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Aneurysm, as life-threatening vascular pathologies, are significantly influenced by
hemodynamic factors in their development. The combine of numerical simulation
and in vitro experiment have laid the foundation for high-precision hemodynamic
analysis, while the integration of deep learning technologies has significantly
enhanced computational efficiency. However, current researches still face
challenges such as limitations in biomimetic materials, and incomplete
understanding of mechano-biological coupling mechanisms. In this review, we
systematize traditional and emerging methodologies characterizing hemodynamic
perturbations across the pathophysiological continuum of aneurysmal expansion,
rupture, and thrombosis progression. This review aims to (1) elucidate mechanistic
underpinnings of aneurysm destabilization, (2) inspire people to establish
standardized quantification protocols for hemodynamic analysis, and (3) pave the
way for patient-specific risk stratification enabling data-driven clinical interventions.
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1 Introduction

Aneurysms, as a potentially fatal vascular disease, have always been a focus of research
in the field of cardiovascular and cerebrovascular diseases. An aneurysm is defined as a
pathological bulging that occurs locally in the artery wall. It encompasses multiple types and
is typically classified according to anatomical location. These include IAs (Ferns et al., 2011),
carotid artery aneurysms (Feng et al., 2020; Welleweerd et al., 2015), CAA (Angelini, 2007),
TAA (Senser et al., 2021), AAA (Anagnostakos and Lal, 2021), popliteal artery aneurysms
(Jergovic et al., 2022), and other less common site-specific expansive lesions.

Although aneurysms occurring in various anatomical sites all involve structural
changes in the arterial wall, they differ significantly in terms of incidence, pathogenesis,
and prognosis (Camasão and Mantovani, 2021; Yang et al., 2020). IAs have an incidence
rate of approximately 3%–5% in the general population. Such aneurysms typically arise
due to abnormal WSS or genetic factors, such as mutations, leading to endothelial cell
damage, disruption of the elastic membrane, and subsequent local inflammatory
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reactions, ultimately weakening the arterial wall (Chalouhi et al.,
2013; Ferns et al., 2011; Miyata et al., 2022; Leemans et al., 2019;
Sekhar and Heros, 1981). The most severe consequence of IAs is
rupture, resulting in subarachnoid hemorrhage and poor clinical
outcomes (CHMAYSSANI et al., 2011; Hadad et al., 2024; Hejazi
and Phani, 2022). CAA are relatively rare, with an incidence rate
between 0.3% and 4.9% among patients undergoing coronary
angiography. Atherosclerosis is the most common cause of CAA,
involving damage to the medial layer of the vessel wall and
breakdown of elastic fibers (Serruys et al., 2023; Gutierrez
et al., 2017; Iemura et al., 2000; Gellis et al., 2022). Such
aneurysms may lead to severe cardiovascular events, including
myocardial infarction and arrhythmia (Taskesen et al., 2021;
Conrad et al., 2024). TAA have an annual incidence rate of
approximately six per 100,000 individuals and are closely
associated with genetic conditions such as Marfan syndrome
and Loeys-Dietz syndrome (Senser et al., 2021). These genetic
disorders accelerate degenerative changes in the aortic wall by
affecting the stability of collagen and elastin proteins. TAA often
remain undetected until symptomatic, and rupture results in high
mortality. AAA are more common in elderly males over 65 years,
with approximately 8% prevalence in this population (Hellmann
et al., 2007; Bossone and Eagle, 2021; Heussel et al., 1997).
Smoking, hypertension, and atherosclerosis are major risk
factors (Tang et al., 2005; Wang et al., 2023). The mortality
rate following AAA rupture is exceedingly high, making rupture
prevention a primary focus in AAA management (Wang et al.,
2024). The risk of rupture increases with aneurysm diameter, and
surgical intervention is recommended particularly when the
diameter exceeds 5.5 cm (Anagnostakos and Lal, 2021).
Despite the differences in clinical manifestations and risk
factors, aneurysms across various anatomical sites pose
significant threats to patient health and survival.
Understanding these diseases contributes to improving
diagnostic accuracy and treatment efficiency, reducing patient
mortality risks.

Aneurysms occurring at different anatomical locations, differ
markedly not only in clinical manifestations but also in lesion
structure, flow patterns, and surrounding tissue environments,
presenting substantial challenges for precise diagnosis and
individualized treatment. Throughout aneurysm formation,
expansion, and potential rupture, mechanical factors play
indispensable roles. The development of aneurysms is closely
related to mechanical factors such as WSS, circumferential stress,
and flow stagnation. These factors accelerate aneurysm
expansion and rupture by damaging vascular endothelial cells,
promoting collagen degradation, or increasing thrombosis risk.
Abnormal variations in WSS can cause endothelial cell injury,
increased circumferential stress may lead to collagen degradation
and vessel wall remodeling, while flow stagnation and vortices
frequently induce thrombosis and embolization (Frösen et al.,
2019). In CAA, abnormal WSS can weaken the arterial wall,
causing localized vessel dilation and elevating rupture risk. In
IAs, studies indicate that abnormal hemodynamics, particularly
elevated shear stress, are strongly associated with aneurysm
formation and rupture. Areas of flow stagnation in IAs,
especially at arterial bifurcations, are prone to thrombosis, and
subsequent embolization can result in severe complications.

Meanwhile, AAA typically involve expansion and weakening
of the abdominal aortic wall, closely associated with local
changes in circumferential and shear stress. In AAA, elevated
circumferential stress can exceed the mechanical strength of the
arterial wall, potentially leading to aneurysm rupture.

In summary, current mechanical studies on aneurysmal
disease primarily focus on aneurysm expansion, rupture, and
thrombosis deposition. Alterations in the hemodynamic
environment significantly influence aneurysm expansion rate,
rupture risk, and thrombosis formation, dictating disease
progression. Thus, elucidating the mechanical mechanisms
underlying aneurysm pathogenesis and progression to guide
precise intervention strategies remains an urgent issue in
cardiovascular research. Figure 1 illustrates the morphological
classification of CAA, along with related adverse cardiovascular
events and common treatment options. This classification is
broadly similar to that of IAs and AAA, which also include
dissecting and pseudoaneurysm types. Treatment options for
AAA include EVAR, open surgery, and medication to control
blood pressure and limit aneurysm growth.

Therefore, this review will focus on recent advances and
challenges in aneurysm-related hemodynamic research,
including numerical simulations, in vitro experimental
measurements, and artificial intelligence-based mechanical
analysis methods. Additionally, we will compare the
mechanical heterogeneity among aneurysms at different
anatomical locations, explore the potential and limitations of
various research methods in clinical translation, and propose
critical future research directions aimed at enhancing aneurysm
diagnosis and treatment.

