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Functional neuromuscular stimulation is a technique for restoring mobility
impaired by spinal cord injury, including stepping. Typically, functional
neuromuscular stimulation patterns are determined by manually tuning
stimulation timing and charge applied to peripheral nerves by modulating
constant current pulse amplitude, width, or frequency. Manual tuning is time
consuming and suboptimal; we propose an in silico alternative relying on optimal
control for developing temporal patterns of stimulation that can be implemented
in real-life functional neuromuscular stimulation systems. The functional
neuromuscular stimulation system user model includes only those muscles
available for activation with an existing functional neuromuscular stimulation
system; optimal control goals and constraints emphasize simplicity to allow
solutions to differ from neurotypical neuromuscular behavior. Reduction of
stimulation levels and upper extremity effort during stepping are prioritized in
the optimal control problem. A single study participant with incomplete spinal
cord injury walked with both model-optimized and manually tuned functional
neuromuscular stimulation patterns to determine the relative benefits of each.
The optimized pattern reduced charge delivery by an average of 58% (35%–80%
for eight of nine muscles) and improved the comfortability of left side muscle
contractions. Relative to the manually tuned pattern, the model-optimized
stimulation decreased upper extremity effort by 10.5% during left swing.
Participant-informed modeling combined with optimal control could lead to
efficient, personalized stimulation patterns.
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1 Introduction

Spinal cord injury (SCI) is a life-changing event that interrupts many typical tasks such
as trunk control, bladder and bowel function, walking, transfers, and weight shifting, among
others. People living with lower-limb paralysis from thoracic level SCI have identified
regaining the ability to walk as a priority among these tasks (Anderson, 2004; Ditunno et al.,
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2008; Lo et al., 2016; Ferber and Anderson, 2024). One method that
can enable this ability is functional neuromuscular stimulation
(FNS) (Kobetic and Marsolais, 1994; Knutson et al., 2006). FNS
uses electrical currents to excite peripheral nerves that activate
otherwise paralyzed muscles. FNS systems can be implemented
with surgically implanted electrodes or electrodes adhered to the
skin surface, depending on the needs and preferences of the user
(Doucet et al., 2012).

An overarching control method must be selected to coordinate
muscle activity for walking via FNS. Frequently, an open-loop,
feedforward approach is taken, where the stimulation pattern is
manually tuned on an individual basis (Kobetic and Marsolais,
1994). Manual tuning is practical for systems with only a few
channels of FNS; however, as the number of neural targets
increases, the complexity of coordination significantly expands.
Coordinating muscles to achieve efficient gait is not simple, and
typical patterns utilize maximal stimulation values to reduce the
search space while guaranteeing joint stiffness (Kobetic and
Marsolais, 1994). This maximal-stimulation approach can result
in a muscle activation pattern that accelerates fatigue, rather than
one that optimizes muscle-effort and generates stepping with
metabolic efficiency. Maximal stimulation with open-loop
feedforward control as in the manually tuned case also makes no
allowance for modulating parameters beyond their saturation values
in response to perturbations when compensating for system
disturbance (Kuo, 2002). External perturbations such as a slip,
trip, or incline can make an open-loop, feedforward stimulation
pattern irrelevant to the circumstances and potentially destabilize
the system (Kirsch et al., 2017). Internal perturbations like muscle
fatigue can have a similar effect. Accordingly, it is desirable to
decrease stimulation levels to allow for the addition of a feedback
component to the control architecture to correct for changing
situations of daily life (Blana et al., 2009). In summary, manual
FNS tuning is laborious, fatigue-prone, and can limit the
opportunity to implement feedback control.

To attain more energy efficient and personalized feedforward
patterns for FNS-driven stepping, we adopted an in silico approach
that uses optimal control (OC) techniques (Todorov and Li, 2003;
Ackermann and van den Bogert, 2010) to determine minimal
stimulation levels required to achieve the stepping task. In silico
development of stimulation patterns could significantly simplify the
personal customization process for each neuroprosthesis user,
minimizing the time required and the fatigue associated with the
trial-and-error method when manually tuning a pattern. By
integrating model information into the solution process, OC can
reduce computation time relative to alternative methods such as
reinforcement learning. Furthermore, an OC approach could
provide unique solutions that would not be identified in manual
pattern tuning based on experience with neurotypical (NT) gait and
thereby make better use of the patient-specific muscle set available
via FNS. In addition to reducing stimulation levels, the pattern must
not sacrifice other features of usability. Among these features we
prioritized forward progression and reduced upper extremity effort
(UEE) as optimization goals. This OC framework offers a
systematic, in silico alternative to the manual tuning process.

Previous study has investigated OC for FNS. In (Santos et al.,
2021) FNS for the prevention of post-stroke foot drop was
considered in an OC context. Although the authors implemented

a model with similar complexity to our work, they focused the use of
FNS on controlling a single joint. To achieve gait for an individual
with an SCI, multiple joints must be considered simultaneously. In
feasibility studies of closing the loop around optimal control
solutions, both the modeling and control were limited to a single
joint and muscle. Kirsch et al. investigated a model-predictive
control approach for knee extension driven by the quadriceps
(Kirsch et al., 2017). Wang et al. studied an adaptive controller
that minimized a cost function for the same joint and muscle
combination (Wang et al., 2013). Multiple muscles were
considered by Popovic et al. in a simulation-only study where a
planar double-pendulum with four monoarticular muscles was
modeled (Popovic et al., 1999). In this work we developed an OC
algorithm within the context of a three-dimensional model
containing mono- and bi-articular muscles, and evaluated its
output experimentally in comparison to a manually tuned
pattern in a long-term FNS system user with an incomplete SCI.

2 Methods

2.1 Model

Two OpenSim (Delp et al., 2007) musculoskeletal models were
developed for this study. The first, a General Model (Model G),
represented features of a generic individual with an SCI affecting the
lower limbs who uses FNS. The second musculoskeletal model, a
Study Participant-Informed Model (Model P), was developed by
removing muscles from Model G. Model G ensured convergence of
the optimal control problem, andModel P personalized the solution.

Model G was derived from (Zhao et al., 1998) (lower-limbs) and
(Lambrecht et al., 2009) (upper body). The lower-limbs were
modified from (Zhao et al., 1998) such that the resulting bipedal
model was an open-chain linkage with six degrees of freedom (DOF)
between the pelvis and ground. This was combined with the upper
body model (Lambrecht et al., 2009) by use of a three DOF
lumbosacral joint. The final model contained 29 DOF (three
DOF per hip, one DOF per knee, two DOF per ankle, three DOF
per shoulder, one DOF per elbow, and three DOF at the
lumbosacral joint).

