
Retinal features as predictive
indicators for high myopia:
insights from explainable
multi-machine learning models

Haohan Zou1,2,3†, Jing Liu4†, Shenda Shi5, Saiguang Ling6,
Qian Fan1,2, Yan Huo1,2,3, Zhou Dong6, Guoge Han1,2,
Shengjin Wang5,7 and Yan Wang1,2,3*
1Tianjin Eye Hospital, Tianjin, China, 2Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye
Institute, Tianjin, China, 3Nankai University Eye Institute, Nankai University, Tianjin, China, 4Department of
Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China, 5HuaHui Jian AI
Tech Ltd., Tianjin, China, 6EVision technology (Beijing) Co., Ltd., Beijing, China, 7Department of Electronic
Engineering, Tsinghua University, Beijing, China

Objectives: To investigate the role of retinal characteristics for high myopia (HM)
prediction based on multi-machine learning (ML) and to provide an interpretable
framework for the results.
Methods: A total of 2981 patients (2981 eyes) were included, comprising 1191 HM
eyes and 1790 non-HMeyes. A deep semantic segmentation networkwas used to
quantify retinal structural parameters. Five ML algorithms were evaluated to
develop predictive models, and SHapley Additive exPlanations method was
applied to analyze feature contribution to the outcomes.
Results: The eXtreme Gradient Boosting achieved an accuracy of 0.81 (95%
confidence interval [CI] 0.78–0.85), and an area under the receiver operating
characteristic curve of 0.87 (95% CI 0.84–0.89), outperforming other models.
The 12 most important factors affecting prediction included tessellation density,
seven vascular parameters, two parapapillary atrophy parameters, and two optic
disc parameters. The tessellated density >0.025, width of parapapillary
atrophy >400 um, parapapillary atrophy area >0.60 × 106 um2 were
associated with an increased risk of HM. The mean curvature of the
arteries >0.00063, diameter of vessels >55.2 um, curvature of the
veins >0.00128, vertical diameter of the optic disc >1320 um, diameter of
veins >58.5 um, and diameter of artery >47.1 um was associated with a
decreased risk of HM.
Conclusion: The XGBoost model outperformed other algorithms, and SHAP-
derived cut-off values for critical risk factors enhanced clinical interpretability.
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1 Introduction

The global prevalence of high myopia (HM) has risen significantly, drawing attention
due to its association with increased risks of blindness and substantial social burdens (Baird
et al., 2020; Xu et al., 2021; Shinojima et al., 2022). Patients with HM are more than
50 percent more likely to develop cataracts, glaucoma, macular degeneration, retinal
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detachment, and optic neuropathy (Modjtahedi et al., 2021;
Verhoeven et al., 2015). These risks increase further with age,
refractive error, and axial length (Haarman et al., 2020). Thus,
early detection and diagnosis of HM is crucial.

HM often results in alterations to the fundus structures,
which may not be evident in the early stages (Salih et al.,
2023). As a non-invasive and straightforward diagnostic tool,
retinal imaging provides comprehensive information about
anatomical structures and optical characteristics (Li et al.,
2021; Chen et al., 2024). However, traditional image analysis
methods, such as meta-analyses of pathologic myopia (META-
PM) and the atrophy, traction, and neovascularization
classification systems (Ohno-Matsui et al., 2016; Ruiz-
Medrano et al., 2019), are commonly dependent on the
knowledge of ophthalmologists. These methods frequently fail
to provide rapid and precise outcomes, and the requisite expertise
limits their broader applicability. Hence, automatic identification
and quantification of key features, and accurate data
interpretation is vital for the diagnosis and prediction of
disease progression (Conti et al., 2021). Recent advancements
in computer technology and machine learning (ML) algorithms
have made radiomics invaluable in clinical decision-making (Sun
R. et al., 2018; Sun et al., 2021; Yu et al., 2021). By combining
retinal imaging with omics, radiomics can automatically extract
data on fundus shape, texture, geometric characteristics, and
relative positions (Zhang et al., 2025). This approach enables
rapid identification of HM features and provides
valuable insights.

