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Introduction: Upper-limb rehabilitation robots have been demonstrated to
effectively promote motor recovery in stroke patients. However, in active
training modes, control instability may be induced by the nonlinear and time-
varying characteristics of muscle fatigue, increasing the risks of physical human-
robot interaction and ultimately limiting rehabilitation outcomes.

Methods: A novel control strategy within the port-Hamiltonian framework,
incorporating a dynamic muscle fatigue model. Fatigue levels were assessed in
real time using surface electromyography (sEMG) signals and mapped to damping
parameters in joint space, enabling the port-based modeling of fatigue-related
energy dissipation. A hierarchical control architecture was constructed, consisting
of outer-loop admittance control and inner-loop energy shaping.

Results: Theoretical analysis confirmed that the closed-loop passivity of the
system was preserved and stability was ensured. Experimental validation further
showed that, compared to fixed damping parameters, the proposed fatigue
compensation approach reduced muscle fatigue accumulation by 45% and
increased training duration by 40%.

Discussion: The proposed fatigue-adaptive control framework was shown to
enhance the safety, effectiveness, and physiological adaptability of rehabilitation
training. The integration of real-time sEMG feedback and port-Hamiltonian
modeling offers a promising solution for personalized robotic rehabilitation.
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1 Introduction

Upper-limb rehabilitation robots have been widely applied in motor function
restoration training for patients with conditions such as stroke (Ai et al., 2023). By
providing highly repetitive and quantitatively controlled movement training, these
technologies significantly enhance patients’ active participation and rehabilitation
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outcomes (Mahfouz et al., 2024; Xu et al., 2024). In active training
modes, patients are required to perform movements independently,
with the robot offering assistance only when necessary. However, as
training sessions progress, muscle fatigue gradually accumulates,
leading to decreased force output, reduced motion accuracy, and in
some cases, early termination of training, which seriously
undermines rehabilitation effectiveness (Thacham Poyil et al.,
2020). If fatigue accumulation is not promptly identified and
addressed during training, patients may struggle to complete the
prescribed movements and even risk musculoskeletal injury
(Groothuis et al., 2018). Moreover, patients often exert excessive
force to meet training goals, which further accelerates fatigue
development and increases the likelihood of injury. Therefore,
real-time monitoring and compensation for patient fatigue has
become a critical challenge for ensuring both the safety and
effectiveness of robotic rehabilitation training.

In the field of robot-assisted rehabilitation, existing studies have
combined biological signals with adaptive control to adjust robot
parameters during the training process. For example, some studies
use electromyography (EMG) signals to monitor the fatigue state of
patients, adjusting virtual damping or stiffness coefficients in the
early stages of fatigue to make robot movements smoother
(Mashayekhi and Moghaddam, 2022). This EMG-based adaptive
admittance control has shown better motion smoothness and
accuracy in experiments compared to fixed-parameter control. In
addition, some assistive control strategies adjust the control mode
only when fatigue reaches a certain threshold through simple
switching (Ghajari et al., 2023). This assist-as-needed strategy has
also been effective in encouraging active patient participation (Lai
et al., 2018; Cai et al., 2024).

However, despite the improvements these methods have made
to training effectiveness and safety, they still have certain limitations.
Current research mainly focuses on addressing fatigue states
through parameter adjustment, but lacks a universal method for
comprehensively modeling muscle fatigue from a system dynamics
perspective. Existing control methods often overlook the principles
of energy transfer and system stability, making it difficult to ensure
passive stability in human-robot systems under different fatigue
states. Muscle fatigue is nonlinear and time-varying. It involves not
only the dissipation of local energy, but also changes in the global
energy distribution and transfer mechanisms (Thacham Poyil et al.,
2020; Groothuis et al., 2018). These challenges make accurate
modeling and real-time control difficult.

To address this gap, the port-Hamiltonian System (PHS)
provides an energy-based modeling method (Rashad et al., 2022).
It effectively captures the dynamic characteristics of energy storage,
dissipation, and exchange within a system. PHS also has the
advantages of modularity and scalability (Rashad et al., 2019). It
is not only suitable for describing complex dynamic systems but also
facilitates the introduction of energy balance and passivity analysis
in controller design (Groothuis et al., 2017). This provides
theoretical support for addressing the nonlinear and time-varying
issues caused by fatigue (Fujimoto et al., 2020; Sakata et al., 2024).