2 Mechanistic insights into aneurysm
progression

2.1 Morphology and mechanics in
aneurysm expansion

The coupling between morphological features of aneurysms and
local hemodynamics is a critical driver for aneurysm initiation,
progression, and rupture. According to anatomical location,
aneurysms are classified into CAA, IAs, and AAA. Based on
morphological features, they are categorized into fusiform and
saccular aneurysms. Common geometric parameters in current
studies include directly measured maximum aneurysm diameter
(Dmax), length (L), volume (V), surface area (A), curvature (τ),
torsion (κ), neck width, neck diameter (DNeck), neck angle, and tilt
angle (θ). Three-dimensional vascular geometries are acquired through
various imaging techniques such as CTA,MRA, and DSA. To enhance
measurement accuracy, two-dimensional image measurement via
multiplanar reconstruction from CT images is often cross-validated
with three-dimensional geometry measurements. In addition to
directly measured geometric parameters, researchers calculate ratio-
based parameters like ASI, SR, aspect ratio, sphericity index, UI,
bifurcation angle, CE, and LE. Generally, aneurysm morphologies
vary across locations, and specific geometric features are more suitable
for different aneurysm types. Researchers must select relevant
parameters according to their specific research context.
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Significant coupling relationships exist between aneurysm
geometric parameters and local hemodynamics, and these
couplings strongly influence aneurysm expansion. Taking CAA
an example, larger aneurysm diameters and volumes typically
correlate with reduced TAWSS, which has been linked to
accelerated luminal dilatation. Increased aneurysm size also
corresponds to higher OSI and RRT, thus aggravating disturbed
flow that facilitates wall remodeling and continued enlargement
(Zhang et al., 2024). Fusiform aneurysms, characterized by axial
elongation, generally experience less flow disturbance yet may still
undergo progressive enlargement under sustained circumferential
wall stress. In contrast, saccular aneurysms exhibit pronounced flow
separation and vortical flow fields due to their distinct neck
structures, a pattern associated with localized wall weakening and
outward bulging (Rafiei and Saidi, 2022; Zhang et al., 2024). For
instance, studies on IAs show substantial reductions in intra-
aneurysmal velocity and vortex formation, causing significant
enlargement of low-WSS regions that precede measurable
diameter growth (Hoi et al., 2004; Hadad et al., 2024). Similarly,
in CAA, substantial expansion or neck constriction commonly leads
to low-velocity flow areas and widespread low-WSS distribution,
further accelerating mural remodeling and progressive dilatation
(Singhal and Gupta, 2024; Wong et al., 2020; Hoi et al., 2004). Long-
term follow-up of AAA cohorts has revealed that patients exposed to
persistently low TAWSS (<0.4 Pa) exhibit mean growth rates
exceeding 0.8 mm year-1, underscoring the clinical relevance of
the hemodynamic–morphology coupling described above (Bappoo
et al., 2021; Faisal et al., 2025). Table 1 summarizes current research

on the relationships between morphological parameters and
hemodynamic indicators. Figure 2 summarizes the current
research progress on the geometryss–mechanicss–biology
interplay in aneurysms, illustrating how different geometric
features influence the development of aneurysmal disease.

Currently, CFD numerical simulations are the primary research
method, quantitatively analyzing aneurysm hemodynamics through
solving velocity, pressure, and WSS-related fields. Additional
indices, such as helicity and cross-flow index (CFI), evaluate flow
multidirectionality and turbulence’s effects on aneurysm walls,
enriching morphology-dynamics coupling analyses. As research
advances, multi-scale patient-specific modeling and precise CFD
simulations become prevalent, enhancing morphological
parameters’ value for clinical risk prediction and therapeutic
strategy development.

2.2 Hemodynamic of aneurysm rupture

Aneurysm rupture is a complex process involving multiple
mechanical and biological mechanisms. Endothelial dysfunction
and abnormal local blood flow—characterized by pronounced
flow deceleration, recirculation, and vortices—create
hemodynamic environments that lower WSS and raise OSI, ILT
formation and setting the stage for wall failure (Wang et al., 2024;
Al-Jumaily et al., 2023). These abnormal flow patterns decreaseWSS
and increase OSI, promoting thrombus formation and reducing
endothelial cell viability. Low-WSS areas undergo chronic hypoxia,

FIGURE 1
Morphological classification of coronary artery aneurysms (CAAs) and adverse events associated with aneurysm progression. The yellow box shows
four morphological classifications of CAAs; the gray box illustrates potential cardiovascular adverse events resulting from thrombus deposition, growth,
and rupture; the blue box presents commonly used treatment strategies.
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TABLE 1 Research progress on the relationship between morphological parameters and hemodynamic indicators.

Location Model Extraction
method

Morphological
parameters

Impact on disease References

CAA Real model CTA Saccular or fusiform Saccular aneurysms are more prone to rupture, while
fusiform aneurysms are more likely to accumulate
thrombi

Zhang et al. (2024)

IAs Real model DSA, CTA, MRA AIRC The more pronounced the AIRC, the more likely IAs
are to grow and rupture

Miyata et al. (2022)

IAs Real model 3DRA SR, VOR, NSI, CR The rupture of IAs can be predicted jointly by
morphological indices, flow, and WSS

Hadad et al. (2024)

AAA,TAA Ideal model - Degree of kinking Kinking may lead to the growth of an aneurysm Hejazi and Phani
(2022)

CAA Real model CTA V/V0 Large size leads to thrombus deposition in aneurysms Rafiei and Saidi
(2022)

AAA Real model CTA Dmax, growth rate The faster the growth rate, the more likely it is to lead to
rupture

Anagnostakos and
Lal (2021)

TAA Real model CTA Dmax, growth rate The faster the growth rate, the more likely it is to lead to
rupture

Senser et al. (2021)

IAs Real model CTA Relative volume
change (RVC)

Changes in RVC can show the range of motion of IAs,
thereby assessing the risk of rupture

Stam et al. (2021)

CAA Ideal model and
Real model

CTA τ(Curvature), Degree of
stenosis

The degree of curvature and narrowing can promote
plaque formation

Wong et al. (2020)

AAA Real model CTA Stagnation Zone Volume An increase in the stagnation zone is associated with
the growth and rupture of AAA

Joly et al. (2018)

IAs Real model 3D DSA DNR (Dome-Neck Ratio) The size of the aneurysm dome is negatively correlated
with the blood flow velocity and WSS within the IAs

Tateshima et al.
(2010)

IAs Ideal model - daughter aneurysms The development of daughter aneurysms has a
temporary protective effect

Meng et al. (2013)

IAs Ideal model - τ Lateral saccular aneurysms located on more curved
arteries are subjected to higher stress