This study investigated the role of fundus features in predicting
HM using a retinal imaging omics-based analytical method.
Additionally, SHapley Additive exPlantations (SHAP) was
employed to help ophthalmologists better understand the
relationships between these features and HM, thereby supporting
accurate screening and prediction of high-risk groups.

2 Methods

2.1 Study approval

This study was registered with the Chinese Clinical Trial
Register (ChiCTR2100049885) and approved by the Ethics
Committee of Tianjin Eye Hospital (TJYYLL2021018) in
accordance with the Declaration of Helsinki. The study followed
the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) guidelines (Von Elm et al., 2007). The
ethics committee waived the requirement for informed consent
because the data were de-identified before the study to ensure
patient privacy.

2.2 Patients and data

The examination records of 4,048 patients from August
2019 to December 2021 were retrospectively collected using
an electronic medical record system. Of these, 53.9% (n =
2,183) were male and 46.1% (n = 1,865) were female. The
mean age was 22.72 ± 5.24 (range 16–45) years. The inclusion

criteria included age ≥16 years, diagnosis of refractive error, and
a best-corrected visual acuity of at least 0.0 (LogMAR). Patients
with disease that affect vision acuity, such as cataract, various
types of glaucoma, retinal tears, retinal detachment, macular
schisis, macular holes, epiretinal membranes, macular
neovascularization, were excluded. Patients with systemic
diseases such as hypertension, diabetes, and cardiovascular
diseases that affected fundus characteristics were excluded. To
avoid inter-eye effects, only the left side of the eye was selected
for analysis.

In order to obtained the accuracy refraction, all patients
underwent both subjective and objective refraction measurements
conducted before and after cycloplegia. Spherical power ranged
from −0.25 D to −13.00 D, and cylinder power ranged
from −0.50 D to −6.00 D. The spherical equivalent (SE) of the
refractive error was calculated as spherical error +1/2 cylindrical
error. The subjects included in this study were all cases of simple
myopia. Data were divided into two groups: the non-HM group
(SE > −6.00 D and ≤ −0.50 D) and the HM group (SE ≤ −6.00 D)
(Jong et al., 2021). Fundus images were taken using an automated
image quality control system, with images centered on the macula
and always included the optic disc.

2.3 Feature recognition and quantification

Object detection and semantic segmentation algorithms were
used to extract and quantify retinal features, including quantitative
information on tessellation, optic discs, optic cups, parapapillary
atrophy, and retinal vascular structures. The annotation was
performed using a semi-automatic machine-assisted workflow.
Two board-certified ophthalmologists (specializing in fundus
diseases with ≥5 years of experience) independently validated the
annotations. The first physician performed initial corrections, and
the second (with ≥8 years of experience) served as adjudicator.
Given the second reviewer’s greater clinical experience, their
annotations were designated as ground truth. The methodology
details are provided in Document S1.

2.4 Model construction and evaluation

Data from the baseline examinations were incorporated into a
ML modeling. Five ML algorithms (eXtreme Gradient Boosting
(XGBoost), Categorical Boosting (CatBoost), Light Gradient
Boosting Machine (LightGBM), Random Forest (RF), and
Neural Network (NN)) were utilized to build the model. To
mitigate overfitting, the data were randomly split into separate
training and testing datasets. Model performance was assessed
using 5-fold cross-validation (Document S2). Evaluation metrics
included sensitivity, specificity, accuracy, precision, F1 score, and
the area under the receiver operating characteristic curve
(AUROC). Higher values for these metrics indicate superior
model performance. The SHAP method evaluated the
importance of each input variable by analyzing the average
impact on model output with and without the target input
variable. Model training was conducted using Python 3.6
(https://www.python.org).
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2.5 Statistical analyses

Data were analyzed using SPSS (version 26.0; IBM Corp.,
Armonk, NY, United States). Outliers were identified and
removed using Tukey’s test with a coefficient of 1.5. Categorical
data were expressed as frequencies and percentages and compared
using the χ2 test. The normality of continuous parameters was

assessed with the Kolmogorov–Smirnov test, with P >
0.05 indicating a normal distribution. Normally distributed data
were expressed as mean ± standard deviation and compared using
independent samples t-tests. A two-tailed p-value of 0.05 or less was
considered statistically significant. To maintain consistency, data
from the same eye was selected for analyses to avoid inter-eye
variability.

