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Growing antlers in deer contain bioactive compounds,most of which are proteins
and peptides with effects on health, such as anticancer and regenerative
properties. However, efficient extraction of these biomolecules while
preserving their integrity remains a challenge. This study aimed to optimize
the extraction of proteins from growing antlers through liquid removal
methods, solvent selection, ratios, temperature, and extraction time.
Lyophilization was identified as the optimal method for preserving protein
integrity, particularly in biologically active regions. Among the tested solvents,
water emerged as the most effective for protein extraction, achieving optimal
results at a 1:10 w/v ratio with 1 hour of magnetic stirring at room temperature,
although remains to be tested the anticancer effect of solvents different to water.
Insulin-like growth factor 1 (IGF-1) was quantified as a key indicator of extraction
efficiency, demonstrating that the optimized protocol effectively preserves this
kind of bioactive protein. This methodology provides a robust framework for the
extraction of proteins from growing antlers, paving theway for future applications
in biomedical research.
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1 Introduction

Growing antlers of deer have been used for over 2,000 years in what is called Traditional
Chinese Medicine (TCM), a trial-and-error medicine used by most Asian cultures and
Russia (Kawtikwar et al., 2010). These bony appendages, which possess the remarkable
ability to regenerate annually, are considered one of the fastest-growing tissues in mammals
and represent an exceptional biological model for studying tissue regeneration. The fast
growth and mineralization is based on protooncogenes, which pose a risk of leading to
cancerous growth, exerts an intensive oxidative stress, and the fast mineralization creates
such a demand of mineral deposition that induces temporary osteoporosis in the male deer
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(Wang and Landete-Castillejos, 2023). These highly peculiar
characteristics explain some of the proven applications to
medicine of the growing antler extract: a wide anticancer activity,
anti-aging, tissue regeneration, and promoting mineralization or
slowing down bone loss in animal models of osteoporosis (Wu et al.,
2013; Cheng et al., 2022; Xia et al., 2022; Wang and Landete-
Castillejos, 2023; Rossetti et al., 2024). Some of the biochemical
molecules present in antlers, such as proteins, growth factors, amino
acids, peptides, and polysaccharides, should be causing one or more
of these effects.

Currently, research focuses on properties related to immune
system strengthening, tissue regeneration or anticancer potential
(Gu et al., 2007; Wu et al., 2013; Li, 2020; Wang and Landete-
Castillejos, 2023; Rossetti et al., 2024). However, one of the most
important challenges is identifying the compounds responsible for
these effects and obtaining them while preserving the integrity of the
biomolecules. This process involves considering various factors that
can affect the properties and effects of the extractedmolecules. These
factors include the heterogeneity in the chemical composition of
antlers depending on their region (tip, middle, and base), the
extraction method employed, and the processing conditions (Gu
et al., 2007; Tseng et al., 2014). Additionally, factors such as solvent
polarity, temperature, and extraction time have a significant impact
on the quantity and quality of the biomolecules obtained (Palma
et al., 2013).

In particular, studies have highlighted that growth factors such
as IGF-1 (insulin-like growth factor 1) and bioactive peptides
present in antlers may be responsible for these beneficial effects.
IGF-1 is a key molecule in cellular signaling that regulates cell
proliferation and differentiation, and its activity has been linked to
regenerative processes and anticancer properties in models both
in vitro and in vivo. Likewise, peptides derived from antlers have
demonstrated antioxidant, anti-inflammatory, and anticancer
capabilities in various preclinical evaluations, indicating their
potential as therapeutic agents (Khan et al., 2025).

According to the literature, the primary candidates for anticancer
effects are peptides or proteins, which is why one of themost commonly
used solvents for extracting such molecules is water, due to its high
polarity (Tang et al., 2019; Zheng et al., 2020; Chonco et al., 2021;
Rossetti et al., 2024). The various protocols derived from an extensive
literature review reveal numerous factors that can influence the
quantity, integrity, and functional characteristics of the biomolecules.
These include water removal processes, solvent polarity, and
temperatures, not to mention all the inherent factors related to the
specific characteristics of the specimen being studied (Ren et al., 2019;
Yao et al., 2019). To date, the main active effectors derived from DVA
(deer velvet antlers) have been described as proteins ranging from 0.5 to
2,000 kDa (Sun et al., 2023). These proteins can perform various
beneficial functions for human health, as they are involved in
chronic and degenerative diseases. For instance, a recent approach
evaluated the efficiency of antler stem cell-derived exosomes,
demonstrating that these nanoscale vehicles contain key proteins
that can modulate the tumor microenvironment and enhance the
efficacy of immunotherapies, such as immune checkpoint inhibitors
(Zhang et al., 2023a; 2023b; Zhou et al., 2024).