Hoi et al. (2004)

FIGURE 2
Morphological-mechanical-biological coupling mechanism of aneurysm growth, rupture, and thrombus deposition.Green indicates geometric
parameters, blue indicates mechanisms of growth and rupture, and orange indicates mechanisms of thrombus deposition.α: Bifurcation angle, τ:
Curvature, AR: Aspect Ratio, Dmax: Maximum aneurysm diameter, Dneck: Neck diameter, V: Aneurysm volume, HCT: Hematocrit.
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triggering inflammatory cell aggregation, elevated MMP expression,
and apoptosis, ultimately causing arterial wall structural
degeneration, including elastin and collagen degradation, thereby
critically weakening the wall and predisposing it to rupture (Arslan
and Salman, 2023; Belkacemi et al., 2023; Philip et al., 2022).
Enlarged aneurysm size is often accompanied by markedly
reduced TAWSS and elevated OSI and RRT; these hemodynamic
changes promote ILT deposition, intensify wall hypoxia, and
therefore markedly elevate rupture risk, as demonstrated for
CAA, IAs, and AAA (Zhang et al., 2024). In AAA, rupture
usually occurs in weakened wall regions such as posterior or
lateral walls (Singh et al., 2021; Golledge, 2019), whereas IAs
commonly rupture at inflow impingement sites or arterial
bifurcations (Hadad et al., 2024; Miyata et al., 2022). Saccular
morphologies with narrow necks concentrate inflow jets,
generating high-WSS impingement zones that can coexist with
surrounding low-WSS regions, collectively accelerating structural
degradation and precipitating rupture (Rafiei and Saidi, 2022).
Conversely, fusiform aneurysms may rupture after prolonged
periods of progressive dilatation when mural stress exceeds
tensile strength despite relatively smoother core flow patterns.
Peak wall stress (PWS) plays a critical role in rupture events,
with high-PWS areas indicating mechanical stress concentration,
increasing local degeneration and rupture likelihood (Singh
et al., 2021).

The role of shear stress in aneurysm rupture remains
controversial. The high WSS hypothesis suggests that high shear
forces, particularly in IAs, directly damage endothelial cells,
triggering acute inflammatory responses and increasing rupture
risk (Zhang et al., 2019; Wang et al., 2018; Cho, 2023).
Conversely, the low WSS hypothesis emphasizes chronic
pathologies induced by low shear regions, particularly in AAA,
where long-term hypoxia-driven matrix degradation and
endothelial dysfunction are primary rupture triggers (Zhang
et al., 2016; Miura et al., 2013; Boyd et al., 2016; Zhou et al.,
2017). Recent studies indicate significantly increased rupture risks
when WSS exceeds a threshold (12.3 dyne/cm2), especially in
anterior communicating artery aneurysms (ACoA), with rupture
risks multiplying per unit increase of WSS (Miura et al., 2013). High
WSS regions involve concentrated flow impingement, mechanical
endothelial damage, and significant inflammatory responses,
accelerating MMP release and matrix degradation, ultimately
compromising wall strength and structural integrity. Low WSS
mechanisms first manifest as reduced and oscillatory blood flow
(increased OSI), promoting ILT formation (Wang et al., 2018).
Thrombus deposition exacerbates wall hypoxia, endothelial
dysfunction, and chronic inflammation, including macrophage
and neutrophil aggregation and MMP release, accelerating
vascular matrix degradation and smooth muscle cell apoptosis
(Zhang et al., 2019). Moreover, low WSS diminishes endothelial
protective functions by reducing NO production, exacerbating
inflammation and vessel wall fragility (Miura et al., 2013; Zhang
et al., 2016). Numerical simulations and clinical evidence further
suggest chronic low WSS environments induce inflammation and
hypoxia, structurally damaging aneurysm walls, ultimately causing
mechanical instability and rupture under repetitive blood pressure
fluctuations (Boyd et al., 2016; Zhou et al., 2017). However, studies
also highlight dynamic changes in relationships between WSS

magnitude and aneurysm expansion and rupture. Early aneurysm
expansion stages might exhibit high WSS, transitioning to low WSS
dominance as geometry evolves, forming chronic hypoxia and
inflammatory conditions, ultimately leading to rupture (Singh
et al., 2021; Wang et al., 2018; Zhou et al., 2017; Cho, 2023).
This shift from high to low WSS underscores WSS’s varying
influence across aneurysm development stages.

Although CFD and FSI numerical simulations have significantly
advanced our understanding of aneurysmal hemodynamics, how
precisely high and lowWSS differentially drive aneurysm expansion
and rupture remains unclear, necessitating integrated research
involving clinical imaging and pathology for further elucidation.

2.3 Thrombus deposition dynamics

The formation of ILT is a pathological process influenced by
complex hemodynamic and biological mechanisms (Stark and
Massberg, 2021; Hathcock, 2006; Mihalko and Brown, 2020).
Currently, two distinct mechanical hypotheses, namely, the low-
WSS hypothesis and the high-WSS hypothesis, explain aneurysm
thrombosis formation, each with significant mechanistic differences
and ongoing debates.

The low-WSS hypothesis emphasizes that regions of
significantly reduced or stagnant blood flow within aneurysms
often accompany vortex, recirculation, and swirl flow structures
(Buck et al., 2018; Deplano and Siouffi, 1999). For example, Cao et al.
performed numerical simulations on Kawasaki Disease (KD)
coronary artery aneurysms, demonstrating that low TAWSS, high
OSI, and high RRT significantly increased thrombotic risk, with
thrombi frequently located at the proximal and myocardial sides of
aneurysms (Cao et al., 2023). Additionally, another study by Cao
et al. (2022) indicated that the combined presence of low TAWSS,
high OSI, and high RRT notably enhanced thrombus formation
risks in KD coronary aneurysms. Under low-WSS conditions, the
blood velocity is extremely low, extending the residence time of
RBC, platelets, and coagulation factors (Van der Waerden et al.,
2025; Millon et al., 2015). Prolonged stagnation decreases local
oxygen levels, triggering endothelial cell dysfunction
characterized by significantly diminished secretion of
antithrombotic substances like NO and prostacyclin (PGI2),
thereby reducing normal anticoagulant function. Hypoxia and
prolonged low shear stress enhance endothelial cell expression of
adhesion molecules, intensifying platelet-endothelial adhesion
(Millon et al., 2015). Stagnant blood flow results in the local
accumulation of coagulation factors, triggering and amplifying
the coagulation cascade reaction, eventually forming stable fibrin
networks and progressively larger thrombotic structures (Zhou
et al., 2023).

