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Background: Forward head posture frequently occurs among primary school
children, potentially due to prolonged sedentary behavior associated with
academic demands and reduced physical activity. However, existing
prevention and screening methods fail to accurately and promptly predict the
onset of forward head posture.

Objective: This study aims to identify highly sensitive predictive indicators for
forward head posture in primary school children using the Least Absolute
Shrinkage and Selection Operator (LASSO) regression algorithm. Multiple
machine learning algorithms are applied to construct distinct risk prediction
models, with the most effective model selected through comparative analysis.
The Shapley Additive Explanations (SHAP) method is used to quantify the
influence of each feature on model outcomes, ensuring enhanced model
interpretability.

Methods: Employing a cross-sectional study design, this research recruited
520 primary school-aged children, gathering data on demographics,
anthropometrics, and physical activity levels. Univariate logistic regression was
utilized to identify high-risk factors for forward head posture. The LASSO
algorithm was subsequently applied to select key predictors. Six machine
learning models—K-nearest neighbor (KNN), light gradient boosting machine
(LGBM), extreme gradient boosting (XGBoost), random forest (RF), linear model
(LM), and support vector machine (SVM)—were developed to predict risk. The
performance of each model was evaluated, and the best-performing model was
further interpreted using the Shapley Additive Explanations (SHAP) algorithm.

Results: A total of 514 children were ultimately included in the study, of whom
300 exhibited forward head posture. LASSO analysis identified age, bodyweight,
BMI, sex, and weekly total homework time as prominent risk indicators. Among
the 6 predictive models, the random forest algorithm demonstrated the highest
performance (AUC = 0.865), significantly outperforming the others. SHAP
analysis revealed that BMI, bodyweight, and age were the most influential
predictors, with BMI contributing the most.
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Conclusion: The random forest-based prediction model achieved superior
predictive accuracy for forward head posture among Chinese primary school
children, emphasizing the importance of monitoring BMI, bodyweight, and age
for early intervention and prevention efforts.

KEYWORDS

primary school-aged children, forward head posture, machine learning, risk prediction
model, shapley additive explanation algorithm

1 Introduction

As the primary sensory input center of the human body, the
head’s posture plays a crucial role in maintaining overall spinal
health (Sikka et al., 2020). Forward head posture is one of the most
prevalent postural disorders among primary school-aged children
and is typically diagnosed by measuring the cervical vertebrae
angle (CVA) (Chu et al., 2020). Although a definitive threshold
distinguishing normal from abnormal CVA remains debated,
clinical consensus generally considers a CVA of less than 50°

in a standing position indicative of forward head posture
(Aoyama et al., 2020). A cross-sectional study published in
2016 reported an incidence rate of 53.5% among school-aged
children, with particularly high prevalence in the 13–15 age group
(SIngh et al., 2020). Furthermore, a 2022 study found that
individuals with prolonged electronic device usage also
exhibited a higher prevalence of forward head posture (Arooj
et al., 2022).

For primary-school-aged children, the development of forward
head posture is associated with multiple factors, including age,
height, bodyweight, body composition, muscular strength, and
growth rate (Arooj et al., 2022). During growth spurts, the
increase in skeletal muscle mass and strength may fail to keep
pace with the rapid growth of bones, resulting in imbalanced
development between the musculoskeletal systems and leading to
abnormal head and neck posture (Martinez-Merinero et al., 2020).
Additionally, unhealthy habits—such as prolonged sedentary
behavior and extended use of electronic devices—can cause
compensatory changes in spinal curvature. These postural
adaptations may result in overuse and stiffness of certain muscle
groups, while others become relatively lax due to disuse, ultimately
disrupting head posture and contributing to chronic pain and
functional motor impairments (Rani et al., 2023; Suwaidi et al.,
2023). Improper desk and chair heights may further induce
maladaptive changes throughout the spinal and shoulder joint
complex, prompting compensatory muscular responses that
negatively affect cervical alignment and head posture. These
biomechanical disruptions may trigger cascading postural issues
such as kyphosis and posterior pelvic tilt (Martinez-Merinero et al.,
2020; Rani et al., 2023). Lastly, children’s physical activity levels and
visual acuity are also linked to the incidence of forward head posture.
A sedentary lifestyle can diminish muscular strength and flexibility,
while poor ergonomic setups and prolonged screen use may
contribute to vision deterioration, collectively heightening the
risk (Rani et al., 2023; Suwaidi et al., 2023). Therefore, the onset
of forward head posture in primary school children is a
multifactorial process involving biomechanics, lifestyle patterns,
and physical activity.

