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1 Introduction

Environmentally-responsive biomaterials are a novel class of materials that undergo
structural or functional changes by altering their internal atom arrangement in response to
environmental stimuli. These stimuli include endogenous disease microenvironments, such
as the acidic pH of tumor microenvironments or elevated enzymatic activity in inflamed
tissues, external physical triggers, such as temperature, light, ultrasound, or magnetic fields,
and the combinations of these stimuli (Mura et al., 2013; Chen et al., 2022; Zhu et al., 2023).
A variety of environmentally-responsive biomaterials have been developed to date,
including DNA nanostructures (Zhao et al., 2023; Li et al., 2024; Zhao et al., 2024c;
Zhao et al., 2021; Liu et al., 2023; Ji et al., 2022), hydrogels (Ma et al., 2023; Zhao et al., 2024b;
Guo et al., 2023), nanomicelles (Wang et al., 2024; Uthaman et al., 2024; Wang et al., 2023)
and biomembranes-based materials (Su et al., 2022). Those environmentally-responsive
biomaterials achieve the delivery and release of therapeutics with precise spatial and
temporal control, minimizing off-target effects and maximizing treatment efficacy
in vitro and in vivo (Xue et al., 2023; Cui et al., 2024; Wei et al., 2011; Xia et al., 2019).

For the treatment of clinical diseases, one of the primary advantages of
environmentally-responsive biomaterials is their ability to provide targeted and on-
demand therapeutic solutions. By leveraging the unique pathological
microenvironments of diseases or physical stimuli, these materials enhance the
selectivity and efficiency of treatments. Additionally, their adaptability reduces the need
for external intervention, improving patient compliance and reducing systemic toxicity.
Applications of environmentally-responsive biomaterials span across major disease
treatments (Zhao L. et al., 2024; Guo et al., 2016; Duan et al., 2022; Xia et al., 2020),
including cancer, diabetes, cardiovascular disorders. For example, pH-sensitive hydrogels
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are used for localized drug delivery in cancer therapy (Lin et al.,
2025), while thrombin-responsive DNA nanomachines aid in
precise delivery and accurate dosing of tissue plasminogen
activator release for thrombolytic therapy (Yin et al., 2024).
Furthermore, advancements in this field are paving the way for
tissue engineering (Zhang et al., 2018), regenerative medicine, and
autoimmune diseases (Shodeinde et al., 2020), driving a paradigm
shift in modern healthcare (Zhang et al., 2015). In summary,
environmentally responsive biomaterials embody the intersection
of material science and medicine, offering innovative and
sustainable solutions to some of the most pressing challenges in
disease treatment.

This Research Topic collected excellent works on the
“Environmentally-responsive biomaterials for major diseases
treatment,” and a total of 9 articles from 38 authors were
accepted. The contributions have deepened the understanding of
this Research Topic from perspectives such as the development of
environmentally-responsive biomaterials and the strategies for
utilizing environmental signals in clinical treatment. This
Research Topic can be broadly divided into the following
three subfields.

2 External physical triggers

External stimuli, such as temperature, light, ultrasound, and
magnetic fields, enable precise, controllable activation of
biomaterials, allowing for non-invasive and on-demand
therapeutic interventions. In our Research Topic, Zhang et al.
developed an optogenetic-based mitochondrial aggregation system
(Opto-MitoA) based on a CRY2clust/CIBN light-sensitive module.
Through rapidly controlling mitochondrial aggregation in cells
upon blue light illumination, this system could increase the
energy-generating function of mitochondria and alleviate
niclosamide-caused cell dysfunction. Chen et al. synthesized
albumin-loaded Tanshinone IIA and near-infrared
photothermal agent IR780 nanoparticles for managing chronic
and infected wounds. The release of Tanshinone IIA was improved
under laser irradiation, thus realizing enhanced wound healing. He
et al. reviewed polydopamine-coated metal-organic frameworks
(MOFs@PDA) multifunctional nanomaterial, highlighting their
potential in cancer therapy. By leveraging strong photothermal
responsiveness of polydopamine, MOFs@PDA enable controlled
drug release triggered by near-infrared light, enhancing
therapeutic precision and minimizing side effects in
cancer treatment.

3 Endogenous disease
microenvironments

Endogenous disease microenvironments, including acidic pH,
hypoxia, and enzymatic activity, provide intrinsic biological triggers
that enable biomaterials to achieve site-specific responses and
targeted drug release. Bin et al. designed GSH-responsive

nanomicelles that release glucose transporter 1 (GLUT1)
inhibitor to block mononuclear phagocyte system (MPS) uptake,
significantly improving tumor treatment. Chu et al. emphasized the
critical role of rebuilding the myocardial microenvironment in
mesenchymal stem cells (MSCs)-based myocardial regeneration.
This review highlights the strategies for promoting angiogenesis
to improve MSCs survival and function in the treatment of ischemic
heart disease. Wu et al. developed a multiplexed microfluidic
immunoassay chip based on nanozyme technology for detecting
eight respiratory viruses, demonstrating its application in sensing
endogenous microenvironments through virus-specific antigen
detection. Zhang et al. reviewed reactive oxygen species (ROS)-
responsive biomaterials for Myocardial ischemia-reperfusion injury
(MIRI) treatment as the ROS microenvironment. They
systematically summarized the fabrication strategies and
therapeutic platforms of ROS-responsive biomaterials, paving the
way for their clinical translation. Han et al. utilized nanodiamonds
as carriers to deliver MicroRNA-7 into dopaminergic neurons for
the treatment of Parkinson’s disease. They used the nanodiamonds
& MicroRNA-7 complex (N-7) to inhibit the expression of
αsynuclein, reduce oxidative stress and restore dopamine levels
effectively.

4 Multiple stimuli combinations

The combination of multiple stimuli integrates the advantages of
both external and endogenous triggers, enhancing the specificity,
efficiency, and adaptability of biomaterials in complex disease
treatments. Xie and Xie reviewed the controlled drug release
enabled by physical-, chemical-, biological- and multiple-stimuli-
responsive hydrogels and their applications in treating brain disease.
They propounded that a multidisciplinary approach that combines
expertise from various fields is critical, will greatly enhance scientific
research, and will ultimately lead to new treatment options
for patients.
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