The boney structure of Model G and of Model P was scaled to
the proportions of an NT volunteer (1.8415 m, 76.2 kg, 26 years); the
intended volunteer with SCI was 1.778 m and 53.1 kg (42 years).
Both individuals shared a similar athletic build. The NT volunteer
had no neurological or musculoskeletal injuries or conditions that
impair gait. We used the standard OpenSim scaling tool. For
simplicity all contralateral segments were defined as symmetrical.
From a static standing trial scaling factors are determined within
OpenSim by measuring the distances between markers located on
bony prominences. These scaling factors are then applied to the
mass, inertial, and muscle geometry properties of the model by the
OpenSim scaling tool. Additionally, the scaling tool determined the
locations of the virtual markers on the model by a least-squares
method (Delp et al., 2007).

Hill type muscle-tendon units actuated the model joints. The
Hill muscle included force-length and force-velocity dependencies
of muscle, passive muscle stiffness, tendon stiffness, and activation
dynamics (Zajac, 1989). Muscle and tendon scaling parameters
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(maximum isometric force, optimal fiber length, and tendon slack
length) were based on the literature (Delp et al., 1990; Lambrecht
et al., 2009; Anderson, 2025). Due to the high degree of variation in
muscle strength generated with FNS, we assumed NT values for the
model maximum isometric force parameters. Scaling to match the
strength of the study participant with SCI was completed during
experimental testing as detailed in Section 2.7. For computational
implementation we exchanged the source model’s
Schutte1993 muscle formulation (Schutte et al., 1993), while
maintaining the parameter values, for a more current OpenSim
standard muscle model—the Millard2012EquilibriumMuscle
(Millard et al., 2013). The Millard muscles were then converted
by an OpenSim utility to the DeGrooteFregly2016Muscle model (De
Groote et al., 2016), which allows for an implicit formulation of
tendon dynamics used in solving the OC problem.

Eachmodel included a reduced set of muscle elements compared to
NT anatomy and gait (Table 1). Only muscles listed in Table 1 were
represented (i.e., the passive properties of other muscles were assumed
negligible because these muscles were not contracting). The Model G
muscle set contained muscles commonly accessible by implanted
stimulation systems (Hunt et al., 2017; Odle et al., 2019). The Model
P muscle set was derived from Model G to contain muscles that had
already been implanted with electrodes or could be recruited by surface
stimulation with the study participant as indicated.

To represent upper body activity, the net activity of volitional
muscle control, and participant interaction with a two-wheeled
walker (wheels on front legs, tennis ball glides on back legs), the
model included a set of force and torque actuators. Three DOF for
each shoulder, elbow flexion, and lumbosacral roll and pitch were
actuated in both models. “Reserve actuators” support convergence

during solution of the OC problem, where dynamic inconsistencies
might temporarily exist, and can provide input that represents the
use of a walker aid. In Model G, reserve actuators were applied to the
translational DOF for the pelvis. In transitioning from Model G to
Model P, reserve actuators were introduced for the full six DOF of
the pelvis, and an actuator was added for lumbosacral yaw.

Ground contact was represented with a smoothed form of the
Hunt-Crossley contact model fromOpenSim (Serrancoli et al., 2019;
Dembia et al., 2020). This continuous and differentiable model is
compatible with gradient-based solvers. To implement this contact
model, a total of seven contact spheres were attached to each foot:
two at the calcaneus, one on the lateral aspect of the arch, three
attached distally across the metatarsals, and one at the center of the
toes. A previous study indicated that the model is robust to the
number, size, and placement of such contact elements (Falisse
et al., 2019).

2.2 Optimal control

An OC problem is defined as finding the temporal control
trajectory that minimizes a cost function and is subject to a set
of constraints. The cost function and constraints are selected based
on the problem of interest. For human motion studies, the cost
function and constraints target physiological parameters, such as
minimizing muscle effort or fatigue and limiting joint trajectories to
feasible ranges.

OpenSim Moco was used to implement and solve a series of OC
problems offline (Dembia et al., 2020). The Moco software package
extends the OpenSim software by facilitating the combination of the

TABLE 1 Muscle groups for Model G and Model P and their associated stimulation method. Muscle locations are indicated as bilateral (B), left (L), and right
(R). Stimulation methods are indicated as implanted (I) or surface (S).

Muscle group Model Stimulation method

G P Left Right

Medial and Lateral Gastrocnemius and Soleus B - - -

Tibialis Anterior B B I I

Vastus Medialis, Intermedius, and Lateralis (Vasti) B B I I

Semimembranosus B - - -

Adductor Magnus (3 elements) B - - -

Gluteus Medius (3 elements) B - - -

Gluteus Maximus (3 elements) B - - -

Psoas and Iliacus B B I S

Erector Spinae B - - -

Rectus Abdominus B - - -

External Oblique B - - -

Quadratus Lumborum B - - -

Biceps Femoris Shorthead - R - S

Sartorius - R - S

Tensor Fasciae Latae - L I -
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OpenSim modeling tools with the direct collocation algorithm.
Direct collocation discretizes both the trajectories of the system
dynamics and the controls to formulate them as a set of algebraic
equations that can be handled efficiently as a nonlinear program
(Kelly, 2017). The OpenSim Moco package assembles OC problems
with CasADi (Andersson et al., 2019) and solves the resulting
nonlinear program with the gradient-based optimizer IPOPT
(Wächter and Biegler, 2006). The OC problems were solved on a
multi-core, mobile workstation computer operating an Intel® Core™
i7-7700HQ CPU @ 2.80 GHz (Boost 3.80 GHz) processor with
4 cores (8 threads) and 16 GB RAMwith parallel processing enabled.

2.3 NT reference data collection

Reference data collected from the NT individual described in
Section 2.1 was used to inform tracking-related cost functions for the
OC problem. Optical motion capture data (Vicon, Oxford, UK)
sampled at 100 Hz and forceplate (AMTI, Watertown, MA) data
sampled at 1000 Hz were recorded as an NT participant walked
overground at a self-selected, slow pace. The study participant
signed an informed consent form as approved by the
Institutional Review Board of the Louis Stokes Cleveland VA
Medical Center (Reference Number 1591730).

2.4 OC: Cost function subterms

Various subterms were combined to generate the cost function J.
The cost function was evaluated across the period defined by the
initial and final times ti and tf for the half or full gait cycle. We
define each subterm of J here (Table 2) and describe their use
in Section 2.6.