In recent years, the widespread availability of medical big data
has facilitated the extensive application of machine learning (ML) in
risk prediction, offering more accurate approaches for identifying
postural abnormalities in primary school-aged children. For
instance, scoliosis prediction algorithms based on ML analyze
large-scale biomechanical data and imaging information to
enhance the precision of early diagnosis (Roland et al., 2016;
Yong et al., 2018). Moreover, ML techniques have been
employed in gait analysis among children to detect and forecast
abnormal gait patterns, thereby informing the development of
targeted corrective interventions (Prakash et al., 2016; Figueiredo
et al., 2018; Khera and Kumar, 2020). To address the “black box”
nature of ML models, the Shapley Additive Explanation (SHAP)
algorithm has been introduced. This method quantifies the
contribution of each clinical feature to the model’s output,
providing transparent interpretability (Nohara et al., 2022), which
aids pediatric healthcare providers, parents, and schools in
understanding the causal relationships behind model predictions
and formulating preventive strategies accordingly. Beyond model
development and validation, evaluating the clinical utility of these
models is essential to ensure the effectiveness and practicality of the
recommended measures, thereby reinforcing their scientific validity
and efficiency in real-world applications.

This study aims to identify highly sensitive predictive indicators
for forward head posture in primary school children using the Least
Absolute Shrinkage and Selection Operator (LASSO) regression
algorithm. Multiple machine learning algorithms are applied to
construct distinct risk prediction models, with the most effective
model selected through comparative analysis. The Shapley Additive
Explanations (SHAP) method is used to quantify the influence of
each feature on model outcomes, ensuring enhanced model
interpretability.

2 Methods and materials

2.1 Participants recruitment and screening

This study used a cross-sectional design. On 8 March 2025,
12 public primary schools in Nanjing, Jiangsu Province, China were
randomly chosen (one from each of the city’s 12 districts). One class
from each grade in each school was randomly picked. A notice was
sent out, and legal guardians signed up voluntarily. Student data was
collected on 9 March 2025.

Inclusion criteria: (1) Children aged 6–12 years; (2) Legal
guardians signed up to participate voluntarily and provided
informed consent, permitting the use of data for statistical
analysis; (3) Absence of clinical contraindications to physical
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activity, including but not limited to genetic disorders and
congenital disabilities; (4) Ability to comprehend basic
instructions, remain conscious, and complete assessments under
the guidance of testing personnel.

Exclusion criteria: (1) Presence of physical impairments or
mobility limitations; (2) Congenital organic hearing or speech
impairments that prevent test participation; (3) Any clinical
contraindication to physical activity; (4) Diagnosed
neurodevelopmental disorders, schizophrenia spectrum, or other

psychotic disorders that would prevent full cooperation during
assessments, as defined by the Diagnostic and Statistical Manual
of Mental Disorders, Fifth Edition (DSM-5) (Regier et al., 2013).

Figure 1 is the flow diagram of the study.

2.2 Data collection

Data measurement and collection for this study were jointly
conducted by certified testers and data screeners from the
Department of Physical and Education, Anhui Jianzhu
University. Comprehensive details regarding data collection
procedures are provided in Table 1. The study received ethical
approval from the Ethics Committee of Anhui Jianzhu University
(AJU202400035), and informed consent was obtained from all
participants’ legal guardians. Data definition and materials
collection approach of the study was listed in Table 1.

