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3D bioprinting is a fast-growing field with applications in both microphysiological
systems and tissue engineering. However, the qualifications and definitions of
success for 3D-bioprinted products are insufficient. We can further our
characterization of 3D-bioprinting methods and finished products using new
imaging techniques and analysis methods, including the use of AI tools. This
multi-faceted approach can deepen our understanding of valuable technology by
examining the effects of 3D bioprinting on cell identity, behavior and organelles.
Defining a successful 3D-bioprinted product in addition to viability is crucial in the
push toward using these models for drug screening or disease modeling, where
robust and high-quality systems are required for meaningful data output.
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Introduction

3D bioprinting is becoming more common within the bioengineering field, bringing
many benefits. However, as with many nascent fields, validation and characterization tools
need to develop simultaneously to continue robust advancement. With the rise in 3D-
bioprinted constructs, some tools can be carried over from traditional cell culture while
others may need to be adapted for use with 3D biological platforms. Early studies used
viability as a criteria for success, which has remained the gold standard (Calvert, 2007;
Strauss et al., 2023), typically, performed using a live/dead imaging assay to determine the
cell viability in 3D-bioprinted models. However, more robust information is needed, as the
bioprinting process can cause cell-damaging stress, for example, via shear stress,
cytotoxicity, or phototoxicity (Deo et al., 2020). These stressors affect more than just
cell viability; although live/dead assays provide important information, consideration must
also be given to proliferation status, cell morphology, metabolic state, and cell lineage.
Several imaging and analysis methods for 3D-bioprinted systems can provide insight into
these features. As these are multicellular systems, the analysis methods must be able to
handle large data sets with the potential segmentation of large numbers of cells. Analysis can
be performed using several commercially available or open-source software tools. AI
segmentation can speed up and automate analysis of these large data sets.

In traditional 2D cell culture, common assays used to characterize cells include vital
dyes, metabolic assays, morphological analysis, and apoptosis/proliferation assays. Often,
these characterizations are relatively straightforward for cells grown in a single layer. The
addition of a third dimension adds some challenges to these characterizations–mainly lack
of direct access to the cells and the bioinks’ opacity and permeability. Dyes and other
reagents must penetrate the surrounding matrix to interact with the cells while the matrix’s
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FIGURE 1
Bioprinting methods stress cells, examples of imaging and analysis tools to characterize bioprinted models. (A) Pressure based 3D biopringting
methods, drop on demand (left) exerts less shear stress than extrusion (right). If the printing process includes photocrosslinking then phototoxicity is also
possible. (B) Light based 3D bioprinting methods. Laser assisted (left) and volumetric (right) both rely on light to crosslink structures, leading to
phototoxicity. (C) Immunofluorescent confocal images. (Left) Z-stack image of HUVECs encapsulated in BME (basementmembrane extract) stained
with phalloidin for actin (green), Hoechst for nuclei (cyan), and ZO-1 (magenta). (Right) Co-culture of cHIMECs stained with CD31 (green) and colon
fibroblast stained with vimentin (red). Nuclei (Hoechst) are in cyan (D) Confocal z-stack image of cell painting on colon organoids embedded in BME.
Nuclei (blue), nucleoli (cyan), mitochondria (magenta), actin (orange), golgi and membrane (yellow). Left, also shows ER (green) with off target staining of
the BME. (E) Analysis of cell movement over in a chemotaxis chip over 2 days in µm. Multiple fields of view were stitched together to enable complete
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transparency must be maintained for light-based microscopy.
Inherent confounding factors also affect cell behavior such as
oxygen and nutrient gradients from the surface of the structure
to the center. We will discuss current light-based imaging and
analysis practices within the bioprinting field as well as practices
from other areas of cell culture that could be adapted for 3D
cell culture.