To guide an OC problem toward a particular set of kinematics, a
tracking term is commonly used. It compares kinematic model
output to an experimentally measured kinematic output over time.
For this case we used marker data from optical motion capture as the
reference. The marker kinematic tracking subterm is represented by
the cost function Jmt:

Jmt � ∫tf

ti

∑
k∈M

wk xk,model t( ) − xk,meas t( )( )2dt (1)

where M is the marker set, k is the index for individual markers in
M, and xk is the three-dimensional marker position for either the

model or the measured data. Weights w in Equation 1 were selected
to emphasize bony prominences due to these locations’ higher
marker placement accuracy: markers located at bony
prominences were assigned weights a factor of ten higher than all
other markers, which were equally weighted.

A second tracking subterm, contact tracking (Jct), was employed
to ensure realistic ground contact forces. An equation comparing the
contact forces output by the model and contact forces measured by a
set of forceplates can be defined as

Jct � 1
mg

∫tf

ti

∑
j∈G

Fj,model t( ) − Fj,meas t( )( )2dt (2)

where G is the set of contact element groups (one per foot), j is the
index for individual contact elements in G, Fj is the vector sum of
the three-dimensional forces for each contact element, m is the
model mass, and g is the acceleration due to gravity in Equation 2.

Because a single channel activates all muscles ormuscle elements
in a group (groupings indicated by Table 1), we developed a cost
function (Js) to impose synergy within a group:

Js � ∫tf

ti

∑
e∈S

e1 t( ) − e2 t( )( )2 + e1 t( ) − e3 t( )( )2dt (3)

where S is the set of muscle groups for which synergy applies, e is the
muscle excitation, and subscripts 1, 2, and 3 represent individual
muscle elements in a given muscle group. Where a pair of muscle
elements define the group, only the first squared difference term in
Equation 3 applies.

Control effort, which includes muscle excitation and reserve
actuator control signals, can be minimized by the cost function
subterm Je:

Je � 1
d
∫tf

ti

∑
k∈M

wke
2
k t( )dt (4)

where d is the distance travelled by the center of mass (Ackermann
and van den Bogert, 2010). The weights w for the control signals in
Equation 4 were selected such that reserve actuator activity was
penalized. Because the reserve actuators represent use of the upper
extremities via the walker, we wanted to encourage the solver to
transfer as much of the effort required for stepping as possible to the
lower limbs. All muscles were equally weighted.

The injection of extra energy, indicated by excessive trunk or
pelvis motion, by the rectus abdominus (RectAbd) and external
oblique (ExtObl) muscles can be corrected by the cost function
subterm Jp represented by Equation 5, which penalizes the muscle
excitations for these muscles:

Jp � ∫tf

ti

10 e2RectAbd t( ) + e2ExtObl t( )( )dt (5)

Minimizing implicit auxiliary derivatives encourages
convergence and was implemented by the cost function subterm Jad:

Jad � ∫tf

ti

∑
f∈T

dFf

dt
( )

2

dt (6)

where T is the set of tendons, f is the index for individual tendons in
T, and Ff is tendon force in Equation 6.

TABLE 2 Summary of cost function subterms.

Symbol Purpose

Jmt Marker tracking error

Jct Contact force tracking error

Js Control signal synergy within muscle groups

Je Minimize control effort

Jp Penalize excess energy injection

Jad Minimize implicit auxiliary derivatives
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2.5 OC: Constraint terms

Multiple constraints were implemented for the solution of this
OC problem. We define them generally here (Table 3) and specify
their usage in Section 2.6.

Endpoint constraints enforced symmetry of the state and control
values across either a half (Csym,half) or full stride (Csym,full). The

lumbosacral and reserve actuators were exempt from Csym,half

because they represent volitional effort and walker interaction,
which are both controlled by the user.

To reduce the search space, we constrained the speed of each
joint coordinate to remain within a selected percentage of the range
for inverse kinematics (IK) computed from the NT reference
data (Cspeed bound).

For OC problems where a tracking term was not considered in
the cost function, constraints were used to promote forward motion.
First, the average speed of the center of mass (CoM) was constrained
(Cavg speed), and second, the final time was assigned a set of
bounds (Ctf).

Additional constraints guided the solution toward a minimal set
of desired features for predicting FNS-driven gait. These included
preventing the legs from intersecting throughout the motion
(Cintersect), requiring straight knees (defined by a zero knee angle)
when initiating double stance (Cknees), and ensuring that the model
starts with zero velocity for all initial velocities (Crest).

2.6 Optimized pattern development

Multiple OC problems were solved in order to develop the final
optimized pattern without an a priori initial guess. The optimized
pattern development was completed in two stages. First, an OC
tracking problem was solved to find a feasible initial guess for use in
fully predictive (no tracking) OC problems. Second, a series of
predictive OC problems were progressively refined toward the
participant-specific conditions. This process is summarized
in Figure 1.

The first stage of the OC problem solution solved an OC tracking
problem. The OC tracking problem used Model G and included an
NT reference for the cost subterms Jmt and Jct. Energy minimization
is a key feature of NT dynamic walking; therefore, we utilized NT
tracking as a starting point to optimize FNS-driven gait (Cavagna
and Kaneko, 1977). Note that when a tracking component is present,
division of the effort cost subterm Je by the distance d is not
necessary. The cost function for this case was composed as follows:

JNTtrack � wmt Jmt + wct Jct + ws Js + dwe Je + wpJp + wad Jad (7)

where eachw indicates the weight for a cost subterm. Constraints for
the OC tracking problem included Csym,half and Cspeed bound � 10%
of the reference NT values in Equation 7. When initializing the OC
tracking problem, the initial guess was defined by the midpoint of
variable bounds. During the first run, the problem was discretized
across a grid of 10 mesh intervals. The solution for 10 mesh intervals
was then used as the initial guess for a 50-mesh interval solution. All
remaining optimizations were run at 50 mesh intervals.

In the second stage of the OC problem series, the first predictive
OC problem used Model G and a cost similar to JNTtrack except that
the tracking subterms were eliminated, as summarize by Equation 8.

Jpredict1 � ws Js + we Je + wp Jp + wad Jad (8)

Constraints were added to the set defined during the first stage:
Cintersect, Crest, Cavg speed � 0.4 m/s, and Ctf � [0.4, 0.6] seconds,
where values selected for Cavg speed and Ctf were based on the
tracking solution used as the initial guess. In addition, Cspeed bound

TABLE 3 Summary of constraints.

Symbol Purpose

Csym,half State and control symmetry for half stride

Csym,full State and control symmetry for full stride

Cspeed bound Bound joint speeds

Cavg speed Average speed of center of mass

Ctf Bound final time

Cintersect Prevent legs intersecting

Cknees Straighten knees to begin double stance

Crest Begin simulation from rest

FIGURE 1
Summary of the series of OC problems solved. Each consecutive
problem used the previous problem’s solution as the initial guess.
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was expanded to 100% of the NT reference values to prevent
incompatibility with other constraints while still providing
bounds for the joint speed states.

