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Introduction: The interactive joint torque serves as a critical biomechanical
parameter for intent recognition in exoskeleton motion control systems,
enabling adaptive control capabilities within the human-in-the-loop (HITL)
closed-loop framework. While this interactive torque fundamentally differs
from the actual output torque of joints, empirical studies have demonstrated a
quantifiable linear correlation between these two metrics. Consequently, real-
time monitoring of joint output torque provides actionable insights into human
motion intention, serving as a critical feedback mechanism for intention-driven
control strategies in lower-limb exoskeleton applications.

Method: This paper proposes a method for extracting the interactive joint torque
of the human body based on the collection of discrete electromyography (EMG)
signals. In order to detect and analyze the interactive joint torque, based on the
acquisition of human EMG signals, the human joint motion is discretized within a
continuous range using a discrete prediction method. Then, the results of
discrete learning are converted into a continuous form to establish a
numerical relationship between human muscle movement and interactive
joint torque.

Result: This identification method has high accuracy under different motion
states of the human body. Themean square error of all experiments is 0.1502, the
mean coefficient of determination is 0.8616, and the mean coefficient of
correlation is 0.9365.

Discussion: A discrete prediction technology of human joint interaction torque
based on EMG acquisition is established, which is helpful to deeply understand
the relationship betweenmuscle activity and joint motion, and provides a feasible
method for extracting human joint torque.
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1 Introduction

The wearable architecture of exoskeleton robots establishes unique control paradigms
fundamentally distinct from autonomous robotic systems. Unlike conventional industrial
robots, the human operator demonstrates exceptional adaptive learning capacity,
autonomously optimizing movement strategies through neuromuscular adaptation.
However, exoskeleton deployment creates bidirectional kinetic coupling between human
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and machine, forming a closed-loop biomechanical system that
inherently integrates the motion intention and physiological
capability of operators as real-time control inputs. This
integration necessitates the quantitative characterization of
human joint interactive torque – a critical biomechanical
parameter requiring precise acquisition for closed-loop control
implementation. Specifically, the human joint interactive torque
must be systematically quantified and embedded within the control
architecture to reconcile human-robot kinetic interactions (Cheng
et al., 2021; Li et al., 2014; Aung and Al-Jumaily, 2013; Hayashibe
et al., 2009).

In the human-exoskeleton interaction system, EMG signals can
enable continuous joint motion estimation, including joint torque,
angular velocity, and angle (Ding et al., 2016; Lobo-Prat et al., 2014;
Oskoei and Hu, 2007). Currently, prediction methods for
continuous human joint motion estimation based on EMG
signals mainly fall into two categories: those based on
biomechanical models and those based on machine learning.
Among the biomechanical model-based methods for predicting
human joint motion, Xiong B (Xiong et al., 2020) proposed an
intelligent prediction method based on the Hill muscle model to
determine human joint torque with online measurable input
variables. This method utilizes electromyograms, joint angles, and
angular velocities as inputs to predict joint torque, with higher
accuracy compared to methods using other input variables. Li K (Li
et al., 2019) and others used surface EMG (sEMG) signals and
estimated elbow joint angles based on muscle biomechanical
properties. They optimized unknown parameters using a genetic
algorithm, achieving an average root mean square error ranging
from 0.12 to 0.26 radians, demonstrating high estimation accuracy.
While the Hill muscle model-based motion estimation model has
specific physiological meanings and interpretability, many
physiological parameters cannot be directly measured, and the
model construction is complex, with accumulated errors.
Therefore, the practicality of biomechanical model-based
methods is limited and challenging to apply to the prediction of
exoskeleton robot joint motion states.