Based on the above analysis, this paper proposes a control method
for upper-limb rehabilitation robots that integrates a muscle fatigue
dynamicmodel. The goal is to address the limitations of existing control
methods in fatigue compensation and dynamic adaptability by
combining surface electromyography (sEMG) signals (Mashayekhi

and Moghaddam, 2022; Vafadar et al., 2012) and port-Hamiltonian
theory. The methodmodels the patient’s muscle fatigue effect as a time-
varying damping subsystem and evaluates fatigue levels in real-time.
This allows muscle fatigue to be mapped as an additional dissipative
element in the robot’s joint space, enabling dynamic modeling and
response to fatigue states. This control strategy not only accurately
tracks rehabilitation movements but also adjusts the robot’s assistive
torque based on the real-time fatigue state, ensuring both safety and
efficiency in rehabilitation training.

To overcome the limitations of existing methods in fully
integrating fatigue states and energy transfer, the core objective
of this study is to propose an innovative control framework. This
framework is capable of dynamically and real-time responding to
muscle fatigue, optimizing the relationship between robot assistive
torque and fatigue compensation, thereby improving the safety and
physiological adaptability of rehabilitation training. To achieve this,
this paper proposes a passive controller based on energy shaping and
damping injection (Sandoval et al., 2024; Kim et al., 2021).
Additionally, by combining admittance control strategies (Liu
et al., 2025), a dual-layer control system consisting of an outer
and inner loop is constructed (Li et al., 2022). The outer loop adjusts
the desired trajectory in real-time through admittance control, while
the inner loop performs trajectory tracking and dynamically
compensates for the additional damping introduced by fatigue,
ensuring compliance and safety during the interaction. The main
contributions of this paper are as follows.

(1) Fatigue Modeling: Muscle fatigue is modeled as additional
dissipative elements in the joint space of the robot. As fatigue
increases, greater damping is introduced into the joint
dynamics. This effect is represented within the port-
Hamiltonian framework by extending the joint damping
matrix. A fatigue index is used to quantify the impact of
fatigue on the system’s energy dissipation characteristics.

(2) Control Architecture: A dual-loop structure is proposed, with
an outer admittance loop adjusting the desired trajectory
based on interaction forces for compliance, and an inner
loop ensuring accurate tracking while compensating for
fatigue-induced damping. This balances compliance and
tracking, resolving the stiffness-safety trade-off.

(3) Stability Guarantee: Based on the energy conservation
principle of port-Hamiltonian systems and Lyapunov
methods, it is proven that the closed-loop human-robot
system, incorporating fatigue-related dissipation, remains
strictly passive. This ensures the stability and safety of
human-robot interaction.

The remainder of this paper is organized as follows. Section 2
presents the port-Hamiltonian modeling method of the system, the
muscle fatigue model, and the control strategy design. Section 3
introduces the experimental setup and results. Section 4 provides
analysis and discussion of the results. Section 5 concludes the paper.

2 Methods

Grounded in the port-Hamiltonian framework, this section
introduces a novel formalization of the human–robot interaction
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system, wherein sEMG-based fatigue monitoring, an adaptive
dissipation mechanism, and a dual-layer admittance–energy
shaping control architecture are systematically integrated. This
framework establishes a comprehensive rehabilitation training
paradigm that simultaneously guarantees safety, compliance, and
fatigue responsiveness, thereby laying a solid theoretical foundation
for dynamic adaptation and individualized rehabilitation
interventions.

2.1 Port Hamiltonian modeling of the system

To characterize the interaction between the rehabilitation robot
and the human body from an energy perspective, this study adopts
the port-controlled Hamiltonian (PCH) modeling approach. This
method treats the mechanical system as an interconnection of
atomic components such as inertial, elastic, and damping
elements through ports, with a well-defined energy function
description. For a typical upper-limb rehabilitation robot, its
dynamic equations (Zhou et al., 2021) can be expressed in the
joint space as:

M q( )€q + C q, _q( ) _q + G q( ) + D0 q( ) _q � τu + τh (1)

Here, q � (q1, q2, . . . , qn) is the joint position vector.M(q) is the
positive definite inertia matrix. C(q, _q) _q represents the Coriolis and
centrifugal forces. G(q) is the gravity term. D0(q) _q denotes the
inherent joint damping or friction of the robot. τu is the control
input torque. τh is the torque exerted by the patient on the robot
joints, obtained by mapping the human-robot interaction force Fh

through the Jacobian transpose JTs .
Equation 1 can then be rewritten in the port-Hamiltonian form

(Sakata et al., 2024). In the port-Hamiltonian model, the
Hamiltonian function, which represents the total energy of the
system, is defined as:

H � 1
2

p( )TM−1 q( )p + V q( ) (2)

where p � M(q) _q are the generalized momenta, V(q) is the
potential energy. Then, an explicit port-Hamiltonian
representation of the upper limb rehabilitation robot can be
obtained by Equation 3.