Further development of the predictive optimization was then
carried out in stage two, using each consecutive solution as the initial
guess for the following OC problem. The subsequent OC problems
were defined and solved in the following order:

Predict2) Added Cknees to enforce full knee extension during
double stance.
Predict3) Reduced the muscles to the symmetric set iliopsoas,
vasti, and tibialis anterior. Due to the reduced muscle set, the
desired average gait speed Cavg speed was lowered to 0.1 m/s and
consequently Ctf was increased to [0.9, 1.1] seconds (which are
typical for individuals with SCI using FNS). Also due to the
updated muscle set, the actuator group was expanded to the full
6 DOF for the pelvis and 3 DOF for the lumbosacral joint.
Predict4) Increased the weight on the reserve actuators to reduce
their activity.
Predict5) Raised prescribed average gait speed Cavg speed to 0.2 m/s
to increase gait speed observed in the previous solution.
Predict6) Revised model to Model P by adding the remaining
muscles accessible by FNS for the participant. Due to the
asymmetrical grouping of muscles, Csym,half was exchanged
for Csym,full, and consequently, Ctf was updated to [2.0, 2.2]
seconds to accommodate a full two-step cycle.

2.7 Optimized pattern FNS sequence

Since the participant had volitional control over his stance limb
muscles, we ignored the muscle excitation pattern solution during
the stance phase. To obtain the swing phase portion of the optimized
pattern, left-side muscle excitations were extracted from the first half
of the optimization time period while right-side muscle excitations
were extracted from the second half of the optimized time period.

For each muscle group (Table 1), the average across all muscle
elements was computed to provide a single temporal sequence of
muscle excitations for the group. The excitation sequences extracted
for swing phase were then resampled using linear interpolation to
22 data points. Commonly, variation of the pulse width (PW) is
modulated in an FNS system to vary the force generated by the target
muscles during a desired movement (Doucet et al., 2012). Model
generated muscle excitations (normalized between 0.01 and 1) were
mapped to stimulus parameters using saturation (Sat) and threshold
(Thresh) values according to

Stim � Excitation × Sat + Thresh (9)
The values for Sat and Thresh in Equation 9 were previously

identified by a physical therapist by the method presented in
(Hardin et al., 2007).

Two additional scaling factors were implemented for the
optimized pattern during initial stepping trials to account for
differences in muscle strength between the model and the study
participant. First, the PW for the left-side pattern was too low after
scaling by the saturation and threshold values since muscles fatigued
prior to finishing a full trial. This was corrected by multiplying PWs
for the left side by 1.2. Second, the pattern for muscles on the right-

side required a longer period of time to achieve sufficient contraction
force, so the right-side time scale was increased by a factor of 50%.

2.8 Manually tuned pattern development

The manually tuned pattern was developed by a team comprised
of a physical therapist and a biomedical engineer, both of whom
were highly experienced and skilled with customizing FNS systems
to facilitate walking after SCI. Previously established and published
rules for manually setting up and refining temporal patterns of
stimulation were followed and formed the basis of their customizing
stimulation parameters for the participant (Kobetic and Marsolais,
1994). After preparing an initial pattern based on experience from
former studies with the participant and his implanted FNS system
(Hardin et al., 2007), the team worked to refine it over multiple
sessions on separate days until reaching a plateau in observable
symmetry of step length and toe clearance. Because the manually
tuned pattern was directly specified as a sequence of PW values,
scaling by saturation and threshold was not required for its
implementation.

2.9 Pattern implementation with participant
with SCI

The study participant presented with a C6 level incomplete
motor and incomplete sensory (AIS C) spinal cord injury. He had
control of his hip extensors and was able to stand with walker
support for balance and to control the stance limb during stepping.
Having received an implanted neuroprosthesis 20 years prior, the
participant was well-practiced in stepping with an FNS system and
would use it daily for strength-training exercises. He was not
undergoing any physical therapy at the time of this study.

For this study the muscles on the left side were activated via
implanted electrodes by the implanted pulse generator. On the right
side only the tibialis anterior and vasti were activated by the
implanted system, and surface stimulation was applied to
additional muscles to augment the implanted muscle set. The
short head of biceps femoris and the sartorius were activated by
surface stimulation to generate knee and hip flexion. Because the
iliopsoas was too deep to access by surface stimulation, the
withdrawal reflex was elicited to provide hip flexion; the control
signal for this channel was scaled in the same way as the muscle-
direct channels.

The participant’s implanted receiver-stimulator system had
eight channels (IRS-8) (Smith et al., 1987; Davis et al., 2001)
connected to intramuscular electrodes (Memberg et al., 1989).
The implanted system received commands and was powered by
an external control unit through an inductive coil taped to the skin
over the implant site. The external control unit stored the temporal
stimulation patterns. All stimulation was controlled by the same
external control unit to synchronize implanted and surface
stimulation channels. The stimulation waveform was composed
of biphasic, constant current, charge-balanced cathodic pulses
where the PWs were continuously variable from 0 to
255 microseconds and pulse amplitudes were selectable on a
channel-by channel basis. The pulse amplitudes could be set
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between 0 and 20 mA for implanted stimulation channels and 0 and
100 mA for surface stimulation channels (Mortimer et al., 1980;
Smith et al., 1987).

Stimulation frequency was initially set to 16 Hz to minimize
fatigue and then doubled after 0.15 s for all muscles except the vasti
to ensure sufficient maximum force to complete the desired motions
(Doucet et al., 2012). Stimulation frequency returned to 16 Hz on the
right side for approximately 30% of the stepping pattern, reducing
the potential for additional fatigue (Doucet et al., 2012). On the left
side the higher frequency value was maintained for the entirety of
the stepping pattern due to the observed lack of stimulated
contractile strength of the muscle targets. Frequency modulation
was established for the study participant during the development of
the manually tuned pattern. We maintained these variations in
frequency across both patterns to eliminate it as a variable.

Each step was triggered by an accelerometer-based system for
both model-generated and manually tuned stimulus patterns
(Shimada et al., 2005; Kotiadis et al., 2010; Foglyano et al., 2016).
When the participant pushed the walker forward in preparation for
taking a step, an accelerometer mounted on the walker detected
motion and activated FNS for the next step.

The participant signed an informed consent form approved by
the Institutional Review Board of the Louis Stokes Cleveland VA
Medical Center (Reference Number 1591730).

2.10 Stepping pattern data collection
and analysis

Full body optical motion capture, as described in Section 2.3,
and UEE data were collected as the study participant completed
overground walking trials. UEE was measured in three dimensions
at 1000 Hz sampling frequency with a rolling walker instrumented
with loadcells (AMTI, Watertown, MA) in each handle.