This study used a Kinect posture recognition and measurement
device (Version: Kinect 2 for Windows 2014; Microsoft, USA) based
on a depth camera to collect participants’ anthropometric data. This
device uses depth camera technology and has an accuracy of
0.001 m. During the collection of the cervical vertebrae angle,
ear-to-shoulder distance, and bilateral acromion horizontal
angles, participants were instructed to face the Kinect depth
camera directly, standing at a designated distance of 2 m from
the lens. While maintaining a static anatomical standing position for
5 s, the device captured frontal posture data. Participants then
turned 90° clockwise to record left-side static posture, followed by
another 5-s anatomical stance. Subsequently, they turned 180°

clockwise to capture right-side static posture, again holding the
anatomical position for 5 s. This sequence concluded the posture
data collection process. The process of posture recognition and
associated data acquisition is showed in Figure 2.

FIGURE 1
Flow diagram of the study.

TABLE 1 Data definition and materials collection approach of the study.

Item Definition Collection

Name — Questionnaire

Sex — Questionnaire

Age (year) — Questionnaire

Medical history — Questionnaire

Duration of seated study time outside of school hours Questionnaire

Physical Activity — Questionnaire

Height (cm) — Questionnaire

Bodyweight (kg) — Inbody

BMI (kg/m2) BMI = bodyweight(kg)/height2(m2) Calculate

Body-type Obesity/Overweight/Standard/Thin/Very thin WHO standard (Wang and Wang,
2000)

Cervical vertebrae angle (°) Angle formed between the line connecting the external auditory canal and
the C7 vertebral prominence landmark and the horizontal plane

Kinect

Ear-to-shoulder distance (cm) Horizontal distance between the ear canal and the shoulder Kinect

Horizontal angle of shoulders (°) The angle between the line connecting the left and right shoulder points and
the horizontal plane

Kinect
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Demographic and health-related information, including name,
age, sex, exercise habits, and medical history of each participant, was
collected through a structured questionnaire. Anthropometric
indicators comprised height, bodyweight, and body mass index
(BMI, unit: kg/m2). Height and bodyweight were measured using
an electronic height–bodyweight measuring device, following
standardized procedures. The height device had a measurement
range of 60–200 cm with a precision of 0.1 cm, while the bodyweight
scale operated within a 30–200 kg range with an accuracy of 0.1 kg.
Body composition, including BMI, lean body mass, and muscle
mass, was assessed using the InBody bioelectrical impedance body
composition analyzer (Model 370, InBody Co., South Korea).
During measurement, participants were required to remove hats
and sports shoes and wear light clothing. All measurements were
recorded to one decimal place to ensure accuracy. Lean body mass
(kg) was calculated by subtracting fat mass (kg) from total body
bodyweight (kg). The BMI formula is shown in Equation 1.

BMI kg/m2( ) � Bodyweight kg( ) /Height2 m2( ) (1)

Physical activity data was collected using the Chinese version
of the Physical Activity Questionnaire for Adolescents (PAQ-A).
This is a localized version of the international PAQ-A scale,
designed to assess physical activity levels in adolescents. It was
first developed by Canadian researcher Kowalski and later
translated and revised by Chinese scholars to fit the habits and
culture of Chinese adolescents. The Chinese version of the PAQ-A
consists of 9 items that assess various dimensions of physical
activity, including school physical education classes,
extracurricular exercise, daily routines such as walking and
household chores, and weekend activity intensity. Responses are
rated on a 5-point Likert scale (1 indicating very low activity and
5 indicating very high activity). The final score is the mean of all
items, ranging from 1 to 5, with higher scores reflecting greater
levels of physical activity. The questionnaire is user-friendly and
time-efficient, typically requiring 5–10 min to complete. It is well-
suited for use in school health assessments, adolescent obesity
intervention studies, and evaluations of physical activity
promotion initiatives. Previous studies have shown that the
Chinese PAQ-A is reliable and valid, with the Cronbach’s α
between 0.70 and 0.85, a good test-retest reliability (Intraclass

Correlation Coefficient, ICC > 0.75), and a moderate link with
actual measurement results (r = 0.3–0.5) (Regier et al., 2013).