3D-bioprinting methods

Printing methodologies can be categorized into pressure-based
(Figure 1A) and light-based (Figure 1B) (Graham et al., 2017;
Ozbolat and Hospodiuk, 2016; Murphy and Atala, 2014; Regehly
et al., 2020). Each printing methodology uses cells encapsulated in
compatible bioinks (natural or synthetic hydrogels) to create 3D
structures and exerts various stresses on the cells that are not seen in
traditional cell culture. It is vital to understand how the cell handling
could affect the cells (i.e., shear stress in extrusion or droplet-based
printing methods and phototoxicity in light-based methods). For
example, shear stress can affect not only cell viability but also
adhesion, proliferation, morphology and metabolic activity (Deo
et al., 2020; Blaeser et al., 2016; Shi et al., 2018; Ng and Shkolnikov,
2024). In the cancer field, it has been shown that shear stress can
cause epithelial-to-mesenchymal transition, a hallmark of cancer,
and change gene expression (Choi et al., 2019; Alvarado-Estrada
et al., 2021; Nauseef et al., 2012). Phototoxicity fromUV or near-UV
light can cause DNA damage, leading to carcinogenesis (de Gruijl
et al., 2001; Wang et al., 2018). It therefore seems prudent for
researchers to also qualify these factors compared to normal cell
function, which can often be performed using a light-based
microscopy method.

Image-based evaluation methods

To evaluate viability, simple and readily available live/dead
viability kits are often used (vital dyes such as Calcein AM/EthD-
1). To understand the dynamics of both short- and long-term
survival, viability is best evaluated at multiple points, as each will
provide a single snapshot of both live and dead cell numbers (Zhang
et al., 2019). Cell morphology dyes (e.g., phalloidin-rhodamine,
CellTracker) pair nicely with viability stains (e.g., DRAQ7,
thiazol-orange based DNA dyes) and can provide insight into cell
type conformation or identification of morphological changes
caused by the printing process (Zhai et al., 2018; Desroches et al.,
2012; Chen et al., 2019; Akagi et al., 2013; Domahidy et al., 2024).
Compared to monolayer, live cell dyes can present some challenges
when used on 3D cultures. Monolayer or suspension cultures can
accept dye into the media at any point, then perform a media

change, removing residual background signal from unbound dye.
Extracellular matrix (ECM) or bioink surrounding the cells can
cause dye to stick in the bioink from binding or in pores within the
matrix, which can create a high background signal during imaging
or simply prevent the accumulation of dye in the cells resulting in a
lack of signal. Mixing the dye before adding the bioink may produce
a strong signal at the start of the experiment that decreases over time,
causing challenges for long-term experiments. An alternative to
tracking dyes is genetically engineered cells, which express a
fluorescent protein. For example, H2B-GFP has a green
fluorescent protein (GFP) fused to the histone-2b gene, resulting
in GFP nuclei or cells that express a fluorescent protein in the
cytoplasm (Kanda et al., 1998; Shagin et al., 2004; Shaner et al.,
2004). Using fluorescent protein-expressing cells prevents
interactions between the fluorophore and the ECM.

When examining dead cells, it could be beneficial to differentiate
between apoptotic and necrotic cells. Differentiating live, apoptotic,
and necrotic cells to determine the effect of shear stress during the
printing process was performed using annexin-V, a marker of early
apoptosis (Nair et al., 2009). Combining annexin-V with propidium
iodide (PI) enables the identification of early apoptotic cells, allowing
them to be differentiated from late apoptotic cells. Necrotic cells were
defined as positive for both annexin-V and PI while apoptotic cells are
those only positive for annexin-V. Cells negative for both are
considered live. Other assays enable imaging of apoptotic cells over
time using DEVD peptides conjugated to a nuclear dye. DEVD is
cleaved by caspase 3/7 activating the fluorophore, enabling imaging
detection of apoptotic cells (Cen et al., 2008). This method has been
used in 3D with spheroids to determine drug response (Mittler et al.,
2017). Currently, it is difficult to determine the number of cells that
may go down the apoptotic path directly post bioprinting; tracking
this process couldmake it easier to determine the bioprintingmethods
with the least amount of cell loss.