Machine learning-based motion estimation prediction methods
overcome the drawbacks of the aforementioned methods, such as
complex models and poor prediction accuracy. Sangheum Lee (Lee
et al., 2020) and others proposed a real-time joint torque estimation
method using sEMG signals and artificial neural networks on an
embedded system. The two-layer, three-node artificial neural
network precisely maps EMG signals to target torque values,
achieving determinism and reducing the reaction time of EMG
signals in estimating joint torque by 15 ms compared to traditional
physical sensors. Chinmay P. Swami (Swami et al., 2021) introduced
a machine learning framework based on neural networks and
random forests for designing a multi-degree-of-freedom
prosthetic wrist controller, enabling natural control of the

prosthetic wrist in daily activities. Wang C (Wang et al., 2020)
and others proposed a continuous estimation method for six daily
grasping movements based on the Long Short-Term Memory
(LSTM) network and compared it with Sparse Gaussian
Processes (SPGP) and Radial Basis Function Neural Network
(RBF). Testing with the NinaPro dataset showed that LSTM had
higher correlation, smaller mean squared error, and standardized
mean squared error for estimating the six grasping movements.
Liang J (Liang et al., 2021) presented a knee joint angle prediction
model based on sEMG signals, combining Gaussian process models
with muscle activation physiological characteristics. They developed
a non-parametric probabilistic model to address the instability of
EMG signals and uncertainty in the neuromuscular system. From
the perspective of learning from EMG signals, machine learning-
based prediction of human joint torque offers greater flexibility,
adaptability, and personalized customization, providing more
accurate and reliable predictions of human motion states.

In summary, due to the inherent challenges in accurately
extracting actual biomechanical joint torque from human motion,
the proposed “interactive joint torque” in this study does not
represent direct physiological torque measurements. Instead, it
constitutes a proportional control feedback quantity that
effectively captures the variation trends of joint torque dynamics.
When estimating human joint torque through EMG signals, while
continuous motion data enables high-precision torque prediction
for specific gait patterns through machine learning approaches, this
methodology demonstrates significant limitations when applied to
random or unconstrained movements.

To address this constraint, a novel discrete EMG-based
framework for interactive joint torque estimation is proposed, as
shown in Figure 1. The proposed method implements discrete signal

FIGURE 1
The process of human joint interaction torque
identification method.

Abbreviations: BPNN, Backpropagation neural network; EMG,
Electromyography; HITL, Human-in-the-loop; LSTM, Long short-term
memory; MAV, Mean absolute value; MSE, Mean squared error; PCA,
Principal component analysis algorithm; RBF, Radial basis function neural
network; RMS, Root mean square; RMSE, Root mean square error; sEMG,
Surface electromyography; SPGP, Sparse gaussian processes; VAR, Variance;
WL, Wavelength; ZC, Zero crossing count.
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prediction to segment the continuous joint motion spectrum into
analyzable intervals, thereby enabling effective detection and
computational analysis of interactive torque components.
Through subsequent transformation of discrete learning
outcomes into continuous torque profiles, a quantifiable
correlation between muscular activation patterns and resultant
interactive joint torque is established. This mathematical
relationship ultimately permits reliable detection of human
motion intention across variable movement conditions.

2 Discrete EMG acquisition platform
construction and signal preprocessing

In the context of collecting EMG signals for the target muscle
groups of lower-limb exoskeleton robots, human motion is
characterized by suddenness, while mechanical loads exhibit
variability. Consequently, continuous signal analysis employing
regression learning methods fails to yield satisfactory results. To
address these challenges, this paper proposes a scheme for

FIGURE 2
sEMG sensing signal acquisition platform.

FIGURE 3
Raw data collected from platform. (a) Raw EMG signal (b) Raw torque signal.
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discretizing EMG signals, with the implementation steps structured
as follows:

(1) Divide the range of motion from 20° to 160° into discrete
points, with each point representing a 10° interval.

(2) Fix the joint using force sensors when testing at
discrete points.

(3) Obtain the torque values for knee flexion and extension
movements using joint torque sensors at the fixed joint,

corresponding to the values of joint EMG signals. These
values serve as the basis for regression learning data.

The advantage of this method lies in its direct reflection of the
variation in joint output and EMG signals at different angles,
independent of load conditions and movement states. However, a
drawback is that the accuracy of discrete signals depends on the
degree of subdivision of the discrete intervals. As binding
constraints, such as bundling, cannot ensure complete
synchronization between the human body and the testing
equipment, even in a fully tightened state, there may still be
slight deviations. Consequently, this fluctuation range directly
affects the numerical values of discrete subdivision.

2.1 Discrete sEMG sensor signal
acquisition platform

To address the position and movement characteristics of the
knee joint muscle group, a sEMG signal acquisition platform is
established, as shown in Figure 2. The sEMG signal acquisition

FIGURE 4
sEMG processing flowchart.