2.3 Statistical analysis

2.3.1 Risk factors of head forward posture
R software (version 4.1.2, R Studio, USA) was used to analyze

risk factors. For continuous data, the mean and standard deviation
(SD) were utilized to describe the data. Variance homogeneity was
assessed using Levene’s test, and data normality was verified using
the Shapiro-Wilk test. Student’s t-test was applied for normally
distributed data with homogeneous variance; otherwise, Welch’s
t-test was adopted. For categorical variables, frequencies (n) and
percentages (%) were calculated, and comparisons between groups
were conducted using the chi-square test. Univariate logistic
regression models evaluated associations between forward head
posture and individual risk factors, calculating regression
coefficients (β), odds ratios (OR), and corresponding 95%
confidence intervals (95% CI). Age and daily physical activity
were included as covariates for adjustments. To ensure
comparability of the regression results, continuous data were
standardized as follows: (value - mean)/standard deviation. All
regression results were reported per 1-standard-deviation
increase. Statistical significance was established using two-tailed
tests, with α set at 0.05.

The dataset was randomly partitioned into training (70%) and
validation (30%) subsets using a stratified random sampling
approach provided by the “caret” package in R software (version
4.1.2, R Studio, USA). Participants with incomplete or erroneous
data were excluded from the analysis. Specifically, the
“createDataPartition” function from the “caret” package was
utilized to ensure proportional representation of forward head
posture status across both datasets, maintaining the 7:
3 distribution ratio. This stratified approach guarantees balanced
distribution and reproducibility, ensured by setting a random seed
using the “set.seed” function. Ultimately, this method yielded no
significant differences in prevalence rates of forward head posture
between training and validation datasets (Kuhn, 2008; Kuhn, 2013).

Variable selection was conducted using the Least Absolute
Shrinkage and Selection Operator (LASSO) method, implemented

FIGURE 2
Scheme of human body posture recognition and relative data collection.
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through the “glmnet” package in R (Yuan et al., 2012). LASSO
performs both variable selection and regularization, effectively
mitigating multicollinearity by shrinking certain regression
coefficients to zero. Consequently, redundant predictors are
excluded, enhancing model stability and interpretability.
Although certain variables, such as BMI, are derived from other
variables like height and bodyweight, LASSO assesses the individual
predictive contributions of each independently, potentially retaining
unique risk-related variables.

Initially, forward head posture was defined as a binary outcome
variable. LASSO regression was applied to all candidate variables
within the training dataset, employing 10-fold cross-validation to
determine the optimal penalty parameter (lambda, λ). Input
variables were centered and scaled during this process. The
selected predictors with non-zero coefficients at the optimal
lambda were subsequently incorporated into a multivariable
logistic regression model to construct the final predictive
nomogram using the “rms” package (Wang et al., 2018). The
nomogram visually translates logistic regression coefficients into
a clinically interpretable risk-prediction tool, allowing clinicians to
easily calculate individual probabilities of forward head posture.

2.3.2 Selection of machine learning predictive
model and explanation

In the training and validation sets, 6 machine learning models
were built using feature variables to predict forward head posture

in primary school children: K-nearest neighbor (KNN), light
gradient boosting machine (LGBM), extreme gradient boosting
(XGBoost), random forest (RF), logistic multivariate regression
(LM), and support vector machine (SVM). 10-fold cross-
validation was used to find the best parameters for each
model. Independent validation was then performed on the test
set. Receiver operating characteristic (ROC) curves were drawn
to evaluate how well each model could distinguish outcomes. The
SHAP algorithm was used to explain the best-performing model,
helping to make the model easier to understand and more
transparent.