The high-WSS hypothesis emphasizes abnormally high shear
forces at aneurysm entrances or local stenotic areas, leading to
endothelial cell damage and rapid platelet adhesion and aggregation
(Casa and Ku, 2017). According to the high-WSS theory, aneurysm
entrances or localized narrow regions exhibit significantly elevated
blood flow velocity and shear stress (Dolan et al., 2013). High shear
conditions continuously expose endothelial cells to mechanical
stimuli, resulting in mechanical damage or activation (Sho et al.,
2002; Masuda et al., 1999; Sho et al., 2003). Under high shear stress,
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vWF molecules undergo mechanical stretching, increasing binding
sites for platelet glycoprotein receptors (GP Ib), significantly
enhancing rapid platelet adhesion and aggregation onto damaged
endothelium, forming initial platelet-rich thrombotic cores (Tada
et al., 2011; Tada et al., 2010). Furthermore, endothelial injury
exposes procoagulant substances such as subendothelial collagen
fibers, rapidly initiating thrombogenesis. Sustained mechanical
stress and endothelial damage trigger local inflammatory
responses, releasing inflammatory mediators (such as ADP) and
tissue factors, further accelerating the coagulation cascade.

The low-WSS and high-WSS mechanisms differ in focus: low-
WSS emphasizes gradual thrombus deposition due to blood
stagnation, whereas high-WSS highlights rapid initial platelet
aggregation due to mechanical injury. Although both
mechanisms likely coexist clinically, detailed exploration of their
respective mechanisms and clinical significance is crucial for
comprehensively understanding aneurysm thrombosis and
developing precise intervention strategies.

The mechanism of thrombus deposition also demonstrates
significant anatomical specificity. For example, in intracranial
aneurysms, dynamic thrombus deposition and shedding directly
influence downstream embolization risk (Ridker and Rane, 2021;
Malek et al., 1999; Deplano and Siouffi, 1999). Conversely, thrombus
deposition in AAA temporarily alleviates mechanical stress on
aneurysm walls but may eventually contribute to further wall
weakening (Wang et al., 2023; Xu et al., 2023; Hayashi et al.,
2006). Studies on abnormal flow parameters and thrombus
formation in coronary artery aneurysms have gained considerable
attention. For instance, Woźniak et al. (2024) confirmed significant
associations between low WSS, high OSI, high RRT, and thrombus
deposition in coronary aneurysms.

2.4 Risk stratification of aneurysms

Aneurysm risk stratification in contemporary clinical practice
has evolved from a “one-size-fits-all” diameter paradigm toward
nuanced, disease-specific schemes that integrate demographics,
imaging surrogates and, increasingly, biologic read-outs of wall
vulnerability.

For IAs, prospective outcome cohorts underpin three
complementary tools. The PHASES score translates six readily
available variables—population, hypertension, age, diameter, prior
subarachnoid haemorrhage and site—into an absolute 5-year
rupture probability that ranges from<0.5% (score 0–2) to≈18%
(score ≥13), and is now embedded in both European and North-
American guidelines (Greving et al., 2014). Growth prediction is
addressed by the ELAPSS score, in which history of rupture,
aneurysm location, age, population, morphology and size yield a
5-year enlargement risk exceeding 10% once the sum reaches
12 points; this facilitates personalized surveillance intervals and
early endovascular referral (Backes et al., 2017). When
therapeutic equipoise persists, the multidisciplinary UIATS
consensus model quantifies 29 patient-, aneurysm- and
treatment-related factors on two opposing columns; a net
difference of ±3 provides a reproducible threshold either for
intervention or watchful waiting (Etminan et al., 2015; Backes
et al., 2017). Beyond morphology, high-resolution vessel-wall

MRI has introduced the aneurysm-to-pituitary-stalk contrast
ratio; a value ≥0.5 denotes circumferential wall enhancement that
correlates with inflammatory cell infiltration and identifies unstable
lesions even when diameter is small (Wu et al., 2022).

For AAA, the maximal anteroposterior diameter remains the
cornerstone: elective repair is advocated at ≥55 mm in men
and ≥50 mm in women, or earlier when yearly growth surpasses
10 mm, as codified by the 2022 Society for Vascular Surgery
guideline update (Chaikof et al., 2018). Yet diameter alone
incompletely captures wall frailty. Finite-element modelling
shows that a PWS >200 kPa—or, more sensitively, a peak wall
rupture index (PWRI) elevated relative to patient-specific wall
strength—distinguishes ruptured from size-matched intact
aneurysms (Singh et al., 2021). Concomitantly, the burden and
geometry of intraluminal thrombus have emerged as pivotal
modifiers: posterior thrombus thickness >10 mm or a volumetric
occupancy >40% accelerates hypoxic medial degeneration and
triples rupture odds despite lowering computed wall stress,
underscoring the dual biomechanical-biological nature of this
substrate (Haller et al., 2018). Thoracic aortic disease follows a
size-indexed logic tempered by genotype and growth rate. In
patients with tricuspid aortic valves the current ACC/AHA
statement recommends surgery once the ascending aorta reaches
55 mm, but lowers the threshold to 50 mm—or an aortic cross-
sectional area/height ratio >10 cm2 m-1—for Marfan, Loeys-Dietz or
familial forms, and mandates expedited repair when expansion
exceeds 3 mm year-1 (Isselbacher et al., 2022).

Risk models for CAA secondary to KD rely on body-surface-
normalised Z-scores: aneurysms with Z < 5 usually regress; those
with Z 5–10 persist and entail chronic antiplatelet therapy; and
“giant” lesions (Z ≥ 10 or absolute diameter ≥8 mm) carry a ≥20% 5-
year thrombosis/myocardial-infarction risk, warranting lifelong
anticoagulation and advanced imaging surveillance (Kato et al.,
2023; McCrindle et al., 2017).

Collectively, these disease-specific stratification frameworks
illustrate how clinical decision-making now weaves together
absolute size, dynamic growth, composite risk scores,
biomechanical metrics and imaging biomarkers to delineate a
personalised trajectory from benign dilatation to catastrophic
rupture or occlusion.

3 Current status of research methods
on hemodynamic characteristics

3.1 Numerical simulations

CFD or FSI simulations are common tools to characterize
hemodynamic properties within aneurysms. Recently, CFD
methods have been widely applied in cardiovascular diseases such
as coronary artery stenosis, aortic aneurysms, and cerebral
aneurysms (Feng et al., 2020; Fan et al., 2019a; Feng et al., 2018).
Figure 3 summarizes representative studies based on numerical
simulation methods that investigate thrombus deposition,
expansion, and rupture of aneurysms, including both idealized
models and patient-specific vascular models.

