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Electromyography (EMG) is essential for accurate assessment of motor function
in rehabilitation, sports science, and robotics. However, its various time-
consuming human operations (e.g., electromagnetic noise countermeasures)
limit its widespread use. Meanwhile, motion capture technology has become
more accessible, leading to increasing interest in musculoskeletal simulation
models such as OpenSim. Although advances have been made in individualizing
themodel parameters, accurately estimatingmuscle activity remains a significant
challenge. Previous efforts to optimize the parameters in musculoskeletal model
simulators have yielded limited improvements in estimation accuracy. A key
source of error that is identified in this study is the spatio-temporal distortion
between the estimated and actual muscle activity, which has been inadequately
addressed in previous research. To address this problem, this study proposes the
Neural-Enhanced Motion-to-EMG (NEM2E) framework, which mitigates spatio-
temporal distortions in simulated muscle activity using the Spatio-Temporal
Distortion Refinement Network (STDR-Net). The STDR-Net is implemented via
a Sequence-to-Sequence model with attention mechanisms to refine the
estimates. Validation on two public datasets (walking and running motions)
confirms significant accuracy improvements: enhanced estimations for all five
muscles in the running dataset and for two of five muscles in the walking dataset.
These findings demonstrate the potential of the NEM2E framework to refine
OpenSim-generated muscle activity estimates and advance personalized
applications in muscle activity analysis.
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1 Introduction

Electromyography (EMG) is essential for accurate assessment of motor function in
rehabilitation, sports science, and robotics. However, it is not suitable for routine
measurement because it requires various time-consuming human operations, such as
the application of electrodes by specialists and electromagnetic noise countermeasures,

OPEN ACCESS

EDITED BY

Fabiano Bini,
Sapienza University of Rome, Italy

REVIEWED BY

Wenxin Niu,
Tongji University, China
Giovanni Merlino,
University of Messina, Italy

*CORRESPONDENCE

Tatsuya Teramae,
t-teramae@atr.jp

RECEIVED 14 April 2025
ACCEPTED 02 July 2025
PUBLISHED 25 July 2025

CITATION

Teramae T, Matsubara T, Noda T and
Morimoto J (2025) Neural-enhanced motion-
to-EMG: refining simulatedmuscle activity from
musculoskeletal models using a
Seq2Seq approach.
Front. Bioeng. Biotechnol. 13:1611414.
doi: 10.3389/fbioe.2025.1611414

COPYRIGHT

© 2025 Teramae, Matsubara, Noda and
Morimoto. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 25 July 2025
DOI 10.3389/fbioe.2025.1611414

https://www.frontiersin.org/articles/10.3389/fbioe.2025.1611414/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1611414/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1611414/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1611414/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1611414/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2025.1611414&domain=pdf&date_stamp=2025-07-25
mailto:t-teramae@atr.jp
mailto:t-teramae@atr.jp
https://doi.org/10.3389/fbioe.2025.1611414
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2025.1611414


for correct measurement. In addition, it is affected by sweat and
changes in skin conditions, making it unsuitable for long-term
measurement. In contrast, markerless motion capture systems
such as THEIA three-dimensional (3D), Azure Kinect, and
mediapipe allow for easy motion measurement. Mobile force
plates that can measure ground reaction forces simply by putting
on shoes have also been investigated (Liu et al., 2010; Adachi et al.,
2011) and commercialized by Tec Gihan Co., Ltd. (M3D Force
Plate). In addition, VMOCAP (Ohashi et al., 2020), which estimates
motion and muscle activity using only an RGB camera, has been
proposed. Owing to these technological advances, muscle activity
estimation using a musculoskeletal model simulator with
measurements of the motions and ground reaction forces has
become a useful system for measuring muscle activity in the
elderly and in athletes who wish to reduce their
measurement burden.

In this context, musculoskeletal model simulators (anybody,
2025; Dhaibaworks, 2025; ARMO, 2025; SIMM, 2025) such as
OpenSim (Opensim, 2025; Delp et al., 2007) have attracted
increasing attention for muscle activity estimation. A key
challenge in musculoskeletal simulation is the accurate modeling
of individual human dynamics. Optimizing model parameters such
as the bone length, muscle force characteristics, and joint stiffness is
crucial for achieving more realistic analyses (Dembia et al., 2021).