3 Results

3.1 Baseline characteristics

After screening, 514 out of 520 primary school children were
included in the study dataset. Among them, 300 had forward head
posture (58.37%). All participants were randomly divided into a
training set (n = 360) and a validation set (n = 154) using a 7:3 ratio.
As shown in Table 2, children with forward head posture had
significantly higher age, height, bodyweight, BMI, average daily
homework time, average weekly homework time, and ear-
shoulder distance than those without forward head posture
(P < 0.001).

TABLE 2 Baseline information.

Item Total
(n = 514)

Without forward head
posture (n = 214)

Forward head posture
(n = 300)

Variance homogeneity
P-value

P-value

Sex 0.154

Male 442 (85.99%) 178 (83.18%) 264 (88.00%)

Female 72 (14.01%) 36 (16.82%) 36 (12.00%)

Age (year) 9.00 ± 2.00 8.00 ± 1.50 10.00 ± 1.00 0.03 <0.001*

Height (cm) 137.00 ± 11.50 131.00 ± 11.00 141.00 ± 8.50 0.751 <0.001

Bodyweight (kg) 30.70 ± 9.80 27.90 ± 6.58 34.65 ± 7.15 0.153 <0.001

BMI (kg/m2) 16.59 ± 1.50 15.69 ± 1.12 16.94 ± 1.34 0.093 <0.001

Body-type 0.058

Very thin 4 (0.78%) 2 (0.94%) 2 (0.67%)

Thin 12 (2.34%) 6 (2.83%) 6 (2.00%)

Normal 354 (69.14%) 148 (69.81%) 206 (68.67%)

Overweight 92 (17.97%) 44 (20.75%) 48 (16.00%)

Obesity 50 (9.77%) 12 (5.66%) 38 (12.67%)

Daily homework time
(hours)

1.43 ± 1.07 1.29 ± 1.10 1.54 ± 1.02 0.125 <0.001

Weekly homework
time (hours)

8.41 ± 7.13 7.47 ± 7.17 9.09 ± 6.85 0.115 <0.001

Ear-to-shoulder
distance (cm)

1.60 ± 1.20 0.30 ± 0.30 3.20 ± 1.10 <0.001 <0.001*

*: A variance test P-value >0.05 means variances are not equal, so Welch’s t-test is used to compare groups.
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3.2 Risk factors of forward head posture

The univariate logistic regression results for risk factors of
forward head posture in primary school children are shown in
Figure 3. Age, height, bodyweight, BMI, average daily homework
time, and average weekly homework time were all statistically
significant (P < 0.001). Their odds ratios (95% CI) were 1.318
(1.189, 1.468), 1.035 (1.02, 1.051), 1.041 (1.022, 1.061), 1.161
(1.078, 1.256), 1.123 (1.056, 1.195), and 2.188 (1.46, 3.309), and
they can be used as predictors for forward head posture in children.

Figure 4 shows the results of forward head posture
determination for all participants. Figure 4A shows the feature
selection and tuning process using the LASSO algorithm.
Figure 4B shows the results of 10-fold cross-validation. Figure 4C
shows the variables kept by LASSO and their corresponding
multivariable regression coefficients. The results showed that for
forward head posture, the features selected by the LASSO algorithm
were age, bodyweight, BMI, sex, and average weekly homework
time. Their multivariable regression coefficients were 0.387, −0.009,
0.095, −0.237, and −0.107, respectively. Figure 4D shows the forest
plot of the multivariable logistic regression model built using the
features selected by the LASSO algorithm.