Immunofluorescent (IF) staining is a highly versatile method to
examine many different aspects of a cell. Markers such as Ki67 can
be used to determine proliferation while caspases can be used for cell
death. This is important to differentiate since a viable cell may not be
proliferating. Another use of IF antibodies is cell-specific markers,
used to verify cell identity, and organelle markers that can be used to
visualize cellular organelles. One group performed a differentiation
assay to determine osteoblast phenotype over the course of 21 days
(Zhai et al., 2018). Another group examined cellular differentiation
status of cells grown on a 3D-printed scaffolding using lineage-
specific markers (Chen et al., 2019). This same type of study could be
transferred to bioprinted scaffolds. Specific antibody stains can be
used to look at cell behaviors such as adhesion or cell junction
formation to visualize a cell’s interaction with the surrounding
matrix or cell-cell interactions (Figure 1C). Cell identity in a
mixed culture can also be marked using cell-specific
antibodies (Figure 1D).

FIGURE 1 (Continued)

tracing in the x,y direction. Movement of GFP-HUVECs was tracked at three timepoints Day 0 (not shown), Day 1 (top), and Day 2 (middle). Color
coded trajectories (µm) of each cell is show on the bottom panel. HCT116 cells (gray) stained with live cell tubulin (F) Z-stack images of a cell painted
organoid. (Left top) actin (orange) (Right top), nuclei (blue) and nucleoli (cyan). (Bottom right) 3D rendered masks generated by Imaris with total organoid
mask in gray, and lumen in orange. (Bottom right) nuclei color coded by z-location, mask of nucleoli in cyan. Antibodies used: Phalloidin-Alexaflour
488 (Thermo Fisher, A12379), ZO-1 (Abcam ab221547), CD31 (abcam, ab124432), Vimentin (abcam, ab20346), Phenoview cell painting kit (Revvity,
PING11), PhenoVue Fluor 674 – Live Cell Tubulin (Revvity, CP21R1).
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Cell painting combines multiple fluorophores that stain specific
individual organelles within cells. Originally developed for use in
high-content, high-throughput screening, cell painting enables
visualization of cellular response to perturbations (Seal et al.,
2025). While this technique works best on cells grown in
monolayer, our lab has had some initial success adapting cell
painting to 3D-bioprinted cells and organoids (Figure 1E). One
limitation has arisen: Concanavalin A can bind to the extracellular
matrix surrounding the cells, which creates an artifact that limits the
ability to perform analysis of images that include this dye. Further
optimization and testing of a compound library could highlight its
utility in the 3D-bioprinting field.

In situ analysis revealed increased proliferation on the periphery
of printed GelMA constructs, which could be caused by multiple
factors, including preparation, degree of functionalization, and
cross-linking time. This exemplifies the importance of cell
location when analyzing viability and proliferation (Allen et al.,
2022). The location of cells within a matrix could affect the
metabolic state due to oxygen and nutrient gradients. One way to
understand this using imaging is to use fluorescent lifetime imaging
(FLIM), measuring the decay time of endogenous fluorophores (e.g.,
NAD(P)H FAD) (Datta et al., 2020). Spatial metabolomics of 3D
breast cancer spheroids and screening of cancer organoids for
potential drug targets shows how this technique is already being
used with 3D platforms (Karrobi et al., 2023; Tavakoli et al., 2025).

Epigenetic control of cell states via chromatin wrapped around
histones is a mechanism of gene regulation in eukaryotic cells.
Histone modification (e.g., methylation, acetylation) is known to
regulate gene expression by modulating transcription factor access
to promoters, thereby changing the production of genes, switching
them on or off. Highly differentiated cells have a different histone
modification pattern than cells that retain their stemness (Volker-
Albert et al., 2020). As sheer stress can cause cell differentiation
changing cell identity, especially in vascular cells, histone
modification status could be of interest to determine if epigenetic
changes are present (Wang et al., 2005). Acetylated and methylated
histones can be visualized using fluorescently labeled antibody
fragments (Fabs) in single cells (Hayashi-Takanaka et al., 2011).
A recent advancement resulted in the development of Fab-based
imaging of live-endogenous modifications (FabLEM) (Saxton et al.,

2023), which was used to determine histone modifications and
transcription initiation. This live cell imaging technique could
help to answer questions surrounding the time dynamic of
epigenetic changes post bioprinting.