FIGURE 5
sEMG signal baseline correction. (a) Raw sEMG signal (b) Baseline corrected sEMG signal.

FIGURE 6
Spectrum analysis of sEMG raw signal.
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platform comprises surface electrode patches, a sc acquisition
device, a knee joint angle fixation device, torque sensor, and data
acquisition card.

To collect EMG signal generated by muscle exertion at different
knee joint angles, the device shown in Figure 2 is employed to
achieve adjustable angle fixation for the knee joint in the range of
20°–160°, as detailed in the adjustment process illustrated in Figures
3–7. The overall device is primarily composed of aluminum alloy
links, an adjustable angle encoder, and straps, which can be securely
fastened to the human leg.

The raw data collected using this platform is shown in Figure 3.
This data was obtained by fixing the knee joint angle at 110° and
performing multiple knee extension and flexion movements. The
EMG signals from the quadriceps muscle and the interactive torque
at the knee joint were measured using sensors on the platform. It can
be observed that the raw EMG signals exhibit significant background
noise, attributed to external interference and hardware-related
factors, necessitating a more complex preprocessing approach. In
contrast, the raw torque signals experience less interference, with
minimal noise, making their preprocessing relatively
straightforward.

2.2 sEMG signal preprocessing

In order to ensure the readability of the signals, a secondary
processing of the signals was performed through software filtering,
as illustrated in Figure 4.

2.2.1 Correction of EMG signal baseline drift
The sEMG raw signal may exhibit baseline drift, which is related

not only to the direct current component inherent in the EMG signal
acquisition device but also to factors such as the decrease in skin
resistance caused by sweating during the subject’s movement,
leading to sweat-induced artifacts, or slow electrical activity due
to electrode loosening. These factors result in a very slow
(0.2–0.5 Hz) electrical activity resembling baseline drift in the
sEMG signals, which falls into the category of low-frequency
noise. Additionally, the sampling frequency of the raw sEMG
signals is 2,000 Hz, while the effective spectral distribution of the
EMG signals is between 10 and 500 Hz. Consequently, the signal also
contains a significant amount of invalid high-frequency background
noise (Han et al., 2015; Crouch and He, 2015; Reaz et al., 2006).

In this study, a fourth-order Butterworth band-pass filter (f1 =
10 Hz, f2 = 500 Hz) was used to address baseline drift issues,
eliminate low-frequency and high-frequency noise in the EMG
signals, as shown in Equation 1.

H ω( )| |2 � 1

1 + ω
ωc
( )2n � 1

1 + ϵ2 ω
ωp

( )2n (1)

In the formula, n represents the filter order, ωc is the cutoff
frequency, ωp is the edge frequency of the passband, and 1

1+ϵ2 �
|H(ω)|2 is a numerical value at the edge of the passband. As shown
in Figure 5, the baseline voltage of the EMG signal changes from
1.45 v to 0 v, which is the result after baseline correction.

2.2.2 Removal of power line frequency
interference in EMG signals

As depicted in Figure 6, through the analysis of the signal
spectrum, it can be observed that there is a substantial amount of

FIGURE 7
sEMG power frequency noise filtering processing.

FIGURE 8
sEMG signal outlier removal processing.

FIGURE 9
sEMG normalization processing.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Liao et al. 10.3389/fbioe.2025.1596180

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1596180


50 Hz power line frequency interference and its harmonic
components in the signal. Due to the power line frequency being
50 Hz, its electromagnetic noise can interfere with signal acquisition
devices through wired or wireless means. The effect after eliminating
power line frequency interference using multiple IIR notch filters is
shown in Figure 7.

2.2.3 Removal of abnormal values and
normalization of EMG signals

Due to the influence of software and hardware performance,
EMG signals inevitably contain more or fewer abnormal values. To
prevent outliers from significantly affecting subsequent data
normalization, it is necessary to remove these abnormal values.

FIGURE 10
sEMG characteristic values.

TABLE 1 Correlation coefficient between various characteristics of knee
extensor muscles and joint torque.