FIGURE 1
Flow chart for data selection and analyses in the study.
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TABLE 1 Baseline characteristics of the participants included in the analysis.

Variables High myopia (n = 1191) Non-high myopia (n = 1790) t/χ2 value P value

Age (y) 23.15 ± 5.05 22.29 ± 5.42 −4.26 <0.001

Sex (Male) 646 (54.24%) 893 (49.89%) 5.42 0.02

SE (D) −8.49 ± 1.35 −3.23 ± 1.18 109.11 <0.001

IOP (mmHg) 16.14 ± 2.33 15.75 ± 2.45 −4.32 <0.001

UCVA (logMAR) 0.16 ± 0.15 0.05 ± 0.05 28.85 <0.001

ODA (mm2) 1.08 ± 0.28 1.18 ± 0.27 9.98 <0.001

HOD (mm) 1.05 ± 0.18 1.12 ± 0.17 11.74 <0.001

VOD (mm) 1.32 ± 0.15 1.35 ± 0.14 5.90 <0.001

OCA (mm2) 0.22 ± 0.12 0.26 ± 0.12 9.02 <0.001

HOC (mm) 0.50 ± 0.14 0.55 ± 0.14 9.49 <0.001

VOC (mm) 0.55 ± 0.15 0.60 ± 0.15 7.88 <0.001

C/D ration 0.20 ± 0.07 0.22 ± 0.07 7.43 <0.001

HCDR 0.47 ± 0.082 0.49 ± 0.78 5.43 <0.001

VCDR 0.42 ± 0.08 0.44 ± 0.78 7.89 <0.001

PPAA (mm2) 0.69 ± 0.33 0.44 ± 0.27 −21.63 <0.001

HPA (mm) 1.50 ± 0.22 1.36 ± 0.22 −15.33 <0.001

WPA (mm) 0.51 ± 0.20 0.34 ± 0.16 −23.76 <0.001

PPA/ODA ratio 0.67 ± 0.35 0.40 ± 0.29 −21.47 <0.001

WPPA/HOD ratio 0.49 ± 0.22 0.32 ± 0.19 −21.06 <0.001

HPPA/VOD ratio 1.15 ± 0.14 1.05 ± 0.14 −17.51 <0.001

WIR (mm) 0.37 ± 0.05 0.36 ± 0.04 −3.23 0.001

WSR (mm) 0.37 ± 0.05 0.36 ± 0.05 −3.39 0.001

WNR (mm) 0.25 ± 0.06 0.26 ± 0.06 2.92 0.003

WTR (mm) 0.28 ± 0.07 0.29 ± 0.06 2.78 0.005

Fractal dimension 1.50 ± 0.20 1.51 ± 0.17 10.42 <0.001

Vessel density 0.09 ± 0.01 0.10 ± 0.01 11.84 <0.001

Vascular tortuosity (×10–3) 0.79 ± 0.09 0.84 ± 1.05 12.94 <0.001

Arterial tortuosity (×10–3) 0.64 ± 1.00 0.77 ± 1.02 11.71 <0.001

Venous tortuosity (×10–3) 0.87 ± 1.11 0.92 ± 1.37 7.60 <0.001

Mean vessel diameter (mm) 0.055 ± 0.00 0.056 ± 0.00 9.26 <0.001

Mean arterial diameter (mm) 0.049 ± 0.00 0.050 ± 0.00 7.74 <0.001

Mean venous diameter (mm) 0.062 ± 0.00 0.063 ± 0.00 6.34 <0.001

A/V ratio 0.79 ± 0.04 0.78 ± 0.05 3.72 <0.001

Tessellated density 0.08 ± 0.06 0.04 ± 0.04 −24.41 <0.001

IOP, intraocular pressure; UCVA, uncorrected visual acuity; ODA, optic disc area; HOD, horizontal diameter of the optic disc; VOD, vertical diameter of the optic disc; OCA, optic cup area;