Among these simulators, OpenSim is one of the most widely
used open-source platforms for musculoskeletal simulation (Seth
et al., 2018; Mokhtarzadeh et al., 2023; Bedo et al., 2021). OpenSim
facilitates the dissemination of research within the SimTK
community and is used extensively in academic and clinical
research (Reinbolt et al., 2011; Mansouri and Reinbolt, 2012; Lee
and Umberger, 2016; Blache et al., 2017; Nasiri et al., 2022; Willson
et al., 2023; Gao et al., 2024; Zhang et al., 2024). It supports
integration with skeletal models (Saul et al., 2005; Christophy
et al., 2012; Arnold et al., 2010) and optimization algorithms
(Seth et al., 2018; Dembia et al., 2021) as add-on components.
Recent advancements, such as Myosuite (Caggiano et al., 2022)
combined with Multi-Joint dynamics with Contact (MuJoCo)
(Todorov et al., 2012) have further expanded the capabilities of
musculoskeletal simulations.

OpenSim operates through two key layers: torque estimation
and muscle activity estimation (see Supplementary Appendix SA for
details on the muscle activation estimation procedure). The torque
estimation layer accurately predicts joint torques by customizing
musculoskeletal models based on user-specific physical
characteristics and ground reaction forces (Koller et al., 2018;
Saul et al., 2005; Christophy et al., 2012; Arnold et al., 2010).
Conversely, the muscle activity estimation layer solves an inverse
problem to derive muscle activations from joint torques. However,
this inverse problem lacks a unique solution owing to the
redundancy of muscle actuators in the OpenSim musculoskeletal
model. OpenSim addresses this challenge by minimizing the sum of
muscle activity to achieve local optimal solutions (Thelen et al.,
2003); however, this often leads to significant discrepancies between
the estimated and measured muscle activities.

Several sources of error in the estimation of muscle activity
estimation using OpenSim have been identified. Modeling errors,
particularly in muscle dynamics, are one major cause. For example,
prior research (Hamner and Delp, 2013) observed a consistent time

delay of approximately 75 ms between the estimated and measured
muscle activities in running datasets. In addition, other studies (Nasiri
et al., 2022; Gastaldi et al., 2021; Liu et al., 2008) reported shifts in the
peak of muscle activity. Another critical source of error arises from the
non-unique solutions to the inverse problem of determining muscle
activity from joint torque owing to the redundancy of muscle actuators,
which are employed to reproduce the human musculoskeletal system.
OpenSim uses Computed Muscle Control (CMC) (Thelen et al., 2003)
to solve this problem; however, its objective function, which minimizes
activation while achieving the target torques, does not guarantee
alignment with actual muscle activity patterns. To the best of our
knowledge, no previous study has generically addressed the motion-to-
EMG problem using a neural network, as musculoskeletal
simulators do.

Based on these findings, this study hypothesizes that errors in
muscle activity estimation stem from two primary factors: temporal
mismatches and spatial redundancy in musculoskeletal models. As the
results of previous studies have shown, the resolution of these errors is
limited only by the conventional optimization of the model parameters.
Therefore, as opposed to optimizing the musculoskeletal parameters,
this study explores an alternative approach by introducing a
compensation model to refine the OpenSim outputs.

The Neural-Enhanced Motion-to-EMG (NEM2E) framework
(Figure 1) is introduced to address the above problems. It estimates
realistic muscle activity frommotion and ground reaction force data
by incorporating the Spatio-Temporal Distortion Refinement
Network (STDR-Net). Specifically, the STDR-Net refines the
muscle activity outputs of OpenSim by compensating for spatio-
temporal distortion. The network leverages a Sequence-to-Sequence
(Seq2Seq) model (Sutskever et al., 2014), which is a recent
development in natural language and image processing, enhanced
with attention mechanisms (Luong et al., 2015). The framework
implements Seq2Seq models with spatial and temporal attention
mechanisms to investigate the spatial and temporal error
contributions separately.

The analysis was performed using the walk and running motion
of elderly people and athletes, as well as extractable discrete motions
such as baseball batting and golf swinging, which are commonly
applied in sports and rehabilitation science. This study used two
publicly available datasets (Liu et al., 2008; Hamner and Delp, 2013)
that pair the muscle activity estimations of OpenSim with actual
EMG data for lower-limb walking and runningmotions. In addition,
the accuracy was tested on unknown subjects through cross-
validation between subjects based on open data to enable cross-
sectional measurement.

The contributions of this study are summarized as follows.

• The NEM2E framework is developed to enhance the realism of
musculoskeletal model simulators.

• The study hypothesizes that discrepancies between simulated
muscle activity and measured EMG data are owing to spatio-
temporal distortions that are inherent in conventional
musculoskeletal models.

• The STDR-Net is proposed using Seq2Seq and attention
mechanisms to refine the muscle activity estimations.