Passage RMS VAR ZC WL MAV

Ch.1 0.8612 0.6235 −0.2161 0.8731 0.8523

Ch.2 0.8232 0.5926 −0.3226 0.8442 0.8114

Ch.3 0.8945 0.6353 −0.3923 0.9054 0.8822

Mean 0.8596 0.6171 −0.3103 0.8742 0.8486

TABLE 2 Correlation coefficient between various characteristics of knee
flexion muscles and joint torque.

Passage RMS VAR ZC WL MAV

Ch.4 −0.9253 −0.6754 0.3779 −0.9334 −0.9134

Ch.5 −0.9026 −0.6364 0.2794 −0.9259 −0.9076

Ch.6 −0.8873 −0.5924 0.2235 −0.9032 −0.8721

Mean −0.9050 −0.6347 0.2936 −0.9208 −0.8977
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Themethod used in this paper for handling abnormal values is based
on the Hampel identifier criterion, which removes one or more
outliers that are significantly distant from other observed values in
the sample. Unlike the Hampel identifier based on the judgment
method of the original sample’s distance from the sample mean
exceeding a certain standard value, this paper uses the sample
median instead of the sample mean, effectively avoiding the
influence of abnormal values on mean calculations.

This paper adopts a stepwise data storage window to extract
real-time EMG signals for abnormal value removal. Each window
extracts 750 data points as the total sample, calculates the median
and standard deviation, and iterates over each data point in the
sample. When a data point is found to have an absolute difference
from the median greater than (k = 3) times the standard deviation, it
is considered an abnormal value. The effect before and after removal
is shown in Figure 8.

It is necessary to normalize the EMG signal in order to unify
each characteristic level. According to the following formula, the
amplitude of the data after the elimination of outliers is linearly
normalized, and the EMG amplitude is evenly distributed
between −1 and 1. The normalized EMG amplitude is shown
in Figure 9.

3 EMG signal feature extraction and
muscle optimization

In order to eliminate the redundant information in the EMG
signal as much as possible, it is necessary to extract the feature of the
pre-processed EMG signal and re-select the muscle after the muscle
primary. This section will introduce the methods of EMG feature
extraction and muscle optimization.

FIGURE 11
Correlation analysis of various muscles. (a) Knee extensor muscle feature selection (b) Knee flexor muscle feature selection.
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3.1 EMG feature extraction

EMG signals are a type of random signal, typically exhibiting
characteristics of nonlinearity, non-stationarity, and time-varying
behavior. In this study, the overlapping window analysis method
was applied to process the EMG signals. Parameters were set with a
window length of 400 sampling points (i.e., 200 milliseconds), a
window shift of 100 sampling points (i.e., 50 milliseconds), and an
overlap rate of 75%. The number of features for each muscle
corresponds to the number of overlapping windows. In terms of
feature selection, time-domain features have lower complexity
compared to other features, making them widely applicable in
real-time systems, classification models, and regression models.

This study initially selected five time-domain features for
computation, namely, Root Mean Square (RMS), Variance
(VAR), Zero Crossing Count (ZC), Wavelength (WL), and Mean
Absolute Value (MAV). These features were calculated for each
overlapping window of sEMG data obtained from the previous
step. The resulting feature vectors will be used for the training and
testing of the classification model. After preprocessing, the
quadriceps muscle EMG signals is extracted with five features, as
illustrated in Figure 10.

3.2 EMG feature screening

After feature extraction, it is necessary to employ feature
selection methods to eliminate redundant features and select the
most relevant ones for the prediction task. This is crucial for
reducing redundancy and data dimensionality among features,
thereby improving prediction accuracy. Correlation refers to the
degree of association between two variables, and features with low
correlation are involved in the subsequent training of joint torque
regression models. This can lead to model overfitting; hence, it is
necessary to conduct feature selection on the five features initially
selected in the previous section, removing those with lower
correlation.