HOC, horizontal diameter of the optic cup; VOC, vertical diameter of the optic cup; C/D ration, cup-to-disc area ratio; HCDR, horizontal cup-to-disc ratio; VCDR, vertical cup-to-disc ratio;

PPAA, parapapillary atrophy area; HPA, height of parapapillary atrophy; WPA, width of parapapillary atrophy; PPA/ODA, ratio, parapapillary atrophy-to-optical disc area ratio; WPPA/HOD,

ratio, width of parapapillary atrophy-to-horizontal diameter of the optic disc ratio; HPPA/VOD, ratio, height of parapapillary atrophy-to-vertical diameter of the optic disc ratio; WIR, width of

inferior rim; WSR, width of superior rim; WNR, width of nasal rim; WTR, width of temporal rim; A/V ratio, arterial-to-venous ratio.

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Zou et al. 10.3389/fbioe.2025.1609639

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1609639


3 Results

3.1 Basic patient information

The study followed the steps shown in Figure 1, which included
clinical data collection, image segmentation and quantification, feature
engineering, model construction and evaluation, and a SHAP analysis.

A total of 2,981 eyes were included. Of these, 1,191 (39.9%) were
classified as highly myopic, whereas 1790 (60.1%) were non-highly
myopic. The following variables including age, sex, refraction,
intraocular pressure, visual acuity, and 29 retinal characteristics
were obtained. The baseline analysis of the dataset is shown in
Table 1. The average age of 2,981 patients were 22.71 ± 5.24 years,
including 1539 males (51.63%) and 1442 females (48.37%).

3.2 Algorithm evaluation

All participants were divided into five equal subsets, with one
subset serving as the validation set and the remaining four subset
serving as the training set for 5-fold cross-validation. Table 2 lists the
performance metrics for each model. The results showed that
XGBoost performed best across the five ML, with an accuracy of
0.81 (95% confidence interval [CI], 0.78–0.85) and an AUROC of
0.87 (95% CI, 0.84–0.89).

Feature importance in the XGBoost model was assessed using
feature importance bars based on average absolute SHAP values
(Figure 2A). The larger absolute values represented significant
influence. We summarized the top 12 features that contributed
most significantly to the model predictions. Retinal tessellation
density was at the top of the ranking list, followed by the mean
arterial curvature, parapapillary atrophy width and area, mean vessel
diameter, mean venous curvature, vertical optic disc diameters,
mean venous and arterial diameters, retinal vessel density,
horizontal optic disc diameters, and vessel fractal dimension.
Each point corresponding to the SHAP summary plot
(Figure 2B) represents the contribution of each feature of each
patient to the model.

The SHAP dependence plot demonstrates the effect of a single
feature on the output of the XGBoost model. We visualize the SHAP
values of the nine features which appeared consistently in each
iteration and analyze the relationships between them (Figure 3).
When the SHAP value of each feature exceeds zero, this indicates an
increased risk of HM. The tessellated density value greater than
0.025, width of parapapillary atrophy greater than 400 um,
parapapillary atrophy area greater than 0.6 × 106 um2 were
associated with an increased risk of HM. The mean curvature of
the arteries value over 0.00063, diameter of vessels over 55.2 um,
curvature of the veins over 0.00128, vertical diameter of the optic
disc over 1320 um, diameter of veins over 58.5 um, and diameter of

TABLE 2 Performance of different models in the validation set.