The standard procedure for CFD simulations typically begins
with the three-dimensional reconstruction of arterial geometry
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using medical imaging data (e.g., CTA, MRI, Micro-CT, or DSA) to
obtain patient-specific anatomical models. The accuracy of vascular
geometry reconstruction directly influences simulation outcomes.
Multi-threshold segmentation techniques combined with manual
corrections are generally employed to ensure geometric models are
consistent with actual anatomical structures. During the meshing
process, tetrahedral or polyhedral meshes are frequently used,
supplemented by prism layer refinement to adequately capture
wall shear layers and near-wall turbulent characteristics. The
mesh element count typically ranges from hundreds of thousands
to millions. However, current mesh sizes are often limited to scales
of several hundred micrometers, which may fail to accurately
capture small-scale flow features, particularly in regions sensitive
to WSS, such as aneurysm cavities or vascular bifurcations,
potentially introducing errors (Ren et al., 2022; Le et al., 2013;
Kandangwa et al., 2022). In selecting algorithms for hemodynamic
simulations, CFD usually employs the FVM to solve Navier–Stokes
equations. Common spatial discretization schemes include the
second-order upwind scheme and central difference method.
Typical temporal integration methods include semi-implicit Euler
schemes, BDF2, and other high-order implicit or semi-implicit
methods to ensure simulation stability and accuracy. In complex
flow regions such as AAA or intracranial aneurysms, LES methods
are also utilized to capture richer turbulent structures (Vergara et al.,
2017; Lancellotti et al., 2017).

Regarding the assumption of blood fluid properties, most studies
still adopt the Newtonian fluid assumption, considering blood
viscosity as a constant value (approximately 4–4.5 mPa·s) (Feng
et al., 2020; Fan et al., 2019b). However, studies indicate that this

simplification might introduce significant errors in low-flow regions
or aneurysm vortex areas, failing to accurately simulate shear-
thinning effects of blood, thereby affecting precise calculation of
parameters like WSS and turbulence indices. Consequently, Non-
Newtonian fluid models (such as Carreau or Carreau-Yasuda
models) are gaining attention in research to more accurately
represent blood rheological properties (Salman et al., 2019;
Nørgaard et al., 2014; Miranda et al., 2021).

Currently, simulations commonly assume arterial walls as
rigid structures, neglecting their actual deformable
characteristics. This assumption is clearly limited, particularly
given the significant histological differences between arterial
regions. For example, coronary artery walls are relatively thin
with notable tissue elasticity; cerebral artery walls, rich in elastic
fibers, are relatively fragile; and aortic walls have a thicker elastic
medial structure. Neglecting these tissue characteristics and
structural differences can lead to errors in predicting
hemodynamic parameters (e.g., pressure gradients, WSS,
vortex stability). To enhance simulation accuracy, FSI methods
have increasingly become a research trend. Unlike traditional
CFD, which focuses solely on blood flow, FSI couples interactions
between blood and arterial walls, thereby providing more realistic
blood flow-wall deformation interaction models (Mendez et al.,
2018; Lin et al., 2017). Typical FSI applications include stress
redistribution after stent implantation, aortic valve opening and
closing processes, and aneurysm wall rupture risk prediction
(Pavlin-Premrl et al., 2021; Miranda et al., 2021; Pinho et al.,
2019). For example, after coronary stent implantation, FSI can
more accurately simulate stress distribution between the stent

FIGURE 3
Numerical simulation-based study of thrombus formation and the progression and rupture of aneurysms. (a) is based on the Smoothed Particle
Hydrodynamicsmethod for simulating thrombus deposition processes in a backward stepmodel (Monteleone et al., 2023); (b) Velocity field simulation at
the rupture site of an abdominal aortic aneurysm, with the red arrow indicating the rupture point; (c) Aneurysm growth over five follow-ups in the same
patient, along with contour plots of TAWSS and OSI.
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and vascular wall and the vessel remodeling process, offering
more clinically valuable evaluations.

In determining boundary conditions, traditional methods
commonly employ typical pressure/flow waveforms of the aorta
or coronary arteries from clinical measurements or literature as inlet
conditions (Huo et al., 2012; Cao et al., 2021; Tang et al., 2020;
Salman et al., 2019). Outlet conditions generally adopt zero-pressure
or simple linear resistance models. However, these simplified
boundary conditions cannot fully reflect the physiological
characteristics of the actual microcirculation or downstream
vascular bed, possibly leading to over- or under-estimations of
local hemodynamic characteristics. Some studies have begun
incorporating more physiological Windkessel or other distributed
parameter models to obtain more precise simulation results at outlet
boundary conditions (Wang et al., 2023; Van der Horst et al., 2013;
Sommer et al., 2022; Mei et al., 2020).

Concerning hemodynamic parameters, current studies
mainly focus on WSS, TAWSS, OSI, RRT, vortex criteria (e.g.,

Q-criterion), ECAP, EL, among others. Accurate selection and
prediction of these parameters have significant implications for
clinical risk assessment. Table 2 summarizes commonly used
hemodynamic indices, their formulas, and physiological
significance. The accurate prediction of hemodynamic indices
strongly depends on mesh precision, fluid model selection, wall
boundary conditions, and outlet condition settings, and their
reliability requires further validation. Present simulation method
limitations mainly manifest in two areas: firstly, excessive
dependence on boundary conditions, where uncertainties or
simplifications in inlet and outlet conditions might skew
results; secondly, insufficient clinical measurements to
rigorously validate numerical simulation outcomes. Thus,
future research should enhance coupling validation between
experimental and numerical simulations, fully integrating
medical imaging data, flow and pressure measurements, and
physiological parameters to develop more refined FSI models
and boundary conditions.

TABLE 2 Commonly used hemodynamic parameter formulas and their physiological significance.

Parameter Calculation formula Dimension Physiological significance

TAWSS TAWSS � 1
T ∫T

0
|τw(t)| dt Pa Characterizes the average level of WSS over a cardiac cycle,

reflecting the extent to which the vessel is subjected to long-
term ‘squeezing’ effects. Both excessively low and high
TAWSS are considered to be associated with the occurrence
and development of diseases

OSI
OSI � 1

2 (1 −
|∫

T

0
τw(t) dt |

∫
T

0
|τw(t)|dt

)
Dimensionless Depicts the degree of oscillation of the wall shear stress

direction within a cycle. Values closer to 0.5 indicate more
frequent reversals of shear stress direction, often associated
with areas susceptible to atherosclerosis or aneurysm
instability

RRT RRT � 1
TAWSS (1−2OSI) 1/Pa RRT characterizes regions where wall shear stress is both

low and oscillates severely, providing a good marker for
atherosclerotic lesions and areas prone to thrombosis

transWSS transWSS � 1
T∫

T

0
| τw(t) − (τw(t) · êm)êm|dt

êm � τm
|τm |, τm � 1

T∫
T

0
τw(t) dt

Pa Reflects the magnitude of the component of wall shear stress
perpendicular to its average direction. High transWSS
indicates a significant deviation from the average direction,
usually associated with endothelial dysfunction,
atherosclerotic plaque formation, and increased risk of
aneurysm rupture