Experiments were conducted during a single session with a one-
hour rest period between conditions, maintaining surface
stimulation electrode placement for consistency. A minimum of
five trials were required for each condition. Five trials were
completed during the optimized pattern condition, and six trials
were collected during the manually tuned pattern condition. A break
of at least 10 min was included between trials to allow time for the
muscles to recover and minimize the effects of fatigue across both
conditions.

A total of 44 left and 45 right steps were collected using the
model-optimized pattern, and a total of 55 left and 57 right steps
were collected using the manually tuned pattern. Across all collected
steps, outliers indicative of failed step detection and toe stubbing
were identified and removed based on the interquartile range for
medial-lateral walker velocity and toe travel in the anterior/posterior
direction. Additional steps were removed from the dataset due to
spasm interference and one case of foot crossing. In total 37 left and
39 right steps for the model-optimized pattern and 47 left and
48 right steps for the manually tuned pattern were analyzed.

At the end of each trial, the participant answered questions
based on a seven-point Likert-like Usability Rating Scale (Steinfeld
and Danford, 1999) and was invited to share additional comments.
The usability questions were: (1) Was the task in general difficult,
moderate, or easy? (2) Was the task with respect to the upper

extremity effort difficult, moderate, or easy? (3) How did the
pattern/stepping feel—choppy, smooth, or neither? (4) How
stable did you feel during the trial—unstable, stable, or neither?
In addition, the physical therapist supporting the trials was asked to
rate the amount of assistance required. The scale used for all
questions was divided into seven steps from −3 to 3 with
negative values associated with poor outcomes. The median,
interquartile range, and Wilcoxon rank sum test were computed
for each question across trials for each condition.

Gait kinematics and UEE were evaluated during post-
processing. Gait data were zero-lag lowpass filtered by a 2nd

order Butterworth filter with a 6 Hz cutoff frequency (van den
Bogert et al., 2013). Joint kinematics were computed from the
marker data in OpenSim via the inverse kinematics tool with a
model scaled to the study participant. Across all usable recorded
steps, the joint kinematics were stride normalized and ensemble
averaged for each pattern. This process was completed on each side
due to gait asymmetry. Standard deviation was computed for each
trajectory across the normalized time period. Step length, step
time, and swing to stance ratio were each averaged across steps per
side and the standard deviation was calculated. We computed the
UEE resultant force from the three-dimensional force data. The
resultant UEE was analyzed by computing the average and
standard deviation of the peak values across all usable steps and
time-averaged values for each pattern. We analyzed the full gait
cycle and the swing phase separately. Statistical comparison was
completed using the unequal variance t-test. Normality of the data
was confirmed graphically by comparing the data’s empirical
cumulative distribution function to the cumulative distribution
function for the normal distribution.

FIGURE 2
Sagittal plane joint angles output by the optimization for a
complete two-step cycle of 2.2 s. Left and right toe off (TO) and
footstrike (FS) are indicated by the vertical lines. Plantarflexion is
abbreviated as PF.
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3 Results

3.1 OC problem solution

The in silico solution for the last iteration of the OC problem
(Predict6) was conducted over a complete two-step cycle. Although
only the swing phase portions were extracted for use with the study
participant, the full pattern is reported. We define the two-step cycle
as being from double stance after right footstrike to double stance
after the next right footstrike.

Sagittal plane hip, knee, and ankle kinematics (Figure 2) from
the model-optimized pattern differed from NT gait. Several
kinematic features are particularly prominent. During stance
phase the supporting hip and knee go into flexion and the
supporting ankle dorsiflexes. Additionally, the trunk and arms
maintain a slightly posterior posture. During swing, hip hiking
without circumduction is indicated. Across the two-step cycle,

the optimization meets the symmetry boundary constraints. A
video demonstrating the finalized gait with Model P is provided
in the Supplementary Material (Supplementary Material S1).

All joint actuators (Figure 3) and reserve actuators (Figure 4)
were active throughout the two-step cycle. Joint torque actuators
at the lumbosacral joint delivered up to 6.5 Nm. The arm joint
actuators produced a peak torque of 0.63 Nm. Oscillations near
the end of the left shoulder actuator trajectory are likely due to
the left shoulder abduction and elevation coordinates
approaching the associated speed constraint values. The pelvis
translation reserve actuator peak value of −7.7 N occurs along the
X-axis (positive approximately corresponds to the anterior
direction), and the pelvis rotation reserve actuator peak value
of −9.8 Nm is about the X-axis.

Patterns selected by the optimization for the muscle excitations
(Figure 5) emphasized transient spikes. Notably, the hip flexors
(iliopsoas, tensor fasciae latae, and sartorius) were particularly active
during stance. The vasti of the supporting limb are active during
swing phase, as expected. Furthermore, the vasti are active on the
swing limb side during the latter part of swing phase to extend the
knee in preparation for footstrike. Hip flexor activity peaks during
swing. In addition, the excitation profiles for the iliopsoas and vasti
muscle groups evidence the effects of the muscle synergy cost
function subterm; the control signals for the individual muscles
in the groups follow a similar trajectory throughout much of the
two-step cycle.

3.2 Implemented patterns

The raw PW values for the model-optimized and manually
tuned patterns illustrated the distinct differences between the

FIGURE 3
Predicted joint actuator torques for lumbosacral joint, shoulders,
and elbows output by the optimization for a complete two-step cycle
of 2.2 s. Left and right toe off (TO) and footstrike (FS) are indicated by
the vertical lines. Abduction, elevation, rotation, and flexion are
abbreviated Abd., Elev., Rot., and Flex.

FIGURE 4
Reserve actuator forces and torques output by the optimization
for a complete two-step cycle of 2.2 s. Left and right toe off (TO) and
footstrike (FS) are indicated by the vertical lines. X, Y, and Z form a
global coordinate system correlating approximately with the
anterior, superior, and right-lateral directions, respectively.
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patterns (Figure 6). While peak values for both patterns were
similar due to the previously described scaling process, PW
values (Figure 6) throughout the profiles diverge, causing
notable differences in the total charge delivered (Table 4).
With the exception of the right sartorius, the total charge
delivered with the optimized pattern of PW values for each
muscle was smaller than that of the manually tuned pattern.
This difference ranged from a 35% reduction for the left tensor
fasciae latae to an 80% reduction for the right tibialis anterior.
For the right sartorius the optimized pattern charge delivered
was 39% greater than the manually tuned pattern.

3.3 In vivo stepping performance

The number of analyzable steps per trial for each condition is
reported (Table 5) to evaluate the effects of fatigue on trial length.
The optimized pattern condition was tested during the first part
of the single-day session. Due to spasms, the fifth trial was
cut short.