• Validation is performed using public datasets, demonstrating
significant accuracy improvements for all five muscles in
running data and two out of five muscles in walking data.
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By addressing a significant error source in musculoskeletal
modeling, this study opens pathways for further innovations in
refining biomechanical simulations and integrating neural networks
into computational modeling.

The remainder of this paper is organized as follows: Section 2
reviews related studies, Section 3 describes the NEM2E framework,
Section 4 explains the model learning and statistical analysis, Section
5 presents the validation results, Section 6 discusses the findings, and
Section 7 concludes the paper.

2 Related works

One of the key roles of OpenSim is to estimate muscle activity.
Thelen et al. (2003) demonstrated that integrating joint angular
acceleration feedback into the muscle activity optimization routine
(static optimization) of OpenSim yields muscle activity estimates
with timing similar to EMG-based measurements. This method is
implemented in OpenSim as CMC.

However, estimating muscle activity from joint torque remains
an ill-posed problem owing to the redundancy of actuators in
musculoskeletal models. Several studies have reported
discrepancies between the simulated and experimental muscle
activity, which have often been attributed to changes in muscle
loading and the effects of assisted movement (Nasiri et al., 2022;
Gastaldi et al., 2021).

Efforts to improve the accuracy of OpenSim musculoskeletal
models have followed two main approaches:

2.1 Development of sophisticated models

The first approach involves creating more detailed models. For
instance, studies have developed precise models of the lumbar spine,
addressing areas that are not adequately represented by the base
model of OpenSim (Christophy et al., 2012; Raabe and Chaudhari,
2016). Tools such as NMSBuilder developed by G. Valente et al. have
also been introduced to aid researchers in developing customized

OpenSim models (Valente et al., 2017). However, there are inherent
limitations to the accuracy that is achievable in simulations owing to
challenges in replicating the complexity of the human body. In
addition, measurements such as CT scans are required to capture
individual differences accurately, which may not be feasible for
all users.

2.2 Optimization of model parameters

The second approach focuses on optimizing the model
parameters. OpenSim moco (Dembia et al., 2021) introduces
functions to calibrate parameters such as the muscle length and
maximum tension using individual user data. Although this
improves the personalization, discrepancies between the
estimated muscle activity and measured EMG data persist.
Valente et al. proposed robust optimization methods to address
uncertainties in muscle models (Valente et al., 2014). However,
parameter optimization alone cannot resolve fundamental modeling
errors in musculoskeletal models.

2.3 Our concept

In contrast to previous studies that focused only on optimizing
the parameters or models within the OpenSim framework, this study
introduces the NEM2E framework. By addressing temporal and
spatial modeling errors separately, the STDR-Net compensates for
these errors using a Seq2Seq model with an attention mechanism.
This approach has the potential to mitigate the limitations of
conventional methods and improve the accuracy of muscle
activity estimation.

3 Materials and methods

This section presents an overview of the methods and
experimental setup.

FIGURE 1
NEM2E framework. NEM2E refines themuscle activity estimated frommotion and ground reaction force data using OpenSim, enhancing it with the
STDR-Net.
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3.1 Methods

NEM2E framework and STDR-Net.

3.1.1 NEM2E framework
The NEM2E framework refines the muscle activity estimations

generated by OpenSim (Figure 1). It starts with the standard
workflow of OpenSim, which includes 1) scaling (skeletal model

parameter adjustment), 2) inverse kinematics (joint angle
calculation), 3) residual reduction algorithm (joint torque
estimation), and 4) CMC (muscle activity estimation) (see
Supplementary Appendix SA for a detailed description). The
resulting muscle activity data are then refined by STDR-Net to
compensate for spatio-temporal distortions that are introduced by
the OpenSim musculoskeletal model.

3.1.2 STDR-Net
STDR-Net addresses spatio-temporal distortions in OpenSim

musculoskeletal models. Several time-series modeling techniques
(e.g., linear regression, recurrent neural networks, long short-term
memory (LSTM), and the Transformer) can be applied; however,
this study implements STDR-Net using a Seq2Seq model with an
attention mechanism (Luong et al., 2015) because this approach
leverages attention layers to analyze the spatio-temporal
relationships during data refinement. A schematic is shown in
Figure 2. Two distinct models, (a) and (b), are constructed to
analyze the temporal and spatial distortion, respectively.

These models use the muscle activity estimated by OpenSim as the
input xs and themeasured real muscle activity as the output ys, and train
a neural network (encoder hs, decoder ht, and attention at) that
compensates for the spatio-temporal distortions between the input
and output. By analyzing the attention mechanism that is embedded
in the network, the information that is used to correct the distortion can
be revealed, and the contribution of spatio-temporal information to
refining the estimatedmuscle activity can be verified. See Supplementary
Appendix SB for details on the Seq2Seq with attention model.