Table 3 is a combined table of univariate and multivariate
logistic regression models built from both the original features
and the features selected by the LASSO algorithm. According to
the table, the odds ratio (OR) means for “age” increased from 1.32 to
2.12 after being included by LASSO. The OR mean for “average
weekly homework time” decreased from 1.12 to 0.809. The ORmean

for “BMI” increased from 1.16 to 1.385. The OR mean for
“bodyweight” decreased from 1.04 to 0.916. The OR mean for
“sex” increased from 0.57 to 0.826. Moreover, among the
variables found to be statistically significant (P < 0.05) in the
univariate logistic regression analysis, “average daily homework
time” and “height” were not retained in the final model selected
by the LASSO algorithm.

Figure 5 illustrates the nomogram derived from our
multivariable logistic regression model, incorporating all key
predictors identified for outcome prediction (e.g., Patient Age,
Biomarker X level, Presence of Condition Y, etc.). Each predictor
is displayed as a horizontal axis with tick marks indicating its range
of values, and the top row of the nomogram corresponds to a Points
scale. For any given value of a predictor, one can read upwards to the
Points scale to determine how many points that value contributes to
the overall risk score, reflecting the variable’s relative influence in
the model.

To use the nomogram for an individual patient, the clinician
locates the patient’s value on each predictor’s axis and draws a
vertical line up to the Points scale to record the points for that
predictor. After repeating this for all predictors, the points are
summed and the total is marked on the Total Points axis.
Finally, by drawing a straight line downward from the total
points value to the bottom Risk Probability line, the
corresponding estimated probability of the outcome is obtained.
In this way, Figure 5 provides an intuitive graphical tool: the
nomogram’s structure enables easy calculation of a patient’s risk
by visualizing the contribution of each variable, and the total points

FIGURE 3
Forest plots of single-variable logistic regression for risk of head forward posture.
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translate directly into an individualized predicted risk. This explicit
representation of variables and their meanings makes it
straightforward to interpret how each factor influences the
prediction.

3.3 Selection of machine learning predictive
model and explanation

3.3.1 Predictive performance
The predictive performance of the 6 models was assessed using

the validation dataset, and the comparative results of the ROC
curves for each machine learning model are presented in Figure 6.
The ROC analysis demonstrated that, compared to the traditional
logistic multivariate regression model (LM) with an AUC of 0.640,

the random forest (RF) model exhibited superior discriminatory
power and predictive performance, achieving a notably higher
AUC of 0.865.

3.3.2 Model explanation
Figure 7A is a bar chart showing the importance of features in

the RF model, ranked by the average absolute SHAP values from
highest to lowest. It shows how much each feature affects the
model’s prediction. The vertical axis lists the features in order of
importance. The results show the following order of importance:
BMI > bodyweight > age > gender >average weekly homework time.
Figure 7B displays the SHAP value distribution for the features in
the RF model. The vertical axis lists clinical features ranked by
importance, while the horizontal axis indicates the corresponding
SHAP values. The color gradient of each point represents the

FIGURE 4
LASSO regression for feature variables selection and multi-variable logistic regression model establishment. (A) gg-plot of Log(λ) of LASSO
regression for variable selection and optimization; (B) gg-plot of 10-fold cross validation; (C) Feature variables selected by LASSO regression with
regression coefficients; (D) Forest plots of feature variables selected by LASSO regression.
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magnitude of the feature value, allowing for interpretation of how
each variable contributes to the risk of forward head posture in
primary school children.

4 Discussion

The key findings of this study are as follows. First, primary
school children with forward head posture exhibited significantly

higher values in age, height, bodyweight, body mass index (BMI),
average daily and weekly homework duration, and ear-to-shoulder
distance compared to those without forward head posture (P <
0.001). Univariate logistic regression analysis identified age, height,
bodyweight, BMI, and both daily and weekly homework duration as
significant predictive variables for forward head posture (P < 0.001).
Additionally, the LASSO algorithm selected age, bodyweight, BMI,
sex, and weekly homework time as the most relevant features. Lastly,
a comparison of different machine learning models demonstrated

TABLE 3 Single-to multi-variable logistic regression results.