Models Precision
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

F1-score
(95% CI)

AUC
(95% CI)

XGBoost 0.76 (0.73–0.80) 0.73 (0.71–0.76) 0.85 (0.81–0.88) 0.81 (0.78–0.85) 0.75 (0.73–0.78) 0.87 (0.84–0.89)

Catboost 0.75 (0.74–0.78) 0.73 (0.70–0.75) 0.85 (0.81–0.88) 0.79 (0.77–0.81) 0.73 (0.70–0.77) 0.86 (0.82–0.88)

LightGBM 0.75 (0.72–0.77) 0.74 (0.71–0.77) 0.86 (0.82–0.89) 0.80 (0.79–0.84) 0.74 (0.71–0.79) 0.86 (0.83–0.90)

RF 0.76 (0.74–0.79) 0.68 (0.65–0.71) 0.83 (0.80–0.84) 0.79 (0.75–0.83) 0.72 (0.69–0.73) 0.85 (0.82–0.88)

NN 0.76 (0.72–0.81) 0.64 (0.60–0.67) 0.83 (0.80–0.87) 0.78 (0.72–0.83) 0.69 (0.64–0.75) 0.84 (0.79–0.88)

AUC, area under the curve; CI, confidence interval.

FIGURE 2
Feature Importance Visualization and SHAP Contributions. Left, Feature importance plot of the XGBoost model: this plot highlights the top
16 features influencing HM, identified through cross-validation. Features are ranked by their impact. The y-axis shows the average absolute SHAP values.
Importance decreases from top to bottom. Right, SHAP summary plot: each row represents a feature, and each point corresponds to a sample. A wider
scatter indicates a stronger effect, whereas a distribution near 0 suggests minimal influence on most samples.
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artery over 47.1 um was associated with a decreased risk of HM.
These findings highlight the key retinal features that significantly
influenced the prediction of HM.

4 Discussion

This study presents a novel approach of employing an
explainable ML framework based on retinal imaging omics to
investigate high myopia-related fundus structural parameters.
Unlike previous studies that relied entirely on algorithmic results,
our method improved overall understanding by capturing and
interpreting the entire retinal structure. We identified and ranked
29 parameters associated with the prediction. Of these, fundus
tessellation density emerged as the strongest predictor.
Additionally, during validation, we found out the effect of
nine consistently present features on the predicted results,
including increased tessellation density, width of parapillary
atrophy, area of parapillary atrophy, and reduced mean
arterial curvature, vessel diameter, vein curvature, vertical
optic disc diameter, vein diameter, and artery diameter. The
method provides robust evidence for doctors to accurately
identify and predict HM.

Based on the META-PM classification and previous research,
tessellation is recognized as an early indicator of myopic

maculopathy (Ohno-Matsui et al., 2021; Yii et al., 2024). Most
studies have used qualitative or semi-quantitative approaches to
examine the severity of myopia and the degree of tessellation
(Yamashita et al., 2018; Yan et al., 2015). Some studies (Shao
et al., 2021; Huang et al., 2025; Li et al., 2023) quantified
tessellation density using AI image processing technology and
found a correlation relationship with the SE. However, to our
knowledge, this was the first quantitative ordering of the
structure of the entire retina. We measured tessellation patterns
by calculating the average choroidal exposure per unit area to
determine the tessellation density value greater than
0.025 increased the risk of HM. This feature consistently comes
out on top in five validations underscores its critical role in
predicting.

Arterial tortuosity was identified as the second most influential
predictive factor after tessellation density. The risk of HM was
reduced when the mean arterial curvature value exceeded
0.00063. Reduced arterial curvature is associated with tissue
hypoxia (Malek et al., 2014). Hypoxia-induced vascular
endothelial growth factor plays a role in the curvature of retinal
arteriovenous system (Malek et al., 2015). Extrinsic factors such as
shear stress and mechanical pressure contribute to variations in
tortuosity (Kalitzeos et al., 2013). In patients with HM, increased
axial length exerts lateral mechanical forces on the eye, potentially
stretching the retina and making smaller arteries more susceptible to