Three extensor muscles were selected: Rectus Femoris (Ch.1),
VastusMedialis (Ch.2), and Vastus Lateralis (Ch.3), along with three
flexor muscles: Biceps Femoris Long Head (Ch.4), Semitendinosus
(Ch.5), and Gastrocnemius (Ch.6), forming the initial six-channel
input signals. The Pearson correlation coefficient was then used to
measure the correlation between the same feature across different
muscles and the joint interactive torque, as shown in Equation 2.

corr � ∑n
i�1 Fei − Fe( ) Mi − �M( )													∑n

i�1 Fei − Fe( )2√ 													∑n
i�1 Mi − �M( )2√ (2)

In the formula, Fei is eigenvalue, �Fe is the eigenvalue means,Mi

is the joint moment, �M mean joint moment, n is Sample size
The participants wore a static torque collection platform with

the knee joint bending at an angle of 110°. To account for the
differences in the major muscle groups involved in knee extension
and knee flexion experiments, two sets of experiments were
conducted. In the knee extension experiment, participants
collected torque data and muscle EMG signals for five instances
of knee extension movements. A correlation analysis was then
performed, yielding correlation coefficients between each muscle’s
various features and the joint interactive torque, as shown in Table 1.
Similarly, in the knee flexion experiment, participants collected
torque data and muscle EMG signals for five instances of knee
flexion movements. Again, a correlation analysis was conducted,
resulting in the correlation coefficients presented in Table 2. Due to
the different torque directions in the knee extension and knee flexion
experiments, the correlation coefficients obtained in the two sets of
experiments have opposite positive and negative signs.

The data above has been processed with absolute values and
arranged in the form of a bar chart, as shown in Figure 11. It is
evident that in both knee extension and knee flexion muscles, WL,
RMS, and MAV exhibit a strong correlation with joint torque, while
VAR shows a moderate correlation, and ZC has a lower correlation.
Therefore, the feature with the lowest correlation, ZC, is removed,
and RMS, VAR, WL, and MAV are retained as the final EMG signal
features for use.

FIGURE 12
Absolute average absolute correlation coefficient of each muscle. (a) Knee extensor muscle selection (b) Knee flexor muscle selection.
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3.3 Target muscle selection

In the process of normal human walking, going up and down
stairs, and squatting, knee extension or flexion movements are
constantly occurring. However, considering the application
scenarios of exoskeleton robots, the assistance phase mainly
occurs during the human knee extension, with minimal force
following during knee flexion. Therefore, to some extent, the
mapping regression model of EMG signals to joint torque in the
positive direction (with joint torque in the direction of knee
extension considered positive and in the direction of knee flexion
considered negative) becomes more important. Consequently, the
number of muscles for knee flexion can be fewer than the number
for knee extension.

Based on the features (RMS, VAR, WL, MAV) data for each
muscle in Tables 1, 2, the absolute values are summed and then
averaged. When grouped by knee extension and knee flexion

muscles and arranged from high to low, as shown in Figure 12,
the muscles gastrocnemius lateralis, vastus lateralis, and biceps
femoris long head can be selected as the final muscle channels,
considering the previous analysis.

3.4 PCAD dimension reduction

In order to further reduce the complexity of the calculation, the
principal component analysis algorithm (PCA) is used to complete
the feature dimensionality reduction operation. According to
Equation 3, the information contained in all principal
components can be measured by their variance (VAR). The
greater the variance VAR(Pci), the more information contained
in the component, and the first principal component usually
contains the largest amount of information. Where u is the
eigenvector of each feature.

FIGURE 13
Principal component analysis results and input signal graph. (a) Results of principle component analysis (b) Principal component of sEMG signals.
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Pci � u1iFe1 + u2iFe2 +/upiFen (3)

The main steps of principal component analysis are:

(1) Decentralize, get the average of all features, and then subtract
its own mean from each feature for all samples, as shown in
Equation 4.

Fen − 1
M

∑M
i�1
Fein⎛⎝ ⎞⎠ (4)

Where Fen is the feature, n is the feature dimension, and M is the
number of samples. In this paper, n = 4, M = 400.

(2) According to Equations 5, 6, calculate the covariance matrix
ofM samples under n-dimensional characteristics. WhereC
is the covariance matrix, cov(Fen, Fen) is the covariance,
and is the average value of the n-dimensional
feature sample.

C �
cov Fe1, Fe1( ) / cov Fe1, Fen( )

..

.
1 ..

.

cov Fen, Fe1( ) / cov Fen, Fen( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

cov Fen, Fen( ) �
∑M
i�1

Fein − Fen( ) Fein − Fen( )
M − 1

(6)

(3) By deriving Equations 7, 8, find the eigenvalues of the
covariance matrix and their corresponding orthogonalized
unit eigenvectors

Cu � λu (7)

Pci1
Pci2
·
·
·

Pcim

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

uT
1 · Fei1, Fe

i
2, . . . , Fe

i
n( )T

uT
2 · Fei1, Fe

i
2, . . . , Fe

i
n( )T

·
·

uT
m · Fei1, Fe

i
2, . . . , Fe

i
n( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i � 1, 2, . . . ,M.