Therefore, it is essential to extract as many of these molecules as
possible to maximize their properties, not only to advance the
understanding of their biochemical composition but also to

establish their potential in biomedical applications. The
preservation of biomolecules such as IGF-1 and other growth
factors during the extraction process represents a top priority, as
their integrity is crucial to maintaining their biological functions.

In this study, we present a methodological approach to extract
proteins from growing antlers efficiently. To achieve this, a solvent
gradient and variations in extraction time were employed.
Subsequently, under optimal conditions, IGF-1 concentration was
used as an indicator of the protocol efficiency in preserving and
extracting bioactive proteins of interest, with potential implications
for biomedical applications.

2 Methods

2.1 Materials and equipment

All equipment used is shown in Table 1. Reagents are shown in
Table 2. Solvent characteristics are shown in Table 3.

2.2 Methods

The procedure optimized in this paper has been scheduled in
Figure 1, and explained in the following sections:

2.2.1 Material acquisition
Four antlers of red deer were collected from animals shot for other

purposes (selective hunting to reduce population) in the province of
Ciudad Real (Castilla-La Mancha, Spain) and stored at −80°C. The
antlers were donated by the private game estate “LaMorera,” located in
the municipality of Abenójar, Ciudad Real, Spain, following the culling
of the deer by population control. The slaughter of the hunted animals
was regulated by the Regional Hunting Law of Castilla la Mancha (Law
3/2015, dated 5th of March, of Hunting in Castilla-La Mancha.
Published in Diario Oficial de Castilla-La Mancha 49, 7,039–7,097
(2015) modified by Law 2/2018, dated 15th of March, that modifies the
mentioned law 3/2015. Published, in turn, in Diario Oficial de Castilla-
La Mancha 60, 8,888–8,916 (2018)).

The antlers were in a size and shape compatible with antlers at the
60-day growth stage after casting (the harvesting stage for TCM). This is
based on the expertise in raising experimental deer fromUCLMand the
guidelines of Deer Industry New Zealand for antler harvesting.

2.2.2 Comparison of hot-drying vs. lyophilization
of samples

In order to ascertain the optimal methodology for the removal of
water from the antler sample, a comparison was conducted between
the hot-drying method and lyophilization. Figure 2 represents an
example of the antlers divided into different segments, with each
segment corresponding to a specific branch. The segments were
labelled as follows: base, brow tine, bez tine and beam (Figure 2). The
first branch is the brow tine (right in Figure 2A), located slightly
higher than the base and is usually more curved and closer to the
base. The bez tine is the second segment (middle in Figure 2A). The
final branch is the main beam and curves outward from the top of
the antler. The sections were made with 5 cm cuts, except for the tip,
which was 2.5 cm (violet in Figures 2A–C).
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Antler sections were hot-dried (in a stove brand TQTECH
DIGITHEAT 80L, Barcelona, Spain at 60°C for 14 days), while
the remaining sections were lyophilised in a Sublimator 30 EKS
(ZIRBUS technology GmbH, Bad Grund, Germany) at 0.2 mbar for
46 h (condenser temperature, −45°C). The prepared samples were
then ground using a blade mill at 1,500 rpm and 2 mm pore size
(Retsch SM300, Retsch GmbH, Haan, Germany) and then mixed
with a mixer mill at 30 Hz for 2 min until a grain size of 0.18 mmwas
achieved (Retsch MM400, Retsch GmbH, Haan, Germany).

For the optimization, Tip from Beam antlers were used in each
step, using three to five different deer for the assays.

2.2.3 Solvent and time optimization
After selecting the best method for water removal from the

antler sample while maintaining the integrity of the molecules, the
solvent capable of extracting the highest amount of proteins was
determined. For this, the ground bottom antler was homogenized in
magnetic stirrer with heating plate SBS-MR-1600/6 (Steinberg
Media Technologies GmbH, Hamburg, Germany) at a ratio of 1:

10 (grams/mL) with different solvents: Milli-Q grade water (H2O),
100% ethanol (EtOH), 70% ethanol (EtOH 70%), 40% ethanol
(EtOH 40%), 100% acetone (Acet), 70% acetone (Acet 70%), 40%
acetone (Acet 40%), 100% acetonitrile (ACN), 70% acetonitrile
(ACN 70%), and 40% acetonitrile (ACN 40%). Each condition
with different times corresponding to 5 s in contact to vortex
(T0), 30 min (T1), 1 h (T2), 24 h (T3), and 48 h (T4) at room
temperature and 400 rpm with microplate shaker PMS-1000i
(GRANT bio, Cambridge, United Kingdom), resulting in
50 experimental conditions (n = 4).