WSSG WSSG � ∇wall|τw | Pa/m Used to measure rapid changes in the local spatial
distribution of wall shear stress, related to atherosclerosis-
prone areas and aneurysm deformation

ECAP ECAP � OSI
TAWSS

1/Pa Used to assess the local blood flow environment’s potential
to activate or damage endothelial cells, evaluating the
likelihood of thrombus deposition

Q-criterion Q � 1
2 ( |Ω|2− | S|2)

Ω � 1
2 (∇u − (∇u)T),

S � 1
2 (∇u + (∇u)T)

s-2 Used to detect the location and intensity of vortex structures
in the flow field, analyzing vortex activity and flow
instability under complex flow conditions such as
aneurysms or stenoses

Surface Area
Ratio (SAR)

SAR-TAWSS � Area x ∈ wall: TAWSS(x)≤ τth{ }
TotalWall Area (Taking SAR-TAWSS as

an example)

dimensionless Reflects the proportion of the vessel surface areas with low
TAWSS or high OSI relative to the total vessel surface area,
aiding in the risk segmentation of arterial lesions or stent
intervention areas

Vorticity ω � ∇× u 1/s Indicates the degree of fluid rotation; high vorticity regions
typically form at aneurysms and stenoses, suggesting mixed
flow, backflow, and potential turbulence

Energy Loss Energy Loss � ∑
inlets

(TP × Q) − ∑
outlets

(TP × Q)

TP � p + 1
2 ρ|v|2

W Reflects energy loss due to viscosity and turbulence in flow,
commonly associated with vessel stenosis or valvular
dysfunction, leading to decreased efficiency
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3.2 In Vitro experiment

Simulations based solely on CFD may easily lead to
inaccurate results due to differences in vascular model
processing methods or boundary condition settings by
different researchers or clinicians. Consequently, verification
with in vitro MCL systems becomes an essential auxiliary step,
helping to confirm the fidelity of CFD results. Chen et al. (2022);
Liang et al. (2022) study validated the accuracy of CFD numerical
simulations using an in vitro modeling approach. The results
showed that the average flow distribution ratio (FDR) difference
between the CFD simulations and the standard data was 2.4% ±
1.70%. The comparison primarily employed paired t-tests to
assess the statistical differences between the two methods
(with a significance level set at p < 0.05), thereby confirming
that, with proper selection of patient-specific geometries and
physical properties (such as using a hyperelastic material model),
the CFD simulation results regarding pressure waveforms and
flow distribution are highly consistent with the in vitro
experimental data.

The basic procedure of in vitro simulation experiments typically
includes obtaining patient-specific vascular geometrical data
through medical imaging (e.g., CT or MRI), followed by
personalized 3D reconstruction using software such as Geomagic
Wrap, and then manufacturing the vascular model via 3D printing.
Silicone materials, such as Sylgard 184, are commonly used to
construct vascular models, exhibiting an elastic modulus between
two and 8 MPa, a Poisson’s ratio of approximately 0.49, and a
density around 1,060 kg/m3 (Liang et al., 2022; Chen et al., 2022).
Alternatively, transparent Plexiglass can be utilized for flow
visualization, with an elastic modulus ranging from 2.5 to 3 GPa
and a Poisson’s ratio of approximately 0.35 (Liang et al., 2022).
Blood analog fluids typically comprise glycerin-water solutions
(density: 1,050–1,060 kg/m3; viscosity: 3.5–4.1 mPa·s) to replicate
the rheological properties of blood (Jamiolkowski et al., 2020; Espa
et al., 2019).

The distal vascular resistance and compliance of the vascular
system are usually modeled using a three-element Windkessel
model (Diamond and Forrester, 1972; Shaw et al., 2002). The
compliance chamber utilizes the compressibility of air to
simulate vascular compliance, whereas the glycerin-water
solution flow simulates the viscous resistance of blood flow
(Bardi et al., 2024; Salman et al., 2019; Kolli et al., 2016; Liang
et al., 2023). Adjusting the pressure and volume within the air
chamber precisely controls system compliance, thus simulating
vascular elasticity characteristics under various physiological or
pathological conditions (Shaw et al., 2002; Alfonso et al., 1994).
After establishing the MCL, experimental data such as velocity
fields can be measured using PIV or Doppler ultrasound, and
real-time pressure waveforms, WSS, and flow rate data can be
recorded using pressure sensors (Jamiolkowski et al., 2020; Espa
et al., 2019; Rotman et al., 2019). The experimental data can be
processed by filtering techniques (e.g., Savitzky-Golay filter) to
remove high-frequency noise originating from the experimental
setup and environment, ensuring accurate comparisons between
experimental and CFD simulation results (He et al., 2024; Liang
et al., 2022; Zhao et al., 2021; Jamiolkowski et al., 2020). This
approach provides precise evidence for subsequent aneurysm

diagnosis and treatment. However, it is noteworthy that many
researchers currently restrict their focus to local vascular regions
for in vitro validation or CFD simulations. Since the experimental
scope significantly impacts simulation and numerical results,
such as WSS and velocity distributions, attention should be
paid to incorporating broader vascular pathways rather than
being limited solely to lesion sites during numerical and
experimental analyses. Figure 4 illustrates the general
procedure and results processing of in vitro modeling.

Nevertheless, in vitro simulations still present several
limitations. Existing materials struggle to fully replicate the
nonlinear elasticity, anisotropy, and biological responses of real
blood vessels. Furthermore, accurately simulating the mechanical
characteristics of vascular intima, media, and adventitia, as well as
plaque and thrombus, remains challenging in vitro. Therefore,
investigating more realistic in vitro simulation materials is a
crucial area for future exploration.

3.3 4D-flow MRI

4D-flow MRI has emerged as a non-invasive imaging modality
for hemodynamic evaluation, providing time-resolved, three-
dimensional velocity fields across the cardiac cycle through the
application of velocity-encoding gradients integrated into phase-
contrast MR imaging (Bissell et al., 2023). This technique allows for
comprehensive quantification of hemodynamic parameters,
including velocity, WSS, OSI, RRT, and pulse wave velocity
(PWV), making it highly suitable for detailed assessment of
complex flow patterns encountered in intracranial aneurysms
(Peng et al., 2025; Schnell et al., 2012; Liu et al., 2018).