Variable Uni-variate logistic regression Multi-variate logistic regression

Coefficient SE OR
(95% CI)

Z-value P-value Coefficient SE OR
(95% CI)

Z-value P-value

Age 0.276 0.05 1.32
(1.19, 1.47)

5.15 <0.001 0.749 0.15 2.12
(1.59, 2.85)

5.02 <0.001

Shoulder height
difference

0.053 0.28 1.06
(0.61, 1.85)

0.19 0.85

Horizontal angle of
shouders

0.001 0.03 1.00
(0.94, 1.07)

0.04 0.968

Weekly homework
time

0.116 0.03 1.12
(1.06, 1.20)

3.68 <0.001 −0.211 0.07 0.809 (0.701,
0.930)

−2.94 0.003

Daily homework time 0.783 0.21 2.19
(1.46, 3.31)

3.76 <0.001

BMI 0.149 0.04 1.16
(1.08, 1.26)

3.84 <0.001 0.326 0.10 1.385 (1.147,
1.684)

3.34 0.001

Bodyweight 0.04 0.01 1.04
(1.02, 1.06)

4.12 <0.001 −0.088 0.03 0.916 (0.860,
0.974)

−2.78 0.006

Height 0.034 0.01 1.04
(1.02, 1.05)

4.48 <0.001

Sex −0.563 0.32 0.57
(0.30, 1.07)

−1.74 0.082 −0.191 0.35 0.826 (0.416,
1.642)

−0.55 0.584

FIGURE 5
Nomogram of head forward posture prediction.
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that the random forest (RF) model (AUC = 0.865) outperformed the
traditional multivariate logistic regression model (AUC = 0.640) in
predictive performance. According to the Shapley Additive
Explanations (SHAP) analysis, the ranking of feature importance
in the model was: BMI > bodyweight > age > sex >average weekly
homework time.

This study found that children with forward head posture had
higher age, height, bodyweight, and BMI, which may be linked to
changes in load on the neck and muscles around it (Kwon et al.,
2015; Gadotti et al., 2005). As children grow older, their bodies
develop quickly, including bones, muscles, and joints. As they grow
taller, their center of gravity rises, especially the head being higher
than the rest of the body. This puts more pressure on the neck and
shoulder muscles, which must work harder to support and stay
stable. Studies show that during growth spurts, the load on the neck

increases, and holding poor posture for a long time can easily lead to
forward head posture (Caneiro et al., 2010). Higher bodyweight and
BMI also affect posture by putting too much pressure on the neck.
Over time, neck muscles get tired and cannot keep the head in the
right position, which leads to forward head posture. If the child does
not get enough exercise, the muscles cannot recover well, and the
problem may get worse. Studies have shown that overweight
children have more pressure on their neck and lower back,
making it harder to sit or stand still, and forward head posture is
more common (Maciałczyk-Paprocka et al., 2017; Molina-García
et al., 2020). Also, taller children face more stress on the neck,
especially when furniture is not ergonomically suitable or due to
habitual poor posture while using devices (Hellsing et al., 1987;
Mcevoy and Grimmer, 2005). Thus, early interventions addressing
biomechanical stress are crucial for preventing forward
head posture.

Among lifestyle and physical activity-related factors, prolonged
homework duration significantly correlates with forward head
posture, likely due to prolonged sedentary behavior and
inadequate physical activity. Extended periods of sitting place
sustained tension on neck, shoulder, and back muscles,
exacerbating muscular fatigue and weakness, ultimately
contributing to forward head posture (Hong et al., 2008;
Baradaran Mahdavi et al., 2022). Reduced physical activity
further decreases muscle strength and resilience, amplifying the
negative effects of sustained static postures (Dejanović et al., 2015;
Kim et al., 2008). The relationship between prolonged sedentary
behaviors and poor posture underscores the importance of
integrating regular physical activity into children’s daily routines
(Côrrea and Bérzin, 2007).