3.2 Experiment

The proposed NEM2E framework was validated using two publicly
available datasets (Liu et al., 2008): published in https://simtk.org/
projects/mspeedwalksims and the datasets used in the literature
(Hamner and Delp, 2013) published in https://simtk.org/projects/
nmbl_running. The contents of the dataset are shown in Table 1
These datasets contain the estimated muscle activation results for
which individual body parameter tuning and other standard tuning
has already been performed in the respected studies.

3.2.1 Model learning

The parameters of the STDR-Net were trained using a dataset,
where the simulated muscle activation from OpenSim served as the
input and the muscle activation obtained from the measured EMG
served as the output. The squared error was used as the loss function
and the optimization process was carried out using the Adam
algorithm (Kingma and Ba, 2015).

For all conditions, the STDR-Net was configured with 20 units
corresponding to the number of muscle actuators in OpenSim for
the encoder (input layer), 700 units for each intermediate layer, and
20 units for the decoder (output layer). Training was performed with
a batch size of 1 and 700 epochs. The data were standardized by
thinning the input and output data to 20 samples each. For the
temporal attentionmodels, the input dimension corresponded to the
single dimension of the target muscle.

FIGURE 2
STDR-Net. STDR-Net combines the Seq2Seq model and an
attention mechanism that transforms time-series data ys using
encoders and decoders with LSTM. There are two types of attention
mechanism: (a) an attention mechanism for temporal analysis
and (b) an attention mechanism for spatial analysis.
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3.2.2 Statistical analysis

The performance of the proposed model was compared with the
baseline muscle activity estimations of OpenSim. All EMG
measurements in each dataset (running data: 16 muscles, walking
data: 5 muscles) were verified. The names and abbreviations of each
muscle are as follows: the soleus (soleus), biceps femoris long head
(bi), semimembranosus (sem), tibialis anterior (tib), rectus femoris
(rect), gluteus maximus (glmax1, glmax2, and glmax3), gluteus
medius (glmed1, glmed2, and glmed3), gastrocnemius medial
head (gasmed), gastrocnemius lateral head (gaslat), vastus
lateralis (vaslat), and vastus medialis (vasmed) muscles. These
names follow the column labels used in publicly available
OpenSim muscle activity datasets and may differ from standard
anatomical abbreviations. All data were segmented into individual
gait cycles. A leave-one-out cross-validation approach was used,
with data blocked by subject for both the walking and
running datasets.

The accuracy of the model was assessed using the root mean
squared error (RMSE) between the model output ŷ and measured
EMG data y, which is calculated using the following (Equation 1):

E �

�������������
1
N

∑N
i�0

yi − ŷi( )2
√√

, (1)

whereN � 20 is the number of samples. Assuming that the error in
the refined muscle activity obtained by the proposed method is Epro

and the error in the estimated muscle activity obtained from
OpenSim is EOpenSim, the error improvement rate Er is calculated as

Er � Epro

EOpenSim
− 1. (2)

Because each subject has data for four different speeds, the average
of the four RMSE values is treated as the representative value for each
subject. The null hypothesis H0: Er � 0 was tested using a T-test. The
effect size is calculated using Cohen’s d in the following (Equation 3).

d � Erave − μ0
Erstd

, (3)

where, Erave and Erstd denote average and standard deviation of Er,
respectively. μ0 is hypothesized population mean.

The 95% confidence interval (CI) is calculated using the
following (Equation 4).

CI � Erave ± tα
2,n−1

Erstd�
n

√ , (4)

where, tα
2,n−1 represents the two-tailed t-value of α

2 in the
t-distribution with n-1 degrees of freedom. n is sample number.
α is 0.05. Three input data patterns were defined for validation.

• One muscle, quarter cycle (One-Quarter): Sequence data for a
quarter cycle of one muscle of the target muscle.

• One muscle, entire-cycle (One-Entire): Sequence data for an
entire cycle of one muscle of the target muscle.

• All muscles, entire cycle (All-Entire): Sequence data for an
entire cycle of all muscle sets in the musculoskeletal model.

One-Entire tested the temporal distortion compensation.
Because the proposed framework emphasizes the importance of
utilizing the entire sequence data to address temporal distortion, the
effect of using only a portion of the sequence as input was examined

TABLE 1 Datasets.