Joint kinematics measured experimentally were compared
between stimulation patterns (Figure 7). Both patterns produced
similar hip flexion and ankle plantarflexion profiles. Across all joint
angles, the left side showed larger joint angle excursions than the

right side under both stimulation patterns. In addition, a posture of
hip flexion was maintained for both patterns and sides throughout
the gait cycle. The highest value for knee flexion angle (51.7°)
occured on the left side for the model-optimized pattern.

The values measured for step time and length are similar for
both patterns (Table 6). Because they were approximately
symmetrical within a given pattern, we can estimate gait speed
(Singleton et al., 1992); it was 0.032 m/s and 0.031 m/s for the
optimized and manually tuned patterns, respectively. Comparing
swing and stance time shows that right swing is consistently
longer than left swing for both patterns. Additionally, the
optimized pattern resulted in a statistically significant decrease
(p < 0.005) relative to the manual pattern for right swing
time (Table 6).

The manually tuned pattern resulted in a lower peak UEE (p <
0.001) than the optimized pattern (Table 7). However, the
average force across the gait cycle was comparable between
patterns. When isolating the UEE required during swing for
each side, it was noted that the left peak UEE for the
optimized pattern was less (p < 0.001) than for the manually
tuned pattern (Figure 8). The optimized right-side pattern UEE
was higher (p < 0.001) than the manually tuned right-side pattern
UEE (Figure 8). Additionally, for both patterns the right UEE was
higher (p < 0.001) than the left UEE (Figure 8).

FIGURE 5
Normalizedmuscle excitations output by the optimization for a complete two-step cycle of 2.2 s. Where themodel was symmetrical, muscle groups
have been arranged by row. The first column includes all left-side muscles, and the second column includes all right-side muscles. Left and right toe off
(TO) and footstrike (FS) are indicated by the vertical lines. Tensor fasciae latae is abbreviated as TFL. Biceps femoris short head is abbreviated as BFSH.
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3.4 Study participant feedback

The participant similarly rated the optimized pattern and the
manually tuned pattern (Figure 9). The physical therapist rated both
patterns equally as requiring the lowest level of assistance. Additionally,
the study participant indicated a strong association between the PW
specified for the left side by the optimized pattern and increased
comfort, stating that “the step felt natural”. He further explained
that he only needed to consciously initiate the step and the rest of
the action would follow. This was in contrast to the right step for the
optimized pattern, during which he reported feeling the progression of
the FNS system activating eachmuscle individually. In the latter case the
participant felt that he could coordinate well with the pattern because he
could distinctly feel eachmuscle being activated, which he indicatedwas
similar for the manually tuned pattern. The participant offered that he
would choose to combine the natural-feeling optimized pattern on the
left side with the manually tuned pattern on the right side.

4 Discussion

In this study we developed an in silico FNS stepping pattern that
included only the muscles used for FNS for a specific individual with
an incomplete SCI. The OC approach was implemented with as few
cost function terms and constraints as possible to identify a solution
that minimized the stimulation PW and UEE. The results were
compared to a standard, manually tuned stimulation pattern,
indicating the potential for reducing UEE and muscle effort while
improving participant comfort while stepping.

FIGURE 6
Stimulation PW values implemented for the optimized and the manually tuned patterns during swing phase. Where the electrodes were
symmetrical, muscle groups have been arranged by column. The first row includes all left-side muscle patterns during the left step. The second row
includes all right-side muscle patterns during the right step. Note the differing durations of swing between patterns and left and right sides, with the
optimized pattern consistently shorter than the manual pattern.

TABLE 4 Charge delivered per swing phase in μC.

Muscle Group Optimized
pattern

Manual pattern

Left Right Left Right

Iliopsoas/Withdraw Reflex 28.1 294.7 56.0 585.0

Vasti 9.5 21.1 19.2 55.0

Tibialis Anterior 17.5 38.9 58.4 195.0

Tensor Fasciae Latae 77.8 - 120.0 -

Sartorius - 948.7 - 682.5

Biceps Femoris Short Head - 94.5 - 300.0

TABLE 5 Number of steps analyzed for each condition. Note that the
optimized pattern was tested first.

Trial # Optimized pattern Manual pattern

Trial 1 22 21

Trial 2 15 22

Trial 3 17 10

Trial 4 19 13

Trial 5 3 10

Trial 6 - 19
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4.1 OC problem solution

In setting up the predictive OC problems, we allowed atypical
kinematics by using an NT-gait based initial guess but no tracking
component. This approach was selected because of the expectation that
the combination of a reduced muscle set and minimizing muscle
excitations could result in a unique gait pattern. The kinematics
generated by the optimization emphasized an anterior flexing

strategy for generating forward propulsion, which is consistent with
bipedal gait (Wang and Srinivasan, 2014), though this is an extreme
representation. Because propulsion was anticipated to be generated
primarily by the participant’s interaction with the walker due to the lack
of activation of the plantarflexor muscles (Awad et al., 2020) and
because the swing phase alone would be extracted for analysis, the
anterior flexing propulsion strategy was not penalized. Along with the
propulsion approach, the optimizer elected a posterior posture of the
trunk and arms, providing a counterbalance in the anterior/posterior
direction. The third notable gait characteristic was hip hiking without
circumduction that helped to provide clearance for the foot. This feature
is consistent with the absence of major hip abductor muscles (Table 1).

By selecting this gait strategy for the reduced muscle model, the
optimizer minimized the effort required from the arm and lumbosacral
joints, producing physiologically reasonable values. NT shoulder
moments during walking have been reported between 2.2 Nm and
12 Nm (Meyns et al., 2013). Our peak value of 0.63 Nm indicates that

FIGURE 7
Ensemble averaged, time-normalized sagittal plane joint angles for the optimized andmanually tuned stimulation patterns for the left and right sides
with standard deviation shaded in grey. Percent Gait Cycle is represented as being from footstrike to footstrike per side. Toe off (TO) is indicated by the
vertical lines. The solid vertical line is associated with the optimized pattern, and the dashed vertical line is associated with the manual pattern.
Plantarflexion is abbreviated as PF.

TABLE 6 Comparison of step time, ratio of swing to stance time, and step length. One standard deviation is shown in parentheses. T-test indicated no
statistically significant differences between either pattern or side for step time and step length. Statistically significant differences in swing to stance ratio
are paired by matching symbols.

Measure Optimized pattern Manual pattern

Left Right Left Right

Step Time, s 16.85 (3.04) 16.80 (3.18) 18.09 (4.22) 17.82 (4.52)

Swing to Stance Ratio 0.13 (0.03)† 0.15 (0.04)†‡ 0.14 (0.04)* 0.18 (0.05)*‡

Step Length, m 0.539 (0.062) 0.538 (0.059) 0.556 (0.052) 0.564 (0.064)

* p < 0.001, † and ‡ p < 0.005.