_q
_p

( ) � 0n In
−In 0n

( )︸����︷︷����︸
J x( )

− 0n 0n
0n −D0 q, p( )( )︸�������︷︷�������︸

R x( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∇qH q, p( )
∇pH q, p( )( )

+ 0n
G0 q( )( )τ (3)

Where x � (qT, pT)T, J(x) is the 2n × 2n skew-symmetric structure
matrix, defining the interconnection between efforts and flows, R(x)
is also a 2n × 2n symmetric dissipative structure matrix. y is the
output variables, and τ represents the external torque input, which
comprises both the robot’s control input and the interactive torque
exerted by the environment (the patient’s limb), as shown in
Equation 4.

τ � τu + Js
TFh (4)

Here, Js is the Jacobian in the inertial frame {0} (Lynch and Park,
2021), JsT is the transpose of Js, Fh is the contact force applied by the
user to the end of the robot, which can be measured by the six-
dimensional force sensor at the end of the robot. Note that
〈(∂xH)T, _x〉 is the power flow through the storage port, 〈τ, _q〉 is
the power flow through the interaction port. The Dirac structure
connects the ports by the structure matrix J(x).

2.2 Human-robot interaction

During rehabilitation training, the continuous physical
interaction is maintained between the patient and the robotic
system through direct mechanical coupling. We consider the
contact between the end of the upper limb rehabilitation robot
and the hand as rigid contact in this paper. The interconnection
structure of the robot and human based on the PH framework is
shown in Figure 1.

In Figure 1, the element C represents the kinetic and potential
energy stored by the robot, and the Dirac structure D represents the
energy exchange between a certain subsystem and the outside world.
Dr denotes the rate of change of the total energy stored by the robot
Hr equal to the power provided by resistive elements, the controller
and arm, as formulated in Equation 5.

_Hr � ur( )Tyr + Wr
int( )TVr,I

r + eRr( )TfRr (5)

Dint describes that the power supplied by the arm to the robot is
equal to the negative of the power supplied by the robot to the arm,
as expressed in Equation 6.

Wr
int( )TVr,I

r � − Wh
int( )TVh,I

h (6)

Here, V and W represent the twist and wrench, respectively.
Within the framework of port-Hamiltonian systems, they are
used to characterize the flow and effort variables associated with
energy exchange between subsystems during human-robot
interaction.

Based on power conservation property, the interconnection
constraint between robot and arm is obtained as follows

Wr
int

Vh,I
h

( ) � 0 Ad⊤
hhr−Adhhr

0
( ) Vr,I

r

Wh
int

( ) (7)

Note that considering two or more objects, that is, when there
are multiple physical coordinate frames, the relative motion between
them needs to be calculated and will have to be described in the same
coordinate frame.

2.3 Fatigue dissipation port

During rehabilitation training assisted by an upper limb
rehabilitation robot, patients are required to actively participate
in completing the exercises (Ai et al., 2023). However, as the training
progresses, their muscles gradually enter a state of fatigue. To ensure
the safety and effectiveness of the rehabilitation process, it is
essential to monitor and quantify the patients’ muscle fatigue in
real time throughout the training session.
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Muscle fatigue is characterized by energy dissipation and a
reduction in output force (Wan et al., 2017). Based on the energy
and port- Hamiltonian framework, muscle fatigue can be
conceptualized as a dissipative port <ΔWint

h, Vh
h>.

Meanwhile, the characteristic parameter of electromyography
(sEMG), Mean Power Frequency (MPF), consistently decreases
during muscle fatigue (Zhang et al., 2024). As fatigue increases,
the frequency components of the electromyographic signal
change, with low-frequency components increasing and high-
frequency components decreasing. By monitoring MPF
changes, muscle fatigue levels can be assessed in real-time,
and fatigue factors can be used to quantify its impact,
providing scientific support for fatigue monitoring and
adjustment. The advantage of MPF lies in its ability to reflect
muscle fatigue in real-time, thereby optimizing robot control
strategies and rehabilitation training outcomes. The fatigue
factor fatigue is defined as:

fatigue � MPFinit −MPFcurrent
MPFinit

(8)

where fatigue ∈ [0, 1], fatigue � 0, indicates no fatigue, while
fatigue � 1 represents extreme fatigue. And MPFint and
MPFcurrent are the original, and current MPF values of the sEMG
signal, respectively. Then, ΔWint

h can be expressed as:

ΔWh
int � fatigue Kh V

h,0
h (9)

Here, Kh ∈ R6×6 is a positive definite adjustment matrix.
Using Equations 7, 9, Equation 10 is obtained.