Dataset Motion Subject no. Model Muscle dim

Walking (Liu et al., 2008) Four different speeds 8 gait2392 92

Running (Hamner and Delp, 2013) Four different speeds 10 Original (Hamner et al., 2010) 102

FIGURE 3
Refined muscle activities with our proposed method. (a) shows
the walking dataset results for the One-Entire condition. (b) shows the
running dataset results for the All-Entire condition. The blue, red, and
black lines represent simulated, refined, and measured muscle
activity. The horizontal axis represents the gait cycle (right heel strike
to left heel strike), whereas the vertical axis represents muscle activity.
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in the One-Quarter model. All-Entire assessed the spatial distortion
compensation by incorporating all muscle activity data. Temporal
attention (Figure 2a) was used for One-Entire and One-Quarter,
whereas spatial attention (Figure 2b) was applied to All-Entire.
Tukey’s multiple comparison tests were performed for each
muscle to analyze significant differences among the three
input patterns.

4 Results

4.1 Refinement results of NEM2E

Figure 3 shows representative results from the NEM2E
framework. The results for the One-Entire condition in the
walking dataset are shown in (a) and the results for the All-
Entire condition in the running dataset are shown in (b). The
blue lines indicate simulated muscle activity from OpenSim, the
red lines show the refined output from the STDR-Net, and the black
lines represent measured EMG data. The horizontal axis denotes the
gait cycle (right heel strike to left heel strike), whereas the vertical
axis represents muscle activation. In all cases, the refined muscle
activation (red) closely matched the measured EMG (black),
demonstrating the ability of the framework to improve upon the
baseline OpenSim estimates (blue).

4.2 Statistical analysis

Tables 2 and 3 summarize the statistical results for the
improvement rates in the estimation accuracy for the walking
and running datasets, respectively. p indicates that the null
hypothesis H0: Er � 0 is rejected in the estimation error
improvement rate for each muscle calculated by Equation (2). In
the walking data, significant improvements in accuracy were
observed for the soleus, tib, and rect under the All-Entire
condition. No significant improvements were observed for bi and
sem under any conditions. In the running dataset, significant
improvements were evident for all muscles in the All-Entire

condition. Under the One-Quarter condition, only 4 out of the
16 muscles showed significant improvement, and under the One-
Entire condition, 10 out of the 16 muscles demonstrated significant
improvement.

Figure 4 show the improvement rates in the estimation error for
the walking and running datasets. A value of 0 represents the
baseline accuracy, whereas negative values indicate improvement.
In the walking dataset, there were no significant differences between
conditions. Conversely, in the running data, significant differences
were observed between One-Quarter and All-Entire in 13 out of
16 muscles as well as between One-Entire and All-Entire in bi
and glmax2.

In the running dataset, significant improvements were observed
in all muscles under the All-Entire condition. However, under the
One-Entire condition, no significant improvements were observed
in 6 out of the 16 muscles. Furthermore, in the walking dataset,
significant improvements in the accuracy of the gastrocnemius
muscle were observed under all conditions. The rectus femoris
muscle showed improvements only under the All-Entire
condition, suggesting that the spatial attention mechanism in this
condition plays a crucial role in enhancing muscle activity
estimation. Furthermore, under the One-Quarter condition,
significant improvements were observed in only 5 out of
21 muscles across both running and walking data, indicating the
need to consider the entire sequence rather than applying window
processing to the sequence data. Moreover, as the models in this
study were trained only on running and walking data, shortcut
learning may have occurred, in which average muscle activity
patterns were learned that are dependent on the movement
duration. Then, for the One-Entire model trained on the soleus
walk data, which showed strong improvement results in the
validation, the improvement rate of the refined results was tested
with a T-test by entering 32 randomly frequency- and phase-
changed data, which was the same number of test trials in the
walk dataset of the original paper. The average improvement rate (-
indicates improvement and + indicates degradation) was +0.48, with
a p-value of 0.001, showing significant degradation. Thus, the results
demonstrate that shortcut learning, which is dependent on the
operating time, did not occur.

TABLE 2 Statistical analysis for walking dataset.

Soleus bi Sem tib Rect

One-Quarter error −0.19 * (p = 0.036) 0.30 (p = 0.15) −0.034 (p = 0.57) −0.09 * (p = 0.015) 0.19 (p = 0.19)

95% CI [-0.37, −0.02] [-0.13, 0.73] [-0.17, 0.10] [-0.16, 0.02] [-0.13,0.52]

Effect size, R2 −0.92, 0.41 0.57, 0.12 −0.21, 0.22 −1.13, 0.32 0.51, 0.10

One-Entire error −0.33 ** (p = 0.0012) 0.11 (p = 0.15) −0.07 (p = 0.16) −0.071 (p = 0.17) 0.19 (p = 0.26)

95% CI [-0.48, −0.18] [-0.05, 0.28] [-0.18, 0.04] [-0.18, 0.04] [-0.17,0.55]