(8)

After the screening of features and muscles above, it is a set of
feature vectors. Because the calculation is more complicated, this
feature value will be changed into a set of dimension feature vectors
after principal component analysis in this paper. Figure 13 shows the
principal component analysis results and principal component
diagram of a set of EMG data measured in knee extension
experiment after extracting characteristic values and then
undergoing PCA analysis.

In Figure 13a, the bar chart represents the percentage of variance
for each principal component in relation to the total variance, while
the line indicates the cumulative contribution rate. It can be
observed that the variances of the third and fourth principal
components approach zero, and thus, these two components are
not selected. The variance contribution of the first principal
component is 83%, and the cumulative contribution rate of the
first and second principal components is as high as 99%. Therefore,
the first and second principal components are chosen as the feature
principal components.

By projecting the original features onto the selected principal
component feature vectors, the newly obtained 2-dimensional
features after dimension reduction are shown in Figure 13b. The
correlation coefficients between these two features and their
corresponding joint torque are calculated as r1 = 0.9323 and r2 =
0.2688. A higher correlation coefficient indicates a stronger ability of

FIGURE 14
Position of electrode patch. (a) Right side (b) Reverse side.
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FIGURE 15
Example of data collection results. (a) 20 s EMG and joint torque (b) 40 s EMG and joint torque (c) 60 s EMG and joint torque (d) 80 s EMG and joint
torque (e) 100 s EMG and joint torque (f) 120 s EMG and joint torque.
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the input signal to represent force changes. It can be seen from the
graph that the performance of the first principal component is the
strongest, consistent with the earlier analysis. Therefore, the
obtained two-dimensional array can effectively reflect the
information of the original data. PCA dimensionality reduction
significantly reduces computational burden and enhances the real-
time capability of the system.

4 Regression learning of human joint
interaction force signal based on
discrete BP neural network

In this section, a backpropagation neural network (BPNN) was
employed to identify joint interaction torques. The model inputs
were sEMG signals, standardized to the range [−1, 1]. The output
torque was constrained within a biomechanically plausible range
[−30, 30] to avoid unphysiological values. To prevent overfitting,
L2 regularization was applied to constrain network weights,
enhancing generalization. The sEMG signals were sampled at
1,000 Hz with a time step of 1 ms. To ensure responsiveness to
dynamic motions, input data underwent sliding window processing:
a window length of 200 ms (200 data points) and a 50% overlap rate.
Mean squared error (MSE) served as the loss function during
training, with performance evaluated on a validation set.
Training was capped at 1,000 epochs, and an early stopping
strategy halted training if validation error plateaued for
50 consecutive epochs. A learning rate adjustment policy
gradually reduced the rate as validation error stagnated until
convergence. These strategies ensured model stability, reliability,
and improved identification accuracy.

4.1 Discrete data collection of knee joint
interactive torque regression

The purpose of this experiment is to collect 3-channel sEMG
signals and corresponding interaction torque data under

different joint angles. The collected data, optimized and paired
with the corresponding interaction torque values at each
moment, form a dataset used as both the training and testing
sets for the interaction regression model proposed in this study.
The target variable in the estimation model is the joint
interaction torque, and the actual joint torque is obtained
based on the static torque sensor installed on the experimental
platform. Figure 14 shows a schematic diagram of the electrode
placement on the skin.

This experiment collected a total of 12 sets of regression data for
knee joint interaction torque under different joint angles. For the
needs of training and testing the model, two sets of data were
collected in each experiment. Due to the flexibility of the human
body when fixed in the device, there is still a range of motion of
about 10°. Therefore, the participants adjusted the knee joint fixation
device in intervals of 10°, starting from 20° and ending at 130° in each
experiment. The partial results of the data collection for the rectus
femoris EMG signals and their interaction torque are illustrated
in Figure 15.