ΔWh
int � fatigueKhAdhhr

Js _qr (10)

To prevent discomfort or secondary injuries caused by fatigue,
rehabilitation robots must continuously monitor human-robot
interaction forces and dynamically adjust their assistance level.
By leveraging the port-Hamiltonian framework, real-time tuning
of the system’s dissipation matrix enables precise control of energy

flow, ensuring system stability while adaptively distributing
assistive torque.

In the port-Hamiltonian system, the flow and dissipation of
energy are described through multiple ports, with each port
representing an energy exchange interface in the system.
Specifically, the fatigue dissipation port is responsible for
describing the energy loss caused by muscle fatigue, which
directly affects the robot’s assistive torque adjustment. The
introduction of the fatigue dissipation port enables dynamic
adjustment based on real-time muscle states, ensuring system
stability under different fatigue conditions. Furthermore, the
port-Hamiltonian system connects various subsystems and ports
through the Dirac structure. The Dirac structure describes the
inherent principles of energy exchange and transfer. Building on
this concept, the dissipation matrix of the rehabilitation robot can be
expressed in Equation 11.

Dtol x, fatigue( ) � D x( ) + γDf x, fatigue( ) (11)

Here, γ> 0 is a design parameter used to regulate the
compensatory torque, which can be flexibly configured according
to the rehabilitation needs of different patients. Meanwhile,
Df (x, fatigue) is a positive (or positive semi-definite) matrix that
provides “additional dissipation” when patient fatigue intensifies.
From a control perspective, this design allows the robot to inject
greater damping or assistive force, thereby partially taking over the
patient’s training effort. As a result, the robot introduces the
compensation dissipation port <τcomp, q_> to compensate for the
decrease of muscle force due to fatigue. Hence, Equation 12
is derived.

τcomp � γDf x( ) _q (12)

Based on the PH modeling method, all subsystems are
interconnected through the Dirac structure. The power
conserving property of the Dirac structure ensures that the
energy change in the additional compensatory dissipative port

FIGURE 1
PH framework diagram for human-robot interaction.
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introduced by the robot equals the power dissipated by the muscle
due to fatigue, and this relationship is expressed in Equation 13.

ΔWh
int( )T Vh,I

h( ) � τcomp( )T _q (13)

By combining the analytical expressions from Equations 15, 19,
Equation 14 is obtained.

Df x, fatigue( ) � fatigue

γ
JTs KhAdhhr

Js (14)

2.4 Feature extraction of sEMG signals

EMG signals have significant applications in rehabilitation
medicine and motor control (Tian et al., 2024), as they
sensitively reflect muscle activity and the regulatory state of the
nervous system. Essentially, EMG signals represent the
superimposed action potentials generated by muscle fibers. By
thoroughly analyzing various EMG signal characteristics, it is
possible to identify physiological phenomena such as muscle
fatigue, muscle synergy, and movement intentions. For example,
when muscle fatigue occurs, frequency-domain characteristics of the
EMG signals, such as the mean power frequency (MPF) and median
frequency (MDF), decrease notably, while time-domain features,
such as the root mean square amplitude (RMS), typically increase or
fluctuate. Real-time monitoring and analysis of these variations
allow accurate evaluation of muscle fatigue, thus enabling
dynamic adjustment of rehabilitation training intensity to prevent
potential damage caused by excessive fatigue. Therefore, in-depth
analysis and effective utilization of EMG signals, especially fatigue-
related features, are crucial for improving the safety, effectiveness,
and personalization of rehabilitation training.

In practical measurement and analysis, sEMG as a non-invasive
type of EMG signal, has been widely employed in clinical
rehabilitation and movement assessment (Tian et al., 2024).
sEMG signals effectively reveal underlying patterns associated
with muscle fatigue (Zhang et al., 2024). However, raw sEMG
signals generally contain noise and interference, necessitating
preprocessing and feature extraction procedures to ensure
accurate subsequent analysis. Typically, the sEMG signal
processing workflow primarily involves signal denoising and
feature extraction, as illustrated in Figure 2.

In this study, sEMG signals obtained from the MYO armband
were already initially preprocessed using its embedded algorithms.
Therefore, this research focuses specifically on feature extraction
from sEMG signals for estimating muscle fatigue. Previous studies
have widely recognized that MPF progressively decreases as muscle

fatigue intensifies (Thacham Poyil et al., 2020). Consequently, this
research adopts MPF as a key feature parameter to effectively
evaluate muscle fatigue, facilitating precise assessment and
dynamic adjustment of rehabilitation training.