Effect size, R2 −1.84, 0.56 0.57, 0.12 −0.56, 0.19 −0.55, 0.30 0.43, 0.16

All-Entire error −0.31 * (p = 0.035) 0.15 (p = 0.062) 0.015 (p = 0.82) −0.13 * (p = 0.025) −0.15 * (0.033)

95% CI [-0.60, −0.029] [-0.0010, 0.30] [-0.13, 0.16] [-0.24, −0.021] [-0.28, −0.015]

Effect size, R2 −0.92, 0.65 0.78, 0.18 0.084, 0.12 −1.00, 0.33 −0.93, 0.28

p < 0.05, **p< 0.01, ***p< 0.001. Bold type indicates improved accuracy.
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TABLE 3 Statistical analysis for running dataset.

Soleus Bi Semim Tib

One-Quarter error −0.39 *** −0.04 (p = 0.523) −0.35 *** 0.16 (p = 0.097)

95% CI [-0.52, −0.26] [-0.18, −0.1] [-0.43, −0.28] [-0.03, 0.35]

Effect size, R2 −2.17, 0.92 −0.21, 0.77 −3.33, 0.80 0.59, 0.70

One-Entire error −0.48 *** −0.21 ** (p = 0.003) −0.44 *** −0.03 (p = 0.68)

95% CI [-0.55, −0.40] [-0.33, −0.09] [-0.51, −0.36] [-0.20, 0.14]

Effect size, R2 −4.57, 0.80 −1.26, 0.44 −4.05, 0.52 −0.14, 0.38

All-Entire error −0.59 *** −0.42 *** −0.47 *** −0.14 * (p = 0.020)

95% CI [-0.68, −0.51] [-0.49, −0.36] [-0.56, −0.38] [-0.25, −0.03]

Effect size, R2 −4.92, 0.87 −4.62, 0.59 −3.77, 0.58 −0.89, 0.40

Rect Semit Glut max1 Glut max2

One-Quarter error −0.023 (p = 0.717) −0.35 *** 0.052 (p = 0.63) 0.038 (p = 0.33)

95% CI [-0.16, 0.13] [-0.44, −0.26] [-0.18, 0.29] [-0.045, 0.12]

Effect size, R2 −0.12, 0.52 −2.80, 0.39 0.16, 0.20 0.33, 0.24

One-Entire error −0.23 *** −0.40 *** 0.0062 (p = 0.96) 0.0081 (p = 0.89)

95% CI [-0.39, −0.07] [-0.48, −0.32] [-0.28, 0.29] [-0.11, 0.13]

Effect size, R2 −1.05, 0.42 −3.59, 0.47 0.016, 0.36 0.047, 0.33

All-Entire error −0.37 *** −0.49 *** −0.23 *** −0.12 * (p = 0.013)

95% CI [-0.48, −0.25] [-0.58, −0.40] [-0.34, −0.13] [-0.21, −0.032]

Effect size, R2 −2.25, 0.52 −3.93, 0.57 −1.63, 0.39 −0.97, 0.36

Glut max3 Glut med1 Glut med2 Glut med3

One-Quarter error 0.12 (p = 0.18) −0.030 (p = 0.70) −0.12 (p = 0.065) 0.044 (p = 0.58)

95% CI [-0.065, 0.30] [-0.20, 0.14] [-0.25, 0.0096] [-0.13, 0.22]

Effect size, R2 0.46, 0.0.16 −0.13, 0.38 −0.66, 0.41 0.18, 0.40

One-Entire error −0.051 (p = 0.49) −0.23 * (p = 0.019) −0.027 (p = 0.80) −0.10 (p = 0.33)

95% CI [-0.21, 0.11] [-0.41, −0.047] [-0.26, 0.20] [-0.31, 0.12]

Effect size, R2 −0.23, 0.30 −0.90, 0.45 −0.084, 0.43 −0.33, 0.53

All-Entire error −0.18 *** −0.35 *** −0.29 *** −0.23 ***

95% CI [-0.30, −0.054] [-0.43, −0.28] [-0.49, −0.36] [-0.33, −0.13]

Effect size, R2 −1.030, 0.36 −3.32, 0.57 −0.97, 0.56 −1.59, 0.57

Gaslad Gasmed Vaslat Vasmed

One-Quarter error −0.097 (p = 0.33) −0.096 (p = 0.20) −0.037 (p = 0.60) −0.030 (p = 0.70)

95% CI [-0.31, 0.12] [-0.045, 0.12] [-0.20, 0.13] [-0.20, 0.14]

