
operations, such as target selection and gripper manipulation, whereas
the robot autonomously performs detailed operations, such as adjusting
the grasp posture and automatic placement. A controlled experiment was
conducted to verify the effectiveness of vibration stimulation as an
auxiliary feedback method for improving the overall system control
efficiency. The results showed that vibration stimulation can effectively

assist inMI training, thereby improving the user’s control efficiency of the
robot. It also increased the user’s attention during grasping tasks. This
systemholds great potential for future applications inmotor rehabilitation
scenarios and to help patients improve theirmotor and cognitive abilities.
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