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1 Introduction

Horizontal gene transfer (HGT) is a widespread phenomenon across all domains of life,
and has been a driving force of evolution (Keeling and Palmer, 2008; Boto, 2010; Wickell
and Li, 2020). Viral sequences have been found in all eukaryotic (Liu et al., 2011; Gilbert and
Cordaux, 2013; Takemura, 2020) and prokaryotic kingdoms (Schleper et al., 1992; Rambo
et al., 2022), and HGT has been found to occur in all directions between kingdoms of the
same domain (Nelson et al., 1999; Keeling, 2009; Fuchsman et al., 2017).

Plant species have stably integrated foreign sequences into their genomes. This natural
transgenesis has occurred repeatedly in the evolution of plants, affecting their biology and
genetic diversification (Ma et al., 2022). Some of the mechanisms of natural HGT have been
characterized to sufficient extent to be used for genetic engineering applications, and the list
of mechanisms of gene transfer mastered and applied to engineering might expand with the
advancement of scientific knowledge. In order to make the case that natural HGT must be
taken into account when designing regulatory frameworks for transgenic organisms, and in
particular of transgenic crops, we will address the particular case of HGT from bacteria
to plants.

The term “transgenic” usually refers in the literature to DNA constructs resulting from
the process of gene transfer between species through genetic engineering (Gordon and
Ruddle, 1981; Horsch et al., 1985). Agrobacterium1-mediated transformation has
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1 The collective term Agrobacterium is used in recognition of tradition and due to the impossibility of

precisely identifying the bacterium responsible for the plant transformation that occurred millions of

years ago. The T-DNA fragments present in plant genomes are insufficient for this determination

(Matveeva, 2021a). The classification of the genus is still evolving, as the taxonomic affiliation of five

Agrobacterium genomospecies has not yet been determined, suggesting a possible increase in the

number of species in the future (Flores-Félix et al., 2020).
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established itself as the most widely used method for this purpose. In
this procedure, a modified Agrobacterium plasmid transfers the
desired DNA into the recipient cell, integrating it into its genome
and allowing its hereditary transmission (Gelvin, 2009).

2 Horizontal gene transfer in plants

For stable incorporation of a sequence into a host organism and
its transmission to offspring, certain conditions must be met. First,
the foreign sequence must be integrated into the host genome. Then,
the incorporated sequence must not be lost in the genomic
rearrangements during cell divisions. In addition, the
transformed cell must be part of the germline, to ensure
inheritance. Finally, the integrated sequence must persist
throughout evolution (Lacroix and Citovsky, 2016).

HGT is a process by which genes are transferred between
unrelated organisms, as opposed to inheritance from parents. A
clear example of gene acquisition by HGT is nitrogen fixation, a
metabolic process present in certain bacteria of the genus
Paenibacillus and regulated by the nif (nitrogen fixation) operon.
These metabolic pathways are not specific to Paenibacillus, but have
been acquired from phylogenetically distant organisms, including
some of the Archaea domain and closely related bacterial phyla.
HGT plays a key role in these changes, which has resulted in great
diversity in the sequence and structure of nitrogen fixation
regulatory elements, reflecting the multiplicity of such events
from different donor organisms (Fuchsman et al., 2017).
Although this phenomenon has been widely documented in
Bacteria and Archaea, it has also been observed in eukaryotes,
including plants (Keeling, 2024). In the latter, one of the most
studied examples of HGT is the transfer of DNA from bacteria of the
genus Agrobacterium to various plant species (Matveeva, 2021b).

Agrobacterium can transfer part of its DNA (T-DNA) to plant
cells. Once incorporated, this T-DNA is integrated into the recipient
genome, resulting in naturally occurring transgenic plants, or
naturally occurring genetically modified plants (nGMs)
(Matveeva and Otten, 2019). These plants have sequences in
their genomes called cellular T-DNA (cT-DNA), homologous to
Agrobacterium T-DNAs (White et al., 1983).

Most cT-DNAs identified to date appear to originate from
Agrobacterium rhizogenes. However, cT-DNAs have also been
found with previously unknown T-DNA sequences or unusual
combinations thereof (Matveeva and Otten, 2019).

T-DNA sequences naturally transferred by various
Agrobacterium species contain two types of genes, both regulated
by promoters compatible with expression in eukaryotic cells. The
first group of genes, called “oncogenes”, encodes proteins that
regulate the biosynthesis or response of plant cells to
phytohormones, particularly auxins and cytokinins. Their
expression causes uncontrolled cell division, leading to tissue
proliferation and the formation of neoplastic growths, known as
crown galls (De Cleene and De Ley, 1976; Lacroix and Citovsky,
2016). The second group of genes encodes enzymes involved in the
synthesis of opines that can be used by Agrobacterium cells as a
source of carbon and nitrogen (Lacroix and Citovsky, 2016). It has

been proposed that for the emergence of a natural transgenic plant,
two conditions must be met: the naturally infected plant must be
able to regenerate from tissues transformed upon infection; and the
structure of the incorporated T-DNA must allow or favor such
regeneration (Otten, 2016).