After LASSO selection, some predictors significant in univariate
analysis—such as height and daily homework time—were removed
due to multicollinearity with retained variables like age and weekly
homework duration. This statistical adjustment enhances model
stability by retaining only independently significant variables,
thereby improving interpretability (Lijin et al., 2020).

From a biomechanical perspective, modeling forward head
posture based on age, bodyweight, BMI, sex, and weekly
homework duration is both logical and advantageous. These
factors directly influence the biomechanical integrity of posture.

FIGURE 6
Comparison of ROC curves within difference machine learning
predictive models.

FIGURE 7
Summary of feature variables importance distribution in random forest predictive model for head forward posture. (A) Feature variables importance
distribution plot based on mean absolute SHAP values; (B) feature variables distribution plot based on SHAP values.
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Increased bodyweight and BMI lead to higher cervical loading and
potential muscle fatigue, contributing to postural deviations
(Calcaterra et al., 2022; Babydov et al., 2023). Sex differences in
musculoskeletal development may also influence posture stability,
highlighting the biomechanical relevance of these predictors
(Babydov et al., 2023). Moreover, prolonged sitting associated
with homework contributes significantly to sustained muscular
strain, reinforcing the biomechanical rationale for their inclusion
as predictors (Beale et al., 2020; Davis et al., 2009).

Comparative analysis of various machine learning algorithms
indicated that the random forest (RF) model provided superior
predictive accuracy (AUC = 0.865) compared to other methods
tested. RF effectively captures complex, non-linear interactions
among multiple variables, thus offering robust predictive
capabilities particularly suitable for multifactorial biomechanical
conditions like forward head posture (Rigatti, 2017; Zhang et al.,
2020; Roy and Larocque, 2012). The SHAP analysis further
clarified the individual contributions of each variable,
enhancing the interpretability of the RF model results
(Bogdanis, 2012).

BMI emerged as the most critical predictor according to SHAP
analysis, highlighting its dual role as a direct biomechanical factor
and as an indicator of lifestyle-related behaviors such as sedentary
habits and physical inactivity. Elevated BMI levels significantly
increase cervical musculature strain, thus providing a crucial
target for clinical interventions aimed at improving posture
(Hong et al., 2008; Bogdanis, 2012).

The nomogram developed from multivariate logistic regression
enhances clinical applicability by translating complex model
predictions into a user-friendly visual format. This graphical tool
allows practitioners to assess individual patient risk easily and aids in
communication and decision-making. While the nomogram
facilitates clinical interpretability, the RF model complements this
by maximizing prediction accuracy through complex, non-linear
modeling. Integrating the nomogram and RF model thus creates a
balanced approach, ensuring both ease of use and robust predictive
performance.

This study has limitations, including a relatively small sample
size which may restrict generalizability. Additionally, the dataset
did not comprehensively incorporate socioeconomic or
additional lifestyle factors like ergonomics or detailed screen
time habits, potentially limiting predictive scope. Although
LASSO effectively streamlined variable selection, relevant
variables could still have been excluded inadvertently. While
the RF model achieved robust predictive performance, its
interpretability is inherently limited. Future research should
explore deep learning models, such as convolutional neural
networks (CNN) or recurrent neural networks (RNN), and
incorporate broader datasets to further improve predictive
accuracy and practical clinical utility.

5 Conclusion

This study successfully developed a predictive model for forward
head posture risk among primary school-aged children by utilizing

the LASSO algorithm in combination with multiple machine
learning model comparisons. The LASSO algorithm selected age,
bodyweight, BMI, gender, and weekly homework time as key
features, and the Random Forest (RF) model built using them
performed the best. Among all key features, BMI was the most
important predictor, showing greater influence than other variables,
which highlights the importance of bodyweight control and physical
activity for young children.
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