2.5 Control architecture

To balance compliant adaptation to patient intent and precise
trajectory tracking, a dual-layer control architecture is proposed. In
this framework, the desired trajectory is adjusted in real time by the
outer admittance control layer based on interaction forces, while
accurate tracking and compensation for fatigue-induced dynamic
variations are ensured by the inner layer. Through this coordinated
structure, both compliance and safety are achieved (see Figure 3).

The outer-loop admittance control (Li et al., 2022), in error
form, is written as

Ma€e + Ba _e +Kae � Fh (15)
Where e ∈ Rm is the admittance error, Ma, Ba, Ka ∈ Rm×m are
inertia, damping and stiffness parameters of impedance control,
respectively, and Fh is the contact force applied by the user to the end
of the robot. The corrected desired trajectory xd is obtained via
xd � xr + e. Here, xr denotes an original desired trajectory of the
robot. From Equation 15, it can be seen that if the patient applies a
force Fh, the error e will change accordingly, thereby modifying xr

into xd; if the patient is unable to apply any force (i.e., Fh � 0),
Equation 15 converges to e � 0, indicating that xd ≈ xr. Therefore,
Equation 15 represents the outer-loop compliance adjustment based
on the human-machine interaction force.

In the inner-loop, our objective is to ensure that the robot’s
actual end-effector position x precisely tracks the desired trajectory
xd, while the joint space q follows the desired joint angles qd via
inverse kinematics. Under the port-Hamiltonian framework, this
goal is achieved by employing a method that combines energy
shaping with damping injection. The newly introduced energy
function He is employed to modulate the system’s energy level
and actively guide it toward the desired equilibrium. It is expressed
in Equation 16.

He � V q( ) + 1
2

q − qd( )⊤Kp q − qd( ) (16)

Damping is introduced into the system by mapping the joint
velocities _q to Kv _q, thereby realizing effective energy dissipation.
Then, Equation 17 is formulated as follows.

τu � −C q, _q( ) _q − G q( ) + D0 x( ) + γDf x, fatigue( )( ) _q − Kp q − qd( )
− Kv _q − _qd( )

(17)
To carry out a unified energy analysis, one can reconstruct

Equation 15 within the port-Hamiltonian framework. We define the
state variable (eT, pT

e ), so that the Hamiltonian (energy) for the
subsystem is given by the Equation 18.

He e, pe( ) � 1
2
p⊤
e M

−1
a pe + 1

2
e⊤Kae (18)

Equation 15 can likewise be rewritten as

FIGURE 2
sEMG signal processing.
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_e
_pe

( )
_xe

� 0 I
−I 0

( )︸���︷︷���︸
Je

∇eHe e, pe( )
∇peHe e, pe( )( ) − 0 0

0 Ba
( )︸���︷︷���︸

Re

∇eHe e, pe( )
∇peHe e, pe( )( )

+ 0
I

( )
Ge

Fh

(19)
Among these, Re corresponds to Ba, Je is a typical skew-

symmetric structural matrix (in the position–momentum
coordinates), and Fh is the external force input port. It can be
seen that this is a port-Hamiltonian system with damping (with the
resistive element Re), exhibiting passivity at the external force
port Fh.

The system now comprises two port-Hamiltonian subsystems.
The first is the robot body and inner-loop control subsystem,
where the end-effector force input and output velocity are
coupled with the external force Fh through a port. The second is
the outer-loop admittance subsystem, which takes Fh as its input
and produces the error state (e, _e), thereby determining the desired
pose xd.

These two subsystems interact with each other via the same force
Fh; that is, the patient applies a force at the robot’s end-effector, the
robot senses Fh, and the outer-loop system uses Fh as its driving
input. Under ideal zero-delay and perfect sensing conditions, they
are interconnected passively at the port, meaning that they merely
exchange power without generating or consuming any extra energy
(aside from the inherent damping loss). Due to the passivity of
single-port Hamiltonian systems, when multiple systems are
interconnected, the resulting overall port-Hamiltonian system still
preserves the property of energy being only conserved or dissipated.
This ensures stability throughout rehabilitation training, preventing
instability or abnormal energy release, and effectively safeguarding
user safety.