4.2 Discrete joint torque regression
algorithm based on BPNN

Based on the previous muscle selection, feature extraction, and
dimensionality reduction, the size of a single sample input is
determined to be 1 × 7. Therefore, the number of nodes in the
input layer of the BP neural network is set to 7. The number of
nodes in the hidden layer has a significant impact on the predictive
performance of the neural network. If the number of hidden layer
nodes is too small, the network may not be trainable, or its
performance may be poor. If the number is too large, it can
reduce the system error of the network, but on the one hand, it
prolongs the training time of the network, and on the other hand,
it may lead to the network getting stuck in local minima and fail to
reach the optimum point. Overfitting is also a potential issue
during training. Currently, the Equation 9 is commonly used to
determine the range of the number of hidden layer nodes, and

FIGURE 16
Selection of the number of hidden layer nodes. (a) correlation coefficient (b) root mean square error.
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multiple experiments are needed to find the optimal number
of nodes.

m≤
				
n + l

√ + α (9)

In the formula,m is the number of nodes in the hidden layer, n is
the number of nodes in the input layer, l is the number of nodes in
the output layer, and α is a constant in the range of 0–10. According
to Equation 10, node numbers can be chosen as 2, 3, 4, 11, 12,

FIGURE 17
Fitting effect of test sets from different angles. (a) 130° (b) 120° (c) 110° (d) 100° (e) 90° (f) 80° (g) 70° (h) 60° (i) 50° (j) 40° (k) 30° (l) 20°.
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respectively, for model training, with the test results on the test set
used as a basis for comparison. Here, root mean square error
(RMSE) is introduced to assess the accuracy of the lower limb
joint angle prediction results. In the formula, Tp represents the
predicted joint interaction torque, and Tr represents the actual joint
interaction torque.

RMSE �
													
1
n
∑ Tp − Tr( )2√

(10)

As shown in Figure 16, initially, with the continuous increase in
the number of nodes, the correlation coefficient between the

prediction results on the test set and the actual values shows a
positive correlation, while the RMSE exhibits a negative correlation.
As the number of nodes exceeds 10, the predictive performance of
the model begins to decline, with a decrease in the correlation
coefficient and an increase in RMSE. This is because, with the
increase in the number of nodes in the hidden layer, the model may
experience overfitting. Therefore, the final decision is to set the
number of nodes in the hidden layer to 10.

5 Test verification and analysis

5.1 Neural network training and its effect
evaluation

Twelve different angle experiments were conducted, and data
from each angle were collected in two sets, resulting in a total of
24 sets of experimental data. After preprocessing in MATLAB, the
sEMG data were windowed, and four features were calculated for
each of the quadriceps femoris, vastus lateralis, and biceps femoris
long head muscles. Through PCA, these muscle features were
reduced to two dimensions. The resulting features, along with the
joint angles, formed a feature matrix of size 1 × 7. The joint
interaction torque data were low-pass filtered and compiled into
a target matrix. Each set of experimental data at different angles was
combined as a training set for building the EMG-joint torque model,
while the other set was used as a test set for model evaluation.
Figure 17 shows the fitting results using a BP neural network for the
joint interaction torque from the 12 different angle test sets.

This paper will use RootMean Square Error (RMSE), Coefficient
of Determination (R2), and Pearson Correlation Coefficient (r) as
evaluation metrics for the regression model. RMSE is used to
represent the average error between the model’s predicted values
and the true values, with lower values indicating better fitting

TABLE 3 Regression evaluation indicators of test set models from different
perspectives.

Experimental angle RMSE R2 r

20° 0.1425 0.8533 0.9239

30° 0.1338 0.8797 0.9453

40° 0.1527 0.8813 0.9530

50° 0.1690 0.8665 0.9346

60° 0.1445 0.8722 0.9545

70° 0.1710 0.8325 0.9426

80° 0.1559 0.8643 0.9552

90° 0.1713 0.8322 0.9243

100° 0.1407 0.8793 0.9500

110° 0.1440 0.8895 0.9271

120° 0.1657 0.8814 0.9007

130° 0.1120 0.8069 0.9268

Mean value 0.1502 0.8616 0.9365

FIGURE 18
Experimental process. (a) Stand down (b) Stand up (c) Stand.
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performance. R2 reflects how close the model’s predicted values are
to the variance of the true values, with values closer to 1 indicating
better alignment with the true values. Pearson Correlation

Coefficient R is used to compare the similarity between the
predicted joint interaction torque and the actual joint interaction
torque. The Equation 11 for calculating R2 is as follows:

FIGURE 19
Test results of actual gait.
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R2 � 1 −
∑n
i�1

Tp − Tr( )2
∑n
i�1

Tr − �T( )2 (11)

Where Tp is the predicted value, Tr is the actual value, �T is
the average of all the actual values, and n is the total number
of samples.