TABLE 7 Peak and average UEE per gait cycle. One standard deviation is
shown in parentheses. Statistical comparison conducted across patterns.

UEE Measure Optimized pattern Manual pattern

Peak UEE, N 444 (32) 368 (23)*

Mean UEE, N 192 (16) 186 (17)

*p < 0.001.
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the optimization found a comparatively low torque solution. Even
though the values were low, we note that the solver did elect to use the
arm actuators instead of producing a fully passive solution; this feature
is consistent with the consensus that arm motion is not entirely passive
(Meyns et al., 2013). For all three lumbosacral DOF, Samadi et al.
recorded peak torques during NT gait of less than 0.1 Nm/kg between
the L2 and L3 vertebrae (Samadi et al., 2020), which are similar to the
values reported. This solution overall suggests the potential for shifting
effort expenditure from the upper extremities to stimulation induced
contractions of the paralyzed lower extremity musculature, even with a
reduced muscle set.

Considering that the physical parallel to the reserve actuators is
participant interaction with the walker, analysis of these actuators’
magnitude and timing also supported the conclusion that the OC

solutionmaximized the effort expenditure of themuscles over the use of
reserve actuators. The peak force applied by the reserves to the pelvis
was 1.0% of body weight, confirming that body weight was essentially
fully supported through the legs. The timing of the reserve actuators
suggested that their primary use was twofold. First, propulsion was
indicated by activity of the torque actuators occurring just prior to the
model taking a step. Second, posture control was evidenced because at
the beginning and end of the two-step cycle the peak action of the force
and torque actuators are associated with initiating and arrestingmotion,
respectively, to enforce the zero joint velocity state constraint Crest.
Therefore, the reserve actuator activity was appropriately small,
indicating that it was effective in supporting the solution of the
optimization problem and representing the study participant’s use of
a walker without injecting excess energy and skewing the results.

Muscle excitations were effectively minimized and provided the
majority of the effort required to achieve the selected gait strategy.
Transient bursts of muscle activity appear to be the primary means
of reducing overall muscle effort. The activation dynamics
accounted for in the model serve as low pass filters, resulting in
the muscles generating an overall smoother force output than the
profiles identified for the muscle excitations. Remarkably, the
solution included substantial hip flexor excitations for the stance
limb. This activity, however, is consistent with the kinematic strategy
as it reinforces a motion that would augment the propulsive forward
flexion. Furthermore, due to the limited lumbosacral pitch joint
actuator torque, we can conclude that the actions of the psoas
portion of the iliopsoas on the lumbar spine also likely support the
trunk posteriorly and stiffen the vertebrae to counterbalance the
forwardmotion.When evaluating themuscle excitations selected for
the iliopsoas, the effects of the muscle synergy cost function subterm
are mixed; the previously mentioned tasks, forward propulsion and
balancing the trunk, prevailed over the muscle synergy cost function
during much of the two-step cycle. However, the influence of the
muscle synergy cost function subterm on the muscle excitations is
clearly illustrated for the vasti, which act together to extend the knee.

Reduction of the PW values has been associated with increased
comfort (Doucet et al., 2012). When comparing the stimulation
patterns used during stepping trials, the optimized pattern resulted
in a reduction of the charge delivered for all muscles except the right
sartorius, which might reflect suboptimal synergy constraints for that
muscle. Similar peak PW values between patterns indicate that the
reduction of charge delivered for the optimized pattern is due to varying
the PW values throughout the step, in contrast to the manually tuned
pattern in which they remain high during the full period of a given
muscle’s activity. While the same tactic could be implemented
manually, the number of combinations to try could be
overwhelmingly large, suggesting the benefit of an in silico approach.

4.2 Experimental performance

Due to the irregularity of stepping under FNS, standard
measures of fatigue based on variability could not be evaluated.
However, Table 5 provides evidence that fatigue did not become a
major influence in the experimental results. The length of the first
trial of the day (Optimized Pattern Condition, Trial 1) is comparable
to the length of the last trial of the day (Manually Tuned Pattern,
Trial 6). Furthermore, short trials appear at random intervals.

FIGURE 8
Comparison of mean peak UEE during swing phase for each
pattern and side. Forces scaled to percent body weight (% BW). Error
bars show one standard deviation. * indicates p < 0.001.

FIGURE 9
Usability Rating Scale median values reported by the participant
(Questions 1-4) and physical therapist (Question 5) at the end of each
trial for the optimized stimulation pattern and manually tuned
stimulation pattern. Error bars show interquartile range. The
individual data points are indicated by black diamonds. The Wilcoxon
rank sum test indicated no statistical significance between patterns.
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Comparison of joint kinematics between the two patterns suggests a
consistent strategy during stance and limited differences under
stimulation-driven motion. Because stance phase was controlled
volitionally by the study participant, it follows that similar features
would be reflected for both patterns. In general, swing joint angles are
greater for the left side than the right side, regardless of the stimulation
pattern. This might indicate a difference in the stimulation methods
(surface vs implanted). Hip flexion was also noted throughout the gait
cycle. In stepping, forward-leaning flexion is characteristic of walker use
for individuals with SCI due to the need to support bodyweight in
addition to maintaining balance (Melis et al., 1999). Lastly, we observe
that the knee angle generated by the optimized pattern for the left side
nears NT peak values (Winter 1984).

Evaluation of step time and length for the optimized and manually
tuned patterns further confirms the similar kinematic features for both
patterns. No statistical significance could be assigned to these measures,
and the values for step time and step length within a given pattern are
quite close, suggesting a degree of gait symmetry for these measures
(Singleton et al., 1992). When evaluating the ratio of swing to stance
time, the right swing was longer than left swing across patterns, which
could be due to a faster muscle response time for the fully implanted
electrode architecture used on the left side over the mixed architecture
of the right side. In both patterns dwell time in double stance has a clear
effect on walking speed. Even though a statistically significant decrease
in right swing to stance time ratio was seen when comparing the
optimized pattern to the manual pattern, the change in right step time
was not statistically significant. Considering these results together
indicates the effect of the participant’s gait style that included
pausing during double stance to reduce spasms. The similarities in
joint kinematics, step time, and step length across patterns indicate that
PW can be effectively decreased by an in silico solution while
maintaining gait quality relative to a manually tuned pattern.