3 Results

3.1 Experimental setup

A self-developed single-degree-of-freedom upper limb
rehabilitation device was used in this experiment to perform
active and passive elbow flexion-extension training. The device
consists of a motor-driven rotational joint with a handle at the
end for the subject to hold. During training, the subject’s upper arm
is secured with straps while performing flexion and extension
movements. The system integrates a high-resolution encoder to
measure elbow joint angles in real time and a six-axis force sensor at
the joint to capture human-robot interaction forces. To monitor
muscle fatigue, surface electromyography (sEMG) signals are

FIGURE 3
Human-robot interaction control block diagram.

FIGURE 4
Schematic diagram of the experimental platform.
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collected from the biceps and triceps using MYO armbands. The
overall structure of the device is shown in Figure 4.

In this study, the training task was designed as repetitive flexion
and extension of the elbow joint. Participants were instructed to
follow a predefined rhythm and track a sinusoidal target trajectory
ranging from 0° to 90°, performing forearm movements as
synchronously as possible. Each participant underwent training
under two control strategies: (A) Fixed-parameter control, in
which a dual-loop control structure was applied with constant
control parameters throughout the session; and (B) Fatigue-
compensated control, a dual-loop control method proposed in
this study, which dynamically adjusted control parameters in real
time based on the estimated muscle fatigue state. The training
duration was not limited in advance and continued until the
participant was no longer able to follow the rhythm or complete
the required range of motion, which was defined as reaching fatigue
failure. To ensure safety, the maximum duration of a single training
session was set at 400 s, and participants could terminate the session
at any time if they experienced discomfort. A rest period of at least
30 min was provided between the two control conditions to allow
full recovery from muscle fatigue.

A total of 6 healthy, right-handed adult participants aged
between 24 and 36 years, with no known neuromuscular
disorders, were recruited for the experiment. The average age of
the participants was 27.33 ± 4.97 years (mean ± SD). During the
training sessions, surface electromyography (sEMG) signals were
collected from the biceps brachii and triceps brachii using an
armband device at a sampling frequency of 500 Hz. The acquired
sEMG data were utilized for estimating muscle fatigue and for real-
time adjustment of the control parameters. Training performance
was evaluated based on muscle fatigue features, specifically the
mean power frequency (MPF), as well as the total training
duration. These measures were used to assess the effectiveness of
the proposed control strategy in reducing fatigue and improving
training stability.

3.2 Evaluation metric

3.2.1 Muscle fatigue rate of change ( _Fatigue)
Defined as the rate of increase in the muscle fatigue index per

unit time, this metric is approximated by the difference between the
pre- and post-training fatigue indices divided by the training
duration (or up to the time of interruption, if the training was
not completed). It quantifies the rate of fatigue accumulation,
with lower values indicating slower buildup. The metric is
expressed in Equation 20.

_Fatigue � fatigue tend( ) − fatigue tstart( )
T

(20)

Here, tstart, tend and T denote the start time, end time, and total
duration of the rehabilitation training, respectively.

3.2.2 Interaction force characteristics
This metric includes the maximum and average forces exerted

by the participant during reciprocal movements, as well as the time-
varying force profile. It is used to assess the impact of different
control strategies on the user’s effort requirements, specifically

whether the assistance appropriately reduces the physical load or
results in excessive support.

3.2.3 Training duration and repetition count
This metric records the actual duration of each training session

and the number of effective movement repetitions completed by the
participant. It directly reflects the improvement in
training endurance.

3.3 Comparative experiments

Figures 5–7 illustrate the time-varying changes in EMG signals,
fatigue factors, human-robot interaction force, and the robot’s
fatigue-dissipation port compensation force for a typical subject
under two different control strategies. The different control methods
result in varying growth trends of muscle activation level (EMG
signals) and fatigue factors, while interaction force and
compensation force also adjust dynamically. These findings not
only underscore the critical importance of the fatigue factor in
closed-loop control but further demonstrate the effectiveness of the
fatigue-dissipation port compensation strategy in rehabilitation
training. The following section provides a more detailed analysis
and discussion based on the specific data and trends shown in
the figures.

Figure 5 presents the raw surface electromyography (sEMG)
signals recorded via the arm band. From the signal peaks, it is
evident that the proposed fatigue dissipation port compensation
method yields a slower decline in the mean power frequency
(MPF) of the sEMG signals. Following data processing and in
accordance with Formula 8; Figure 6 is obtained. Figure 6
illustrates the variation of the biceps brachii muscle fatigue
index over the training duration under two control strategies,
where the magenta dashed line represents the fixed-parameter
control (A), and the blue dashed line denotes the fatigue-
compensation control (B). Under fixed-parameter control, the
muscle fatigue index rises nearly linearly from zero and reaches
about 0.47 at around 140 s. By contrast, when using the proposed
method, although the initial rate of increase is similar to that of the
fixed-parameter control, compensation via the fatigue port is
activated as fatigue intensifies, significantly decelerating the rate
of fatigue buildup. Consequently, at 140 s, the blue dashed line only
reaches approximately 0.37 and then enters a plateau, indicating
saturation rather than continued rapid escalation. A quantitative
assessment shows that under fixed damping parameters, the
fatigue growth rate is about 0.2, whereas under the proposed
method it falls to around 0.11 in the latter stage, representing
45%. These findings demonstrate that incorporating fatigue
modeling into the control strategy effectively mitigates the
accumulation rate of muscle fatigue.