Analysis techniques

Image analysis can be performed for all techniques that use
imaging as an output, turning qualitative data into quantitative data
(Table 1). Many researchers achieve this using open-source ImageJ-
based tools such as FIJI to quantitate their images (Schneider et al.,
2012; Schindelin et al., 2012). Other open-source software includes
CellProfiler for extracting quantitative date and CellProfiler Analyst
to use machine learning (ML) algorithms to identify phenotypes
(Stirling et al., 2021b; Stirling et al., 2021a). Advances in computer
vision and ML now make it possible to quickly analyze large data
sets. Cellpose is an open-source analysis tool with an algorithm that
uses a neural network to segment both brightfield and fluorescent
images (Stringer et al., 2021). Harmony software with Phenologic AI
is a strong tool, but limited in its utility, as it is only compatible with
Revvity (formerly PerkinElmer) imaging systems (Garvey et al.,
2016). These programs can also provide morphological information
in 3D systems such as spheroids and organoids (Spiller et al., 2021).
Here, live/dead ML classification of organoids was compared to
expert visual classification and DRAQ7. When all experts agreed on
classification, concordance between ML and manual classification is
100%, yet only 62% between visual and DRAQ7, indicating
morphological ML-based classification of organoids is more
accurate than DRAQ7. Imaris (Bitplane) is another imaging
analysis program focused on 3D images that enables the analysis
of large data sets with a batch analysis feature. Using this software,
dynamics of organoids and individual cells can be distinguished
(Kim et al., 2020). Recently, Imaris software added machine learning
algorithms for segmenting images based on images’ background and
foreground classifications. However, the Imaris licensing cost can be
prohibitive. Examples of analysis using Imaris, including cell
tracking performed with time lapse imaging, are shown in
Figure 1E. Imaging in 3D with multiple stains can provide
multiple analysis of a single image (Figure 1F).

TABLE 1 Selected image analysis tools.

Analysis tools

Program Input images Use Case example

Open source FIJI Brightfield, fluorescent Segmentation

CellProfiler Brightfield, fluorescent Segmentation, phenotyping, 3D

Commercial Phenologic AI Brightfield, fluorescent (only from own machine) Segmentation, morphology, classification

Imaris Brightfield, fluorescent Segmentation, tube formation, 3D

Convolutional Neural Networks CellPose Brightfield, fluorescent Segmentation

CeCILE Brightfield Radiation exposure

Celldeath Brightfield Cell death

Tellu Brightfield Organoid development and morphology
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Convolutional neural networks (CNN) are a method of deep
learning that consist of convolutional, pooling and fully connected
layers (Li et al., 2022). U-Nets, named for their U-shaped
architecture, are a type of CNN primarily used for image
segmentation consisting of three main components: encoder,
decoder, and a bridge to connect the two (Falk et al., 2019). The
encoder extracts features, repeatedly applying convolutional layers
and pooling them to reduce dimensionality while increasing the
number of feature channels. The decoder up-samples the features
previously mapped, gradually re-increasing the spatial resolution.
The encoder concatenates the output, preserving fine details and
improving segmentation.

Training of both CNNs and U-Nets is performed by manually
labeling ground truth data, feeding it through the network before
measuring loss (Dice loss, intersection over union). The network is
then backpropagated with the loss measurements updating its
weights. This process is repeated until output is satisfactory, and
the algorithm is challenged with a validation data set to prevent over
training. Input data are 2D stack slices; however, 3D analysis is
possible with 3D convolutional filters applied to 3D input data
(i.e., width, height, depth).