3 Evidence of natural transgenesis
in plants

HGT in plants was initially identified in species of the genus
Nicotiana, in whose genomes the presence of Agrobacterium
T-DNA was detected (White et al., 1983). Studies in N. glauca
and N. sylvestris showed that bacterial DNA insertion was not an
isolated event (Khafizova and Matveeva, 2022).

The identification of new cT-DNA sequences in several plant
species has been possible thanks to whole genome sequencing
databases. The evidence suggests that HGT from bacteria to
plants is a more common phenomenon than previously thought
and that it has occurred in multiple plant lineages (Bogomaz et al.,
2024) (Table 1).

Genes acquired by HGT can retain their functionality in
recipient plants and influence their traits. An example of this is
Ipomoea batatas, where a cT-DNA has been identified with
functional Agrobacterium genes which have remained stable over
time (Kyndt et al., 2015). In addition, such genes can affect certain
phenotypic traits, such as the rol genes, associated with root
development (Quispe-Huamanquispe et al., 2017).

Unlike transgenics obtained through genetic engineering, in
which genes are inserted in a targeted manner in the laboratory,
nGMs acquired foreign DNA through natural infections (Chen and
Otten, 2017). Between 5%–10% of dicotyledonous species are
estimated to contain cT-DNAs (Matveeva, 2021b). With
approximately 200 million species in this class, about
10,000 species would be nGM plants (Folta and Otten, 2021).
The existence of nGM plants challenges the separation between
“natural” and “artificial” made by regulatory triggers when
determining which types of plants should be subjected to
biosafety assessments, by showing that transgenics are not only
the result of human manipulation, but also a naturally occurring
phenomenon.

4 Discussion

The natural presence of Agrobacterium sequences in plant
organisms questions the logic of strictly regulating transgenics
obtained through genetic engineering, while exempting organisms
that are similar, but obtained through conventional methods
(Ammann, 2014; McHughen, 2016). cT-DNA evidence suggests
that regulation focused on the method of production may be
inadequate (Gould et al., 2022). In many regulatory frameworks,
a transgenic organism is one that contains deliberately altered
genetic material which does not occur “naturally” through
breeding or selection (EFSA, 2024). This inconsistency becomes
more evident when considering that the same trait can be obtained
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TABLE 1 Examples of nGM plants reported in the literature.

Family Species References

Apocynaceae Apocynum venetum Lipatov et al. (2022)

Burseraceae Boswellia sacra Matveeva (2021a)

Caprifoliaceae Lonicera japonica Lipatov et al. (2022)

Lonicera maackii Lipatov et al. (2022)

Caryophyllaceae Silene noctiflora Matveeva (2021a)

Silene uniflora Matveeva and Otten (2019), Matveeva (2022)

Convolvulaceae Cuscuta australis Zhang et al. (2020)

Cuscuta campestris Zhang et al. (2020)

Cuscuta gronovii Zhang et al. (2020)

Cuscuta suaveolens Zhang et al. (2020)

Ipomoea batatas Kyndt et al. (2015)

Ipomoea trifida Matveeva and Otten (2021)

Ebenaceae Diospyros lotus Matveeva (2021a)

Elaeagnaceae Elaeagnus angustifolia Lipatov et al. (2022)

Ericaceae Vaccinium corymbosum Matveeva (2021a)

Vaccinium macrocarpon Matveeva and Otten (2019), Zhidkin et al. (2023)

Vaccinium microcarpum Matveeva (2023)

Vaccinium oxycoccos Zhidkin et al. (2023)

Erythroxylaceae Erythroxylum cataractarum Zhidkin et al. (2023)

Erythroxylum daphnites Matveeva (2022)

Erythroxylum densum Lipatov et al. (2022)

Erythroxylum havanense Matveeva (2022)

Euphorbiaceae Triadica sebifera Matveeva (2022)

Fabaceae Aeschynomene evenia Matveeva (2021a)

Arachis appressipila Yugay et al. (2025)

Arachis macedoi Bogomaz et al. (2024)

Arachis magna Bogomaz et al. (2024)

Arachis monticola Yugay et al. (2025)

Arachis paraguariensis Bogomaz et al. (2024)

Arachis pintoi Yugay et al. (2025)

Arachis pusilla Bogomaz et al. (2024)

Arachis rigonii Bogomaz et al. (2024)

Arachis stenophylla Yugay et al. (2025)

Arachis stenosperma Bogomaz et al. (2024)

Arachis trinitensis Yugay et al. (2025)

Arachis valida Bogomaz et al. (2024)

Arachis villosa Yugay et al. (2025)

Eperua falcata Matveeva (2021a)

(Continued on following page)
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both by genetic engineering techniques and by conventional
breeding, creating different regulatory thresholds for products
with the same traits.