2.2.4 Optimization of extraction ratio and
temperature

Once the best protein extraction method was determined, with
the aim of optimizing the best grinding ratio and solvent, the ground
growing deer antler was homogenized at ratios of 1:10, 1:20, and 1:40
(grams/mL). Each condition is homogenized at room temperature.
Finally, it were compare at room temperature and 4°C for 1 h of
extraction, using the best grinding ratio condition.

TABLE 1 Equipment used in the research.

Equipment Model Supplier Country

Lyophilizer BIOBASE BK-FD10PT BIOBASE BIODUSTY Wolfenbüttel, Germany

Hot-drier DIGITHEAT 80L TQTECH Barcelona, Spain

Sublimator 30EKS ZIRBUS Technology GmbH Bad Grund, Germany

Blade mill Retsch SM300 Retsch GmbH Haan, Germany

Mixer mill Retsch MM400 Retsch GmbH Haan, Germany

Magnetic stirrer SBS-MR-1600/6 Steinberg Media Technologies GmbH Hamburg, Germany

Homogenizer POLYTRON PT 2100 Kinematica AG Lucerne, Switzerland

Microplate reader BIOBASE-EL 10th BIOBASE BIODUSTY Wolfenbüttel, Germany

Microplate reader Epoch Biotech Vermont, United States

Vortex ZX3 VELP Scientifica Bohemia, New York, United States

Miliq Dispenser Ultramatic GR Wasserlab Navarra, Spain

Microplate shaker PMS-1000i GRANT bio Cambridge, United Kingdom

GraphPad prism 8.0.1 GraphPad Software Inc. San Diego, CA, United States

TABLE 2 Reagents used in the research.

Reagents Code Supplier Country

Ethanol (EtOH) ETHA-9TP-1K0 Labbox Barcelona, Spain

Acetone (Acet) ACET-0IA-1K0 Labbox Barcelona, Spain

Acetonitrile (ACN) ACTN-0GH-2K5 Labbox Barcelona, Spain

BCA Protein Assay Kit 71285-M MerckMillipore Massachusetts, United States

Coomasie blue G-250 5 mg 1.15444 Sigma Aldrich Burlington, Massachusetts, United States

Orthophosphoric acid 345245 Sigma Aldrich Burlington, Massachusetts, United States

Phosphate-Buffered Saline (PBS) 10X SH30258.01 Cytiva Burlington, Massachusetts, United States

ELISA kit CSB-E12644De Cusabio Wuhan, China
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2.2.5 Double extraction
Once the sample processing parameters and the first

extraction were determined regarding solvent, ratio (sample),
and temperature, a test was conducted to see if performing a
second extraction increases the total protein content. For this,
after completing the first extraction by maceration, a mechanical
homogenization was performed at 500 W, 20,000 rpm with a
speed of 22 m/s for 2 min (POLYTRON PT 2100, Kinematica AG,
Lucerne, Switzerland).

2.2.6 Protein quantification
Protein concentration was determined by BCA Protein Assay

Kit (MerckMillipore, Massachusetts, United States) or by Bradford
method (coomasie blue G-250 5 mg, ethanol 2.5 mL,
orthophosphoric acid 5 mL, make up to 50 mL with distilled water).

For BCA detection, a BSA standard line was used with the points
of 2, 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625 and 0 mg/mL
diluted with Milli-Q water. The samples were diluted at a ratio of 1:
50 in order to fall within the interpolable range of the reference curve
withMilli-Q water. The reaction was thenmeasured at 562 nm using
a microplate reader (BIOBASE-EL 10th, BIOBASE BIODUSTY,
Wolfenbüttel, Germany).

For Bradford detection, a BSA standard line was used with the
points 0.3, 0.2, 0.1, 0.05, and 0 mg/mL. Samples were diluted at a
ratio of 1:200 to fall within the interpolable range of the reference
curve. The reaction was measured at 595 nm using a microplate
reader Epoch (Biotech, Vermont, United States).