The image analysis field has recently seen many self-made
algorithms based on machine learning applied directly to the
creator’s area of interest. Cell Classification and In-vitro Lifecycle
Evaluation (CeCILE), based on a CNN to detect radiation damage in
cells (Rudigkeit et al., 2021), was trained on brightfield images of
cells at different points in the cell cycle with and without radiation
(mean f1score = 0.93). Celldeath is another tool trained on brightfield
images to detect cell death earlier than a human would be able to
visualize these changes, with 97.23% test set accuracy vs. 50%
manual classification accuracy (La Greca et al., 2021). Though
both of those tools are applied to 2D cell culture, similar
methods can be applied to 3D. Tellu, an open-source object
detector and classification tool, is trained on brightfield images of
organoids and can be used on movie files, not just single static
images, with a 0.79 mean average precision (Domenech-Moreno
et al., 2023).

Recently, Sheikh et al. used a CNN to determine spheroid
viability, screening spheroids prior to use in 3D bioprinting and
categorize them into four categories based on predicted viability
(Sheikh et al., 2025). Their model has an accuracy of 92% with
consistent loss below 0.2, demonstrating that these programs can be
adapted to analyze 3D-bioprinted images. Algorithms that can both
define regions of interest and sub-segment cells would be an optimal
feature for analyzing 3D-bioprinted structures.

Cell polarization is also important to many tissues in vivo., as
this ECM-driven process is vital to the functional structure of
epithelial barriers (e.g., blood brain barrier, intestine), tissue
development and repair (Lee and Streuli, 2014). This is simple to
visualize with nuclear dyes, and the information can be obtained in
parallel with other imaging assays by examining the directionality of
nuclei in images. The Polarity-JaM tool suite could be used for this
analysis (Giese et al., 2025) and demonstrates the advantage of
answering multiple questions with a single imaging-based
experiment. Images can be re-analyzed without having to
perform additional wet lab experiments.

Discussion

As the 3D bioprinting field continues to evolve, keeping some
additional considerations in mind will ensure the quality and proper
function of models. Live/dead staining is an easily accessible and
valuable tool but does not provide the in-depth data necessary for a
robust characterization. Differentiating between apoptosis (caused by
normal cell turnover) and necrosis (triggered by cell injury) is vital to
the understanding of cell behavior post printing. Although normal cell
turnover should be expected over time, a missing mechanism for
clearing cellular debris may cause other effects. Insufficient clearance
of dying cells within an organism can cause persistent inflammation
and tissue injury and lead to many chronic conditions in humans,
including lupus and chronic obstructive pulmonary disease (COPD)
(Krysko et al., 2008). As many bioprinted tissue constructs do not
contain phagocytes, some abnormalities related to continued presence
of dead and dying cells could contribute to further damage of otherwise
healthy cells within the sample. Some of the imaging assays discussed
here could be used to determine if this scenario lowers long-term
survival of 3D-bioprinted models.

Of course, there are still many challenges to be solved when
transitioning methods from 2D culture to 3D. One such challenge is
analyzing intact samples, effected by both reagent and technical
limitations (dye penetration, focal depth). If in situ information is
needed, such as location-dependent cell survival rates, the construct
must be analyzed intact. This could be significant in determining
whether cell death is caused by oxygen and nutrient deficiency due
to cellular location rather than the printing process itself. Often, imaging
larger samples is challenging because they become more opaque,
resulting in light scattering. Z-resolution is another confounding
factor, as resolution is lost in thicker samples. Compensating for this
by switching to super-resolution microscopy (e.g., fluctuation-based)
requires a costly and specialized set-up. Alternatively, deconvolution of
images can help to sharpen images by assigning pixel intensity to a
single slice in a z-stack.

Progression in the 3D-bioprinting field needs innovative tools
that help us to understand the systems being printed. To standardize
MPS quality, there has recently been a call to develop much-needed
standards similar to ISO criteria in other fields (Pamies et al., 2024).
As we have shown here, a myriad of imaging-based assays and
analysis tools could be used or adapted to further develop 3D
bioprinting. Though the upfront investment for this pipeline is
substantial (e.g., cost of equipment, commercial software), the
return on investment could be high in industrial settings. On a
smaller scale, academic settings often provide core facilities with
specialized equipment and computing clusters for computational
need. Expanding our understanding of 3D-bioprinted systems will
benefit the field by facilitating production of high-quality model
systems that consistently generate meaningful data.
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