Furthermore, there is a clear difference in training duration
between the two control strategies. Under fixed-parameter control,
participants typically reach exhaustion at around 240 ± 20 s on
average. By contrast, with the proposed method, the average training
duration extends to 400 ± 20 s, which represents around 40%
increase compared to the fixed-parameter approach.
Consequently, participants also achieve a higher number of
exercise repetitions. These findings indicate that incorporating
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the dynamic behavior of the fatigue dissipation port into the
compensatory control strategy effectively prolongs the duration
of productive training.

Figure 7 compares the time-varying human-robot interaction
forces under different control strategies. Because the total training
duration is relatively long, only the segment in which the two

FIGURE 5
Comparison of MPF variation under different control strategies.

FIGURE 6
Comparison of normalized MPF and fatigue factor under different control methods.
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methods differ most significantly is shown here to more clearly
demonstrate the advantages of the proposed approach. Taking
elbow flexion primarily driven by the biceps brachii as an
example, the fixed-parameter control strategy requires
approximately 10 N m of torque for each flexion. Participants
can maintain this effort level for the first few minutes, but as
fatigue accumulates, their movement speed gradually declines
even though they attempt to sustain the same force output.
This trend can be observed both in the number of peak values in
Figure 1 and in the time required for each flexion-extension cycle
in Figure 7.

In contrast, under the proposedmethod, the compensatory force
provided by the fatigue port is relatively small during the early stage
when fatigue is mild, so the interaction force does not differ
substantially from that of the fixed-parameter control. However,
as fatigue increases, the proposed method partially takes over the
load through the fatigue port, reducing the average force required
from the user. As shown in Figure 7, the user’s exerted force
decreases significantly in the later phase, mitigating further
fatigue accumulation while maintaining the necessary movement
speed. Meanwhile, the user still must provide a certain level of force
to participate in the training, ensuring that the robot does not
completely take over and that sufficient training intensity is
preserved for rehabilitation. According to participant feedback,
their subjective sense of exertion in the latter phase is notably
lower compared to the fixed-parameter mode, yet they can still
feel their muscles continuously engaged rather than entirely relaxed.
This dynamic assistance mechanism effectively balances training
intensity and endurance, extends the duration of effective training,
and enhances user comfort and cooperation.

Overall, the experimental results strongly validate the
effectiveness of the proposed method. By incorporating dynamic
modeling of muscle fatigue, the rehabilitation robot demonstrated
significantly improved training continuity and adaptability. This
finding is consistent with conclusions reported in related studies
(Mashayekhi and Moghaddam, 2022), which suggest that adaptive
training based on electromyographic fatigue feedback can effectively
extend the duration of high-intensity exercise and substantially
increase the number of movement repetitions. Furthermore, the
proposed method enhances the smoothness and safety of human-
robot interaction at the control level, ensuring that the training
system maintains stable and reliable performance across varying
fatigue states.

4 Discussion

This study proposes and validates a novel control strategy to
address the issue of muscle fatigue during prolonged training with
upper-limb rehabilitation robots. Before discussing the practical
implications of this approach, we first examine its key advantages
and potential limitations when compared to the fixed damping
parameter control method.

4.1 Advantages

Conventional fixed-parameter control strategies are limited in
their ability to adapt to the user’s real-time physiological state, often
leading to training interruption or decreased training quality during

FIGURE 7
Interaction torques under different control methods (top) and corresponding fatigue-port compensation torque (bottom).
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later stages due to muscular fatigue. The control method proposed in
this study utilizes surface electromyography (sEMG) to
continuously assess muscle fatigue levels and adaptively adjusts
assistance accordingly. This enables patients to complete the
intended training movements even when approaching fatigue
limits, thereby ensuring the integrity of the training “dosage.”
Previous studies (Mashayekhi and Moghaddam, 2022) have also
indicated that dynamically adjusting training intensity based on
fatigue indicators can significantly extend the duration of effective
training. The experimental results presented in this study further
validate this finding, showing that the introduction of fatigue
compensation control leads to an average increase of over 50% in
both training duration and repetition count. In the context of
neurorehabilitation, the frequency and repetition of training are
critical for promoting neural plasticity and functional recovery.
Therefore, this method achieves high-intensity, high-frequency
“high-dosage” training without increasing patient risk,
demonstrating considerable clinical potential.