The regression performance under different Angle test sets is
shown in Table 3. Under each index, the performance of models
from different angles is good. The mean square error of all
experiments is 0.1502, the mean coefficient of determination is
0.8616, and the mean coefficient of correlation is 0.9365.

5.2 Actual joint interaction torque extraction

Based on the learning results of the neural network mentioned
above, practical tests were conducted for predicting joint interaction
torques during actual gait. Since the torque learning in this paper is
in a discrete form, meaning that the parameters of the neural
network are different for different angles, the obtained numerical
values of human joint interaction torque also exhibit interval
variability. As the subsequent human joint interaction torque will
be introduced as a control target, it needs to be processed into
continuous data. This paper mainly uses Kalman filtering and low-
pass filtering to obtain the learning results of human joint
interaction torque.

FIGURE 20
EMG regression learning curves across motion states. (a) Level-ground walking (b) Stair ascent (c) Stair descent (d) Random.
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As shown in Figure 18, the experimental process for collecting
human joint interaction torque involves the subject wearing an
exoskeleton robot and performing squatting exercises. Since there is
no swing phase during squatting, both joints of the exoskeleton
robot are in a supporting phase. The test results in Figure 19 include
experimental muscle signal data and knee joint angle data
during movement:

The experiment mainly focused on the continuous collection of
EMG signals from the quadriceps femoris, vastus lateralis, and
biceps femoris muscles of the thigh during motion. The first
principal component obtained in real-time through PCA
dimensionality reduction of the features is representative of the
motion characteristics, as analyzed through the characteristic curve.

Since the aforementioned neural network feature learning is
conducted discretely, meaning that the EMG signals are segmented
into units of ten degrees within the joint motion range, separate
neural networks are established based on the joint interaction torque
curve. Due to the discretized nature of setting the learning intervals
for the network, the obtained curve exhibits certain unstable and
jumping patterns, as shown in the interaction force prediction
results in Figure 19. Applying Kalman and low-pass filtering to
the above results can achieve coherent signal collection and
extraction for predicting interaction forces.

The principal component features of muscles can reflect muscle
activity. Comparing the principal components of various muscles
with knee joint angles in the experimental results reveals that during
knee flexion, the flexor muscles are more active, while during knee
extension, the extensor muscles are more active. Moreover, based on
the predicted interaction torque results, it can be observed that
during knee flexion, the interaction torque value is positive, and the
flexor torque is relatively large compared to the extensor torque.
These experimental results overall conform to the objective laws. To
evaluate the joint torque extraction performance of the proposed
method during actual movements (Figure 20), tests were conducted
using a wearable device during four motion modes: level walking,
stair ascent, stair descent, and random motion. The torque curves
revealed peak torque angles of 9°–11° (level walking), 69°–74° (stair
ascent), and 31°–38° (stair descent), corresponding to the maximum
load-bearing moments in the stance phase. Torque magnitudes
exhibited clear distinctions between the stance phase (higher
amplitude) and swing phase (lower amplitude). In random
motion, the torque variation frequency synchronized precisely
with angular kinematics, demonstrating consistency between
extracted torque values and physical motion dynamics. These
results confirm the method’s accuracy in torque quantification
across diverse motion states.

6 Conclusion

This paper explores the discrete extraction technology of human
joint interaction torque based on EMG acquisition. A method
utilizing a discrete backpropagation neural network was
implemented to conduct regression learning of human joint
interaction force signals. By training the neural network, the
relationship between input characteristics and target torque was
established, enabling torque prediction. Through this study, a
discrete prediction technology for human joint interaction torque

based on EMG acquisition was developed. This technology
contributes to a deeper understanding of the relationship
between muscle activity and joint motion while providing a
feasible method for extracting human joint torque.
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