FIGURE 3
SHAP dependence plot. The y-axis shows the feature SHAP values. The SHAP values for specific features that exceed 0 represent an increased
possibility of HM. The x-axis shows the feature ranges.
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reduced curvature (Witt et al., 2006). These findings are consistent
with Lim et al. (2011) observations using computer-assisted
methodologies, HM exhibit significantly lower arterial tortuosity
compared to non-high myopic individuals (P < 0.001). Importantly,
this study also highlights the previously overlooked role of venous
tortuosity in model predictions, suggesting that clinical procedures
should evaluate both arterial and venous tortuosity to better assess
retinal health and disease progression. Identifying the association
between retinal vascular geometry and myopic changes is a critical
research priority. Although previous studies have suggested that
refractive error is independent of retinal vessel caliber (Cheung et al.,
2007a; Cheung et al., 2007b), we founded that diameter of vessels less
than 55.2 um, veins less than 58.5 um,and artery less than 47.1 um
were positively associated with an increased risk of HM. Unlike
previous studies that calculated the central retinal arteriolar and
venular equivalents by summing individual retinal vessel diameters
(Pappelis and Jansonius, 2023), we determined the ratio of image
pixel size to the actual distance using a deep learning-recognized
region of interest. This method provides a more accurate
representation of the retinal vascular system (Long et al., 2022).
By quantifying the global retinal vascular geometry using this
method, a more accurate representation of the overall vascular
condition can be obtained.

In this study, we found that both the width and area of
parapapillary atrophy significantly contributed to the prediction
of the model. Typically, parapapillary atrophy is located horizontally
on the temporal side, followed by the supratemporal and
inferotemporal regions, and this distribution affects the
measurement of the height of atrophy (Fang et al., 2018). In
addition, the gamma region cannot be accurately identified
because the border of the Brush’s membrane could not be
detected by fundus photography. Notably, the vertical diameter
of the optic disc emerged as a significant factor in each iteration,
offering new insights for clinical application in HM.

To date, the analysis of myopic fundus characteristics has
relied primarily on subjective evaluations (Hu et al., 2020).
Despite the ability to manually label a few structures, the lack
of objective quantification due to empirical differences and
methodological limitations precludes the comprehensive
assessment of complex retinal parameters (Sun J. et al., 2018;
Guo et al., 2021). Thus, the relationship between these structures
and the severity of myopia remains poorly understood. Artificial
intelligence (AI) offers the potential to improve the identification
and segmentation for these structures. Our study employed the
SHAP-XGBoost to quantify the impact of retinal characteristics
on HM. XGBoost, a versatile nonparametric model, provides
superior accuracy over linear models. Due to its ability to handle
heterogeneous and high-dimensional clinical data, and its
robustness in dealing with missing values and complex
variables of different categories, it is particularly suitable for
the structured and multi-factor nature of ophthalmic datasets
(Chen and Guestrin, 2016). This method has been applied in
previous studies on long-term outcomes of refractive surgery
(Kim et al., 2022) and prognosis prediction of ocular trauma
(Meng et al., 2024). Although improving predictive accuracy is
essential, enhancing model interpretability is equally important
for clinical credibility and utility. SHAP summary and
dependence plots clarify the contribution of each variable to

the model, providing valuable insights for interpretability in AI-
based predictions.

4.1 Study limitations

This study has several limitations. First, although the data were
collected from a single center, the cross-validation method
confirmed that the model demonstrated satisfactory performance.
Second, the cohort comprised solely adult patients with myopia.
Future studies should include analyses of individuals older than
45 years and adolescents with myopia. Finally, the main purpose of
this study is to investigate the role of retinal characteristics in HM,
and the SHAP analysis provided valuable insights regarding how
various features influenced the prediction model, although the axial
length was not fully collected before the operation.

5 Conclusion

This study effectively utilized explainable ML frameworks based
on retinal imaging omics to rank the contributions of 29 retinal
features. Tessellation density emerged as the most significant
marker, and when its value was greater than 0.025, the risk of
developing HM increased significantly. In addition, parapillary
atrophy width and area were associated with increased risk of
HM prediction, mean curvature of the arteries, diameter of
vessels, curvature of the veins, vertical diameter of the optic disc,
diameter of veins, and diameter of artery was associated with
reduced risk predicted by HM. These findings can enhance
clinician understanding and confidence in using ML for high
myopia prediction, thus expand its potential and applicability in
ophthalmology.
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