Effect size, R2 −0.33, 0.54 0.33, 0.49 −0.17, 0.53 −0.13, 0.38

One-Entire error −0.32 *** −0.41 *** −0.29 ** (p = 0.0040) −0.47 ***

95% CI [-0.45, −0.19] [-0.53, −0.29] [-0.46, −0.12] [-0.51, −0.42]

Effect size, R2 −1.74, 0.61 −2.41, 0.71 −1.21, 0.72 −3.59, 0.80

All-Entire error −0.50 *** −0.52 *** −0.39 *** −0.58 ***

95% CI [-0.50, −0.29] [-0.62, −0.42] [-0.50, −0.29] [-0.62, −0.42]

Effect size, R2 −3.44, 0.74 −3.77, 0.78 −2.75, 0.80 −9.23, 0.85

*p < 0.05, **p< 0.01, ***p< 0.001. Bold type indicates improved accuracy.
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Furthermore, Figure 5 shows the loss trends for the training and
validation data across each learning trial. In the running data, as
shown in Figure 5a, the validation loss converged, whereas, in the
walking data, as shown in Figure 5b, the loss temporarily increased
without decreasing and then converged. For the running data, the
validation loss demonstrates a stable relationship with the training
loss, consistently decreasing alongside it. This trend suggests that
overfitting is unlikely for this dataset, even with the relatively high
number of epochs (700). The observed generalization across
individuals further indicates that the model is successfully
learning the underlying patterns for this specific sequence task
without memorizing the training data.

Conversely, for the walk data, the validation loss exhibits an
increasing trend from early epochs. However, the validation loss
remains stagnant and elevated from the outset, suggesting that the
intrinsic complexity or inherent noise within this dataset may hinder
the model’s ability to achieve substantial learning improvements

from the beginning. This observation implies that for the walk data,
increasing the dataset size is considered more critical for improving
model performance and generalization than simply extending the
training duration or adjusting architectural parameters.

4.3 Attention

Figure 6 depicts two representative examples of temporal
attention weights in the One-Entire condition. In (I), the
attention mechanism primarily focuses on the central part of the
input sequence to refine the initial portion of the output waveform of
the model. Conversely (II) highlights attention on the latter part of
the input sequence, corresponding to the refinement of the second
half of the output waveform.

The temporal attention results (Figure 6) reveal that the model
allocated higher weights to data near the center of the input

FIGURE 4
Comparison of estimation accuracy improvement. (a–c) show the results for the running dataset, and (d) shows the results for the walking dataset.
The green, blue, and gray boxes represent the One-Entire, One-Quarter, and All-Entire conditions, respectively. The horizontal axis indicates target
muscles. The vertical axis represents the error rate Er. Statistical significance is indicated by *p <0.05, **p <0.01, and ***p <0.001 (Tukey’s multiple
comparisons test).

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Teramae et al. 10.3389/fbioe.2025.1611414

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1611414


sequence when refining the muscle activity. This suggests that the
temporal distortions in the estimations of OpenSim can be
effectively learned and corrected by the attention mechanism.
However, the lack of improvement in the One-Quarter condition
for certain muscles, such as the biceps femoris long head,
underscores the need for longer temporal sequences to capture
the full distortion. The fact that the attention was focused on the
peak shift in the attention weight results suggests that the model
learned as intended, correcting for temporal bias rather than
movement duration.

Figure 7 depicts the spatial attention results for the tibialis
anterior in the All-Entire condition. Each skeleton visualizes the
gait cycle motions at 0%, 50%, and 100%, with the top 10 muscles
having the highest attention weights. At 0% and 100%,
corresponding to the heel strike phase, similar muscle groups
with high attention weights were identified. At 50%, additional
trunk and hip muscles were selected, reflecting a shift in the
coordination required during the swing phase.

The spatial attention revealed that the top 10 muscles with the
highest attention weights for the tibialis anterior, which exhibited
improved accuracy only in the All-Entire condition, varied at 0%,
50%, and 100% of the gait cycle. This variation may be explained by

differences in the active muscle groups during the stance and swing
phases of gait.

In addition, the top 10 muscles with the highest attention
weights included muscles from the trunk, hip, and lower back on
the opposite leg, in addition to the peripheral muscles of the target
muscle. The peripheral muscles may have complemented the
information obtained through muscle synergy during gait.
Regarding the involvement of the hip, pelvis, and trunk muscles
of the opposite leg, previous studies have reported that the trailing
limb angle is related to ankle moments during gait (Hsiao et al.,
2016). This suggests that ankle torque is not solely generated by
muscle activity in the target leg, but also involves coordinated
actions with the trunk and opposite leg. Owing to the significant
number of muscles associated with the hip and trunk, these regions
likely act as a counterweight for ankle movement. The results suggest
that incorporating information from these muscles improved the
accuracy of the muscle activity estimations by accounting for the
broader coordination required during gait.