Measures of UEE demonstrate the potential for developing patterns
in silico that reduce the UEE required for walking with FNS. While the
peak UEE for the manually tuned pattern was less than the optimized
pattern, the average UEE was similar, indicating that peak force might
be an important but insufficient measure of the effort required by the
participant. It is also of interest to compare left and right sides across
patterns. This comparison accounted for only the effort required during
a step (swing phase) to better isolate the effects of a given tuning
method. The left peak UEE measuring less than the right peak UEE
during swing indicates the potential for a pattern developed in silico by
OC to reduce peak UEE, even though the current optimized pattern did
not achieve an overall reduction. The swing-only comparison alsomade
it evident that for both patterns right UEE was greater than left UEE.
Onemight conjecture that the use of combined stimulationmethods on
the right side (as opposed to implant only on the left side) is the source
of this increase. However, because the right-side UEE associated with
the optimized pattern is higher than the right-side UEE associated with
the manually tuned pattern, we reject this reasoning and recommend
further experiments to verify whether stimulation method is the source
of the higher right over left UEE observed across patterns. Though a
direct comparison cannot bemade due to the differing locations of force
application between the model and experimental cases, we note that
when comparing the peak force values of the predicted OC reserve
actuators and the measured UEE the participant exerted upwards of
50 times more force, which we primarily attribute to the less erect
posture of the subject during the experimental condition.

Feedback comparing and contrasting both stimulation patterns
provided by the participant indicated either no difference between
patterns or a slight preference for the optimized pattern. Questions
targeting effort in general, UEE in particular, and stability recorded on a
Likert-like showed no statistical difference, demonstrating the capacity
of an OC-based solution to match a manually tuned pattern. The rating
for general effort is consistent with the optimized pattern’s overall
reduction in muscle activation by FNS. Additionally, the UEE rating
suggested that the differences in UEE peak forces between patterns
could have been undetectable by the participant. The stability of both
patterns was validated by the physical therapist; the rating for all trials
indicated that the level of assistance needed was contact guard assist,
whereby constant contact with the gait belt was only a preventative
safety measure. When asked open-ended questions about the pattern,
the participant confirmed the value of decreased PW levels (Figure 6) by
stating that the left step of the optimized pattern felt natural.

4.3 OC in clinical practice

A participant-informed model was employed for the final iteration
of the OC problem. We assumed that the model must include the
muscles specific to the individual using the FNS system, but no further
participant-specific refinement was done. This approach resulted in a
workable pattern that did not require information from preliminary
laboratory sessions such as contractile properties, muscle strength, body
geometry, and stimulation reaction time measurements. Only two
walking trials at the beginning of the session were necessary for
scaling the model-optimized stimulation pattern. While the pattern
might be improved by further model personalization, the sufficiency of
this degree of personalization opens the opportunity of holding fewer,
less intensive laboratory sessions.

Furthermore, for clinical implementation we suggest that the
work done with Model G might not require repeating. For future
study participants the addition/removal of muscles for developing
Model P can be programmed into a graphical user interface (GUI)
that also includes a switch indicating whether the muscle set is
symmetrical or not, which would subsequently determine whether a
single stride or two-step gait cycle needs to be optimized. After
running the optimization prior to clinical time with the patient, it
would be sufficient to tune the strength of the stimulation.

As gains in FNS technology continue, the number of stimulus
channels (and muscles able to be selectively recruited) will increase.
This progress raises the question of how to efficiently coordinate
more muscles as the parameter space expands. Unlike single-joint
studies, our 3D model captures multi-muscle coordination. Shifting
the pattern generation process to an in silico approach could help to
address this dilemma as optimal control problems for
musculoskeletal models containing more muscles are readily
solved. For example, Dembia et al. present an OpenSim model
with 80 lower-limb muscles (Dembia et al., 2020).

4.4 Future considerations

There are several limitations to the current study. Clearly, a
single participant is insufficient to generalize the in silico approach
presented here for the larger population of individuals with
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incomplete SCI, which is by nature heterogeneous. Future work
should include a broader pool of participants with various levels of
injury, extent of paralysis, and available muscle targets for activation,
allowing for more robust statistical comparison of each tuning
condition. All participants capable of stepping with FNS could be
considered under our framework, although future studies might
need to separate participants into groups according to injury level.
The data provided by the current study will inform a power analysis
in planning for a larger study.

Muscle spasms with clonus were particularly prevalent during
some trials and seemed to increase later in the day during the second
session. Efforts were made to remove steps from the dataset where
stimulation did not overcome this involuntary muscle activity and
interfered with step progression. With the current study it is unclear
whether this increased activity was related to the stimulation pattern
being tested, changes to joint angle and sensory inputs to the spinal
circuitry below the level of injury, fatigue, or other factors. Also, it
can be noted that the left tensor fasciae latae stimulation profile from
the optimized pattern exhibited a difference in timing but not pulse
width values when compared to the manually tuned pattern. While
this is not an exact representation of the OC problem output, we
anticipate that it has a minimal effect on the outcome, though it
might be a consideration for future work.

This study focused on reducing stimulation levels through
modulating the PW. NT muscle isometric force values were used in
themodel, and the scaling of the predicted excitation pattern to account
for reducedmuscle strength after SCI, which is typically less than 50%of
NT values, was completed during the experiment session. This potential
limitation will be assessed in future work by exploring experimental
techniques such as using dynamometers like the Biodex System 4 to
quantify the subject- and muscle-specific contractile properties with
FNS to achieve a better understanding of whether it is necessary to
estimate muscle strength at that level of detail for each participant.

Upon completing this study, two directions for extending it are of
particular interest. First, development of an optimization goal or other
conditions that eliminate the forward leaning propulsion strategy
should be pursued. To extend this work to individuals with
complete SCI or those with incomplete SCI and less hip extensor
control requires eliminating this propulsion strategy because stability
during stance is a priority to this population. The solution to this issue
might include adding a model of the walker assistive device to the
simulation which would direct the solver toward solutions consistent
with a more reasonable trunk pose. Second, while PW modulation
effectively improves comfort, minimizing fatigue might be a higher
priority and more important consequence of the optimal control
approach. Future investigations could explore methods of modeling
stimulation frequency in addition to PWmodulation and cost function
terms that target fatigue (Doucet et al., 2012).

After refining the optimal control problem and its open loop
implementation, we will integrate the results into a closed loop FNS
system. The open loop muscle activation pattern determined by
solution of the optimal control problem has an associated CoM
trajectory. A feedback controller can be used to compute differential
activations to be added to the baseline (feedforward) muscle
activations should deviation from that CoM trajectory occur due
to external or internal (fatigue) perturbations. While a similar
approach could be taken with a manually specified muscle
activation pattern, this often results in over specification of the

stimulation levels required to achieve a step. By using the optimal
control solution, we will maintain the benefits of decreased
stimulation levels while including a feedback component.
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