Recent studies have validated the accuracy and reliability of 4D-
flow MRI-derived hemodynamic parameters through comparison
with numerical simulation, in vitro experiment, and standard
clinical imaging protocols. For example, Liu et al. (2018)
developed an accelerated 4D-flow MRI approach combining
advanced undersampling (CIRCUS) with compressed sensing
reconstruction, achieving high temporal resolution (below 30 m)
within clinically feasible scan times (~5 min). Their work
demonstrated robust qualitative and quantitative agreement with
conventional imaging methods in both healthy volunteers and
intracranial aneurysm patients, highlighting its ability to
accurately visualize complex flow structures such as intra-
aneurysmal vortices and recirculating flow patterns (Liu et al.,
2018). Furthermore, Ferdian et al. (2022) introduced WSSNet, a
deep-learning model specifically designed to improve WSS
estimation accuracy from clinical-resolution 4D-flow MRI data,
which significantly correlated with CFD-derived results (r =
0.92), addressing key challenges related to spatial resolution
limitations.

Clinical applications of 4D-flow MRI have expanded
significantly, particularly within aneurysm 00research. Misaki
et al. (2021) validated the clinical utility of intracranial 4D-flow
MRI by demonstrating strong correlations between MRI-derived
flow parameters and CFD-simulated results, particularly in
predicting rupture risk associated with abnormal hemodynamic
features in aneurysms. Similarly, Koizumi et al. (2024)
introduced the aneurysm damping index (ADI), an innovative
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parameter derived from 4D-flow MRI data, quantifying flow-
induced mechanical energy attenuation within aneurysms,
thereby offering new insights into aneurysmal wall compliance
and stiffness, important markers for aneurysm stability. Brindise
et al. (2019) further confirmed the robustness of dimensionless
hemodynamic indices such as OSI across various modalities,
underscoring the potential of 4D-flow MRI to reliably capture
clinically relevant hemodynamic metrics even under spatial
resolution constraints.

Looking forward, advancements in acquisition and
reconstruction techniques, including multi-VENC encoding,
compressed sensing, and machine-learning-based image
reconstruction, will likely further enhance the capability of 4D-
flowMRI to detect subtle yet clinically meaningful flow disturbances
(Bissell et al., 2023; Brindise et al., 2019; Gao et al., 2019; Liu et al.,
2018). These developments, coupled with ongoing standardization
efforts detailed in recent expert consensus documents, suggest a
promising trajectory toward widespread clinical adoption.
Consequently, 4D-flow MRI is anticipated to play a pivotal role
in future intracranial aneurysm management by improving patient-
specific risk stratification, facilitating targeted therapeutic decisions,
and enabling more precise longitudinal follow-up of aneurysm
progression.

3.4 New techniques for predicting flow
fields: deep learning

As mentioned in the previous section, obtaining more accurate
simulation results requires developing more comprehensive
mechanical models and precise boundary conditions. However,
this approach significantly increases computational cost and time
consumption, severely limiting clinical applications. Balancing
computational efficiency and accuracy of results remains a
critical issue for researchers.

In recent years, the integration of DL and CFD has become an
essential trend in hemodynamic research. Although traditional CFD
simulations hold irreplaceable precision in biomedical engineering,
the incorporation of DL methods, particularly frameworks such as
PINN, CNN, and GCN, has enabled researchers to predict and
analyze hemodynamics quickly and accurately. Figure 5 summarizes
current studies on aneurysmal hemodynamic characteristics based
on deep learning methods, including flow field generation using
deep learning, automatic segmentation and detection of aneurysm
morphology from medical images, and risk prediction models for
aneurysms. In coronary artery simulation, Alzhanov et al. (2024a),
Alzhanov et al. (2024b) developed a hybrid CFD-PINN framework.
By embedding the incompressible Navier-Stokes equations directly

FIGURE 4
Experimentalmethods for hemodynamic analysis using physical models. (a) Setup of a physical in vitro vascularmodel; (b) Simulated circulation loop
for an abdominal aortic aneurysm; (c) Schematic diagram of the 3D-PIV setup, consisting of a simulated circulation loop with electrical and optical
components (Zeugin et al., 2024); (d) LED-PIV experimental results for two regions of interest in a patient’s actual AAA model (Bardi et al., 2024).
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into the neural network training process, their method ensures mass
and momentum conservation during training. This approach not
only delivers accurate individualized predictions but also
significantly reduces computational costs, representing a
promising non-invasive functional diagnostic tool. Meanwhile,
Suk et al. (2024a), Suk et al. (2024b) proposed a novel method
based on SE (3)-equivariant Graph Convolutional Networks (GEM-
GCN). By explicitly considering the local geometry and connectivity
of mesh surfaces and using group-equivariant convolutions, this
approach effectively captures detailed flow characteristics on
vascular surfaces, enabling rapid and precise estimation of
coronary artery WSS. This method demonstrates robustness to
complex topologies and arbitrary spatial transformations,
achieving approximately 7.6% error, indicating strong potential
for clinical real-time assessment. Additionally, a comprehensive
image-to-flow processing pipeline has received increased
attention. Yao et al. (Yao et al., 2024) developed the Image2Flow
network, ingeniously combining 3D CNN and GCN to directly
segment pulmonary arteries from cardiac MRI images and estimate
corresponding CFD flow fields rapidly and automatically. The
significant advantage lies in its extremely fast processing (only
hundreds of milliseconds) while maintaining good balance

between segmentation accuracy (Dice ≈0.9) and flow prediction
error (~10%), promising widespread application in
cardiopulmonary disease diagnosis and treatment processes.

Moreover, research efforts also focus on combining CFD
simulations with structural analysis and machine learning to
enhance clinical predictions of disease risk. Siogkas et al.
(2024) integrated CFD-derived hemodynamic indices with
structural simulation-derived local stresses to predict carotid
plaque rupture risk using GBT, achieving diagnostic accuracy
up to 88%. This model utilizes realistic pulsatile blood flow
boundary conditions generated from 3D MRI data and
ultrasound-measured flow waveforms, accurately simulating
physiological environments, offering practical value for stroke
risk prediction. Furthermore, considering the clinical importance
of iFR, Liu J. et al. (2024), Liu X. et al. (2024) introduced a
simplified model combining DL and physiological regulatory
mechanisms to rapidly estimate non-invasive iFR. Trained on
real clinical patient coronary CTA data and high-precision CFD
simulations, their deep neural network predicts resistance due to
coronary stenosis. Coupled with microcirculation auto-
regulatory mechanisms, this method enables fast, non-invasive
iFR (iFRCT) calculation with a diagnostic accuracy of up to

FIGURE 5
Deep learning-based reconstruction of coronary and aortic flow fields. (a) Velocity field reconstruction: CFD results on the left, deep learning results
on the right; (b)Wall shear stress reconstruction: CFD results on the left, deep learning results on the right; (c)Deep learning network architecture for flow
field reconstruction proposed by (Li et al., 2021).
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88.3%. Explicit consideration of physiological regulatory
mechanisms enhances the physiological plausibility and
clinical applicability of this model.