These inconsistencies also extend to relevant aspects of risk
assessment, given that HGT represents an important topic in the
evaluation of GM plants. In regulatory practice, HGT is typically
evaluated using a pathway-to-harm approach (OECD, 2023).
However, to date, no empirical evidence supports HGT from GM
plants to soil bacteria under field conditions (Badosa et al., 2004;
Demanèche et al., 2011; Ma et al., 2011). Similarly, while humans
and animals routinely ingest DNA from multiple biological sources,
the likelihood of HGT from GM plant-derived DNA to gut
microbiota or host tissues remains extremely low (Jennings et al.,
2003; Netherwood et al., 2004; Sieradzki et al., 2013; Korwin-
Kossakowska et al., 2016). A detailed assessment of the potential
for HGT from GM plants to microorganisms is beyond the scope of
this work. For further information, readers are encouraged to
consult Philips et al. (2022) for a detailed review.

Given these complexities, the existence of nGM plants
highlights the need for a product-based regulatory trigger in
which biosafety assessment focuses on the traits and phenotype
of the final organism rather than the process by which it was
obtained (McHughen, 2016). This approach offers several
important advantages over traditional process-based
frameworks, particularly in the context of emerging breeding
techniques. Focusing on the characteristics and potential risks

of the final product ensures regulatory coherence and risk
assessment proportionality, avoiding inconsistencies where
crops with similar traits are subject to different oversight
(Caccamo, 2023; Brookes and Smyth, 2024). Not all GMOs
pose the same level of risk; some have well-characterized, low-
risk profiles; just as not all conventionally bred crops are inherently
safe. Conventional methods such as wide crosses, mutagenesis, or
spontaneous mutations can also result in traits with biosafety
implications, including increased toxicity, allergenicity, or
invasiveness (McHughen, 2016). While these products are
generally not subject to a complete risk assessment, they are
often regulated at various stages of the production chain
(registration for the crop, safety assessment for the byproducts).

A product-based approach enables regulators to focus their
efforts on the actual risk presented by a crop rather than
presuming risk based on the technique employed (Sprink et al.,
2016). This logic has already been adopted in the case of NBTs by
countries such as Argentina, Brazil and Canada, that exclude certain
products developed through NBTs from GMO regulations when no
novel combination of genetic material is present in the final product
(Goberna et al., 2023; Fernandes et al., 2024; Lubieniechi et al.,
2025). This aligns with risk assessment principles that prioritize the
traits of the crop. It also allows for the inclusion of conventionally
bred crops in biosafety assessments when they present novel or
potentially hazardous traits, which process-based systems tend to
overlook (Gould et al., 2022). Altogether, adopting a product-based

TABLE 1 (Continued) Examples of nGM plants reported in the literature.

Family Species References

Kewaceae Kewa caespitosa Matveeva (2021a)

Myrtaceae Eucalyptus cloeziana Matveeva (2021a)

Molluginaceae Pharnaceum exiguum Matveeva (2021a)

Nyssaceae Nyssa sinensis Matveeva (2021a)

Paulowniaceae Paulownia fortunei Lipatov et al. (2022)

Plantaginaceae Linaria acutiloba Matveeva and Lutova (2014)

Linaria dalmatica Vladimirov et al. (2019)

Linaria genistifolia subsp. dalmatica Matveeva and Lutova (2014)

Linaria vulgaris Matveeva and Lutova (2014)

Rhizophoraceae Ceriops decandra Matveeva (2022)

Salicaceae Populus alba × Populus glandulosa Matveeva (2021a)

Solanaceae Nicotiana glauca Suzuki et al. (2002)

Nicotiana noctiflora Zhidkin et al. (2023)

Nicotiana otophora Matveeva and Lutova (2014)

Nicotiana sylvestris Matveeva and Lutova (2014), Khafizova and Matveeva (2022)

Nicotiana tabacum Suzuki et al. (2002)

Nicotiana tomentosa Matveeva and Lutova (2014)

Nicotiana tomentosiformis Matveeva and Lutova (2014)

Theaceae Camellia oleifera Lipatov et al. (2022)
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perspective would contribute to building a coherent, adaptable, and
science-driven regulatory framework for novel organisms.
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