At the same time, fatigue during training often leads to
decreased motor coordination and, in severe cases,
compensatory movements or involuntary exertion, which
increase the risk of injury. To address these issues, this study
employs the Port-Hamiltonian Systems (PHS) framework,
incorporating all control actions within a unified energy
conservation and dissipation analysis structure to theoretically
guarantee passivity and stability of the system. Given that
rehabilitation patients are typically physically vulnerable,
intrinsic system stability and sufficient safety margins are
critical for clinical applications. The introduction of the PHS
framework not only enhances the robustness of the control
system in dynamic conditions but also fundamentally reinforces
the inherent safety of the human-robot system, providing a more
reliable and secure foundation for rehabilitation training.

Additionally, the method proposed in this study has high
scalability. While the muscle fatigue estimation method is
primarily applied to upper-limb rehabilitation, especially through
monitoring the EMG signals of the biceps and triceps, the decrease
in MPF with muscle fatigue is a widely recognized physiological
phenomenon. Therefore, this method can be extended to fatigue
assessment in other body parts, such as lower limbs or trunk
muscles. For different muscle groups, the method can be
appropriately adjusted based on the physiological characteristics
of the target muscle group, the quality of EMG signals, and the
differences in training tasks. This includes modifications in signal
preprocessing techniques and parameter settings, ensuring its broad
applicability.

4.2 Limitations and challenges

The effectiveness of the proposed method has been validated in
single-joint flexion-extension tasks. Future work will focus on
extending its application to more complex multi-degree-of-
freedom rehabilitation robots, such as those involving
coordinated shoulder-elbow movements or lower limb training.
These systems involve a greater number of muscle groups and
more complex dynamics, posing significant challenges for fatigue
modeling and control strategy design, which require further in-

depth investigation to enhance the generalizability and adaptability
of the method.

Moreover, although the proposed approach has demonstrated
performance advantages in laboratory experiments with healthy
subjects, the ultimate evaluation criterion for rehabilitation robots
lies in their clinical effectiveness, specifically their ability to promote
functional recovery in patients. Therefore, future research will
involve close collaboration with rehabilitation medicine experts to
conduct systematic clinical trials in target patient populations. These
studies will assess the applicability and therapeutic efficacy of the
method across different injury types and stages of recovery, aiming
to facilitate its translation into real-world clinical practice.

5 Conclusion

This paper proposes a control method incorporating muscle
fatigue dynamics to address the issue of muscle fatigue during upper
limb rehabilitation robot training. A dual-loop control architecture
is developed based on the port-Hamiltonian system (PHS) theory.
Within the PHS framework, a muscle fatigue dynamic model is
established by treating muscle fatigue as a time-varying joint
damping effect. The degree of fatigue is estimated in real-time
using the median frequency of sEMG signals, and a fatigue index
is defined accordingly. Time-varying damping is introduced into the
port-Hamiltonian model, enabling explicit modeling and
quantitative description of fatigue effects in the human body,
thus providing an adjustable fatigue-related parameter for
control. Based on this model, a fatigue compensation control
strategy is designed. The outer loop employs admittance control
to regulate the desired trajectory, while the inner loop, implemented
within the Hamiltonian framework, achieves trajectory tracking
through energy shaping and damping injection. This approach
compensates for fatigue-induced dynamic changes and maintains
closed-loop passive stability.

Comparative experiments conducted on healthy subjects have
demonstrated that, compared to fixed-parameter control, the
proposed control strategy incorporating fatigue modeling
significantly reduces the rate of muscle fatigue accumulation (by
approximately 45%), thereby extending the duration and number of
repetitions of training sessions (by approximately 40%). At the same
time, since the port-Hamiltonian passive control ensures energy
regulation throughout the training process, no unstable oscillations
or hazardous movements were observed during the experiments.
When subjects experienced severe fatigue, the robot was able to
automatically transition to an assistive mode, thereby preventing
training interruptions and reducing the risk of injury. Conversely,
when sufficient muscle strength was detected, appropriate resistance
was provided by the robot to ensure active participation in training.
This human-robot interaction mechanism offers clear advantages in
enhancing training effectiveness while preventing excessive fatigue.
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