The studies mentioned above also highlight an increasing
emphasis on interpretability. For example, the hybrid CNN-GCN
model by Yao et al. (Yao et al., 2024) explicitly integrates spatial
and vascular morphology information, providing a geometric
perspective of interpretability, despite the absence of detailed
feature attribution analysis. In contrast, Alamir et al. (2024)
utilized integrated gradient methods to attribute neural
network features, explicitly revealing the significance of vessel
radius and inflow velocity in determining coronary artery WSS
distributions. These approaches shift DL models from complete
“black boxes” towards interpretability, supporting clinical
decision-making more effectively. However, it is noteworthy
that most researchers developing DL algorithms have not
utilized high-fidelity simulations during dataset preparation,
such as neglecting pulsatile flow, non-Newtonian blood
properties, or realistic boundary conditions. For DL to achieve
more precise blood flow simulations, high-fidelity simulation
datasets or actual patient-measured data are necessary
prerequisites. Additionally, many studies train models on local
hemodynamic data while ignoring accuracy on large-scale
models. Given physiological considerations, rapid flow field
computation, lesion detection, and risk prediction for large-
scale vessels (such as intracranial arteries, coronary arteries, or
the entire aorta) deserve further attention.

To further mitigate the overfitting risk associated with small-
sample training conditions and enhance model generalizability,
current studies are increasingly incorporating hybrid strategies
that combine data augmentation, transfer learning, and multi-
task learning. For example, in the context of vascular flow
simulation, Yao et al. (2024) employed self-supervised
pretraining on synthetic flow data, followed by fine-tuning on
patient-specific geometries, which significantly improved
prediction accuracy with limited real-world samples.
Additionally, methods like Bayesian Neural Networks (BNNs)
and Monte Carlo Dropout (Gal and Ghahramani, 2015) have
been adopted to quantify uncertainty in predictions and
regularize model weights, thus preventing overfitting. From
the interpretability perspective, techniques such as Integrated
Gradients, SHAP (SHapley Additive exPlanations), and
attention heatmaps are increasingly utilized to expose model
decision processes, allowing clinicians to verify whether
predictions align with known hemodynamic risk factors (e.g.,
low WSS, high OSI). Importantly, as suggested by Alamir et al.
(2024), these interpretability tools not only identify which
geometric or flow-related features contribute most to
predictions but also support clinical trust-building by
providing biologically meaningful rationales behind each
diagnostic decision. Going forward, the integration of
interpretable physics-constrained models, such as KANs and
PINNs, with interactive visualization dashboards for clinical
end-users, may offer an effective pathway toward regulatory
acceptance and real-world adoption (Liu Z. et al., 2024; Liu
J. et al., 2024; Ranasinghe et al., 2024).

In summary, recent studies applying DL to CFD-based
hemodynamics exhibit three core trends: first, physics-

informed or constrained DL (e.g., PINN) clearly shows advantages in
accuracy and physical consistency; second, computational efficiency is
significantly improved, greatly facilitating real-time or near-real-time
applications and clinical feasibility; lastly, increased attention is being
paid to model interpretability and decision-support capabilities,
promoting model transparency and clinical acceptance. These
innovations indicate that DL techniques are gradually moving
hemodynamic simulations towards real-time, precise, and
personalized clinical applications, potentially revolutionizing
cardiovascular disease diagnostics and treatment paradigms in the future.

4 Conclusion

Significant advancements have been achieved in aneurysm
hemodynamics research over the past few decades, uncovering
the critical roles mechanical factors play in aneurysm initiation,
progression, and rupture throughmultidisciplinary integration. This
review systematically summarizes the heterogeneity observed across
aneurysms located at various anatomical sites concerning
morphological characteristics, mechanical environments, and
mechanisms of thrombus formation. Particular emphasis has
been placed on the complex associations between key
hemodynamic parameters and aneurysm progression.

Integration of numerical simulations and in vitro experiments has
provided essential tools for high-precision hemodynamic analyses, while
the incorporation of DL techniques has substantially enhanced
computational efficiency and clinical translation potential.
Nonetheless, current research still encounters numerous challenges:
rigid wall simplifications, uncertainties in boundary conditions within
CFD simulationsmay introduce inaccuracies; DLmodels heavily rely on
high-quality training datasets and suffer from insufficient
interpretability; and biomimetic in vitro experimental materials often
fail to replicate authentic vascular biomechanical properties.
Furthermore, controversies surrounding the high/low WSS
hypothesis and incomplete elucidation of mechanobiological coupling
mechanisms necessitate integrated multi-scale and multi-omics studies.

Future research could benefit from further enhancing
multidisciplinary collaboration, potentially integrating
mechanobiology, multi-omics analyses, and artificial
intelligence technologies to explore the dynamic mechanisms
through which mechanical stimuli might influence aneurysm
progression via endothelial cell signaling pathways. It may
also be valuable to consider the development of patient-
specific “digital twin” platforms that incorporate real-time
imaging, blood flow simulations, and surgical planning, which
could contribute to establishing a new paradigm for personalized
aneurysm treatment.
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Glossary
AAA Abdominal Aortic Aneurysm

ASI Aneurysm Shape Index

BDF2 Backward Differentiation Formula 2

CAA Coronary Artery Aneurysm

CE Cross-sectional Eccentricity

CFD Computational Fluid Dynamics

CNN Convolutional Neural Networks

CTA Computed Tomography Angiography

DL Deep Learning

DNR Dome-Neck Ratio

DSA Digital Subtraction Angiography

ECAP Endothelial Cell Activation Potential

FSI Fluid-Structure Interaction

FVM Finite Volume Method

GBT Gradient Boosting Trees

GCN Graph Convolutional Networks

IAs Intracranial Aneurysm

iFR Instantaneous wave-free Ratio

ZILT Intraluminal Thrombus

LE Longitudinal Eccentricity

LES Large Eddy Simulation

MCL Mock Circulation Loop

Micro-CT Micro Computed Tomography

MMP Matrix Metalloproteinase

MRA Magnetic Resonance Angiography

MRI Magnetic Resonance Imaging

NO Nitric Oxide

OSI Oscillatory Shear Index

PINN Physics-Informed Neural Networks

PIV Particle Image Velocimetry

RBC Red Blood Cell

RRT Relative Residence Time

SR SizZe Ratio

TAA Thoracic Aortic Aneurysm

TAWSS Time-Averaged Wall Shear Stress

UI Undulation Index

vWF von Willebrand Factor

WSS Wall Shear Stress
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