5 Discussion

We have proposed the NEM2E framework, which corrects the
spatio-temporal distortion between OpenSim estimated and real
muscle activity. Within this framework, a refined model for
estimated muscle activity was trained using Seq2Seq with
attention based on open data, and the improvement in
estimation accuracy for new users was verified.

The temporal attention results shown in Figure 5a indicate that
attention is focused on the 50% gait cycle muscle activity from
OpenSim to estimate the 0%–40% gait cycle muscle activity. This
result suggests that the proposed method refines the approximately
75 ms temporal shift observed in some muscles, as reported by a
previous study (Hamner and Delp, 2013) using the running dataset.
Because the temporal attention results are generalized across
individuals, the results support the previous study’s suggestion
that some muscles exhibit a common time delay.

In this study, we specifically address the persistent issue of
spatio-temporal distortion in OpenSim muscle activity
estimations. Previous studies (Koller et al., 2018; Saul et al., 2005;
Christophy et al., 2012; Arnold et al., 2010) have focused on model
tuning within the OpenSim environment to improve the accuracy of
musculoskeletal simulators. These include tuning body parameters,
aligning joint torque with floor reaction force data, and accounting
for uncertainty in tuning parameters, such as muscle length.
However, our proposed NEM2E framework introduces a novel
external refinement approach. By treating OpenSim outputs as
initial estimates and subsequently correcting their spatio-
temporal properties with a dedicated refinement network, we
provide a complementary solution that enhances the accuracy of
existing musculoskeletal models without modifying OpenSim’s core
parameters. In some cases, the improvement in accuracy could not
be confirmed in certain walk data. One possible explanation is the
increased variation in spatio-temporal distortions due to individual
differences in balance and control strategies during the double
support phase of gait. This variation may have reduced the
generalization performance of the model owing to the limited
dataset. Because the loss in the verification data in Figure 5b

FIGURE 5
Transition of loss over trials (a) is the value of LOSS when learning
the soleus data of the run. The blue line is the loss for the training data,
and the orange line is the LOSS for the validation data. (b) is the result
for the soleus of walking.
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does not decrease, it is necessary to increase the size of the learning
data and verify its effectiveness. Increasing the dataset size could
address this issue and improve the effectiveness of the model.

A limitation of this work is the use of open data for walking and
running as the validation dataset. Therefore, this method can primarily
be applied to discrete motions, and the accuracy of the model for
entirely unknown motions cannot be guaranteed. However, as
generalization to unknown users is allowed, the method can be
widely used in the analysis of movements related to walking and
running, such as walking analysis of the elderly and athletics. The
framework can also be applied to other discrete motions, such as golf
swinging and baseball batting and pitching. However, verification
regarding motions other than walking and running is crucial. In the
future, it is necessary to build a benchmark dataset with a wide range of
motions and large volume of data to validate the proposed framework
and design appropriate refinement models.

The observed improvements in estimation accuracy for new
users, particularly in generalization performance, highlights the
importance of explicitly addressing spatio-temporal distortions.

These findings directly support the hypothesis that spatio-
temporal distortions contribute significantly to errors in
OpenSim’s estimations. Furthermore, the effectiveness of the
Seq2Seq with attention architecture in isolating and correcting
these errors indicates that data-driven models offer a promising
means of enhancing the fidelity of physiologically informed models.
By externally addressing these distortions through a refinement
network, the proposed framework provides a promising approach
for enhancing the accuracy and applicability of musculoskeletal
models. As a refined model in this study, the Seq2Seq with attention
model was used as an example implementation to analyze spatio-
temporal distortions; however, more suitable models may exist for
this design. If a sufficient dataset can be constructed to train and
compare models, the proposed framework could incorporate
methods that more accuratey refine the spatio-temporal
distortions discussed in this study. As a future direction, if a
sufficient dataset can be constructed, research on direct
estimation of muscle activity using neural network methods may
become feasible.

FIGURE 6
Temporal attention results. (I) and (II) show two typical examples of temporal attention. (a) Attention weight matrix, with the color bar indicating the
weight magnitude (red for higher weights and blue for lower weights). The horizontal axis represents the input sample index and the vertical axis shows
the output sample index. (b)Muscle activity, where the horizontal axis is the time and the vertical axis is the muscle activity. The blue lines represent the
estimated muscle activity of OpenSim, the red lines indicate the refined muscle activity, and the black lines show the measured EMG.
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The code to train the public dataset and perform CV between
subjects under the All-Entier condition of this paper is available at
SimTK (https://simtk.org/projects/nem2e).
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