2.2.7 Deer IGF protein detection and quantification
With the best parameters obtained from the standardization and

optimization of the method, ELISA was performed for IGF-1. The
detection and quantification of deer insulin-like growth factor (IGF-
1) was carried out from 1 mL of sample resuspended in PBS 1X after
lyophilisation and using the ELISA method with a kit (REF: CSB-
E12644De; Cusabio, Wuhan, China) following the manufacturer’s
recommendations, except for the final incubation step of the
protocol, which was performed for 6–8 min instead of the
recommended 15 min to avoid colour saturation.

2.2.8 Statistical analysis
GraphPad Prism 8.0.1 (GraphPad Software Inc., San Diego, CA,

United States) was used for statistical analysis with one-way
parametric analysis of variance (ANOVA) to compare normally
distributed groups and non-parametric analysis for outliers

FIGURE 1
Procedures to optimize protein extraction from growing antlers of deer. Themethodology is employed to identify an optimized protocol for protein
extraction efficiency. This involves a series of steps, beginning with the removal of liquid, the selection of an appropriate solvent, the determination of the
optimal extraction time, the calculation of the solvent-to-sample ratio, the identification of an appropriate extraction temperature, the estimation of the
number of protein extraction repetitions, and finally, the determination of the time/acceleration ratio for the final centrifugation.
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(Figure 4). Student’s t-test were applied in other figures. The
significant differences are indicated as *** for p < 0.001, ** for
p < 0.01, and * for p < 0.05.

3 Results

3.1 Drying and lyophilization of deer antler

Two treatments were compared to determine the best method
for preserving the sample before pulverization: heat-drying and
lyophilization. Total protein quantification revealed a statistically
significant difference between the two methods (Figure 3A), with a

higher protein concentration in the lyophilized samples
(approximately 500 mg/mL) compared to the heat-dried samples
(approximately 350 mg/mL) (p < 0.01).

In contrast, IGF-1 levels did not differ significantly between the
two treatments (Figure 3B), remaining close to 85–90 ng/mL in both
conditions.

3.2 Optimization of both type of solvent and
extraction time

The efficiency of ten protein extraction solvents (water, ethanol,
acetone, acetonitrile, and their combinations at 40% and 70%) was

FIGURE 2
Antler before removal of liquids. (A) Uncut antler. (B) Antler cut into four different segments by sections of the antler (base, brow, bez and beam). (C)
Dried antler, longitudinally cut sections represented how TIP (violet, 2.5 cm), MID (brown, middle zones of 5 cm), and BASE (rest of the antler, black).
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evaluated under magnetic stirring at three different times (0.5, 1, and
4 h). As shown in Figure 4, the highest protein yield was obtained
with distilled water after 1 h of extraction (Figure 4A), reaching
significantly higher concentrations compared to the other solvents
and times analyzed (p < 0.001).

The extracts obtained with ethanol (Figures 4B, E), acetone
(Figures 4C, F), and acetonitrile (Figures 4D, G) showed no
significant differences between the different times,
remaining relatively constant but at low levels. In particular,
the solvents with the highest concentration of acetonitrile,
acetone, and pure ethanol, showed limited efficiency for
protein extraction.

In contrast, the extracts obtained with a 40% (Figures 4I, J),
although they exhibited a progressive increase over time, did not
reach the yield observed with water. On other hand, Figure 4H
shows a constant protein concentration over time. This is mainly
because longer incubation times do not enhance extraction and
instead promote protein degradation. The results are shown
in Table 4.

3.3 Ratio and temperature optimization

Protein extraction efficiency was evaluated using two
aqueous solvents: distilled water (H2O) and phosphate-buffered
saline (PBS 1X) at different extraction ratios. As shown in
Figure 5, the use of PBS produced a slightly higher protein
concentration (~16 mg/mL) compared to water (~13 mg/mL).
However, this difference was not statistically significant, as the
standard deviations overlapped between the two groups. Along
with these data, it was determined that a 1:10 ratio offered the
best balance between yield and manageability, as lower ratios
produced an overly dense mixture, while higher ratios excessively
diluted the sample.

Finally, a comparison between extraction temperature
conditions: 4°C and room temperature showed no significant

differences in extraction yield. Therefore, a 1-h incubation at
room temperature was selected as the standard condition.

3.4 Single vs. double extraction

To evaluate the impact of a second mechanical extraction, the
results of a single extraction performed with or without a mechanical
homogenizer were compared.

Figure 6A shows that samples extracted without homogenization
had significantly higher total protein concentrations, with values
reaching approximately 60 mg/mL, compared to samples treated
with a homogenizer, which recorded concentrations close to 35 mg/
mL. Figure 6B shows a similar pattern for IGF-1, whose concentration
was also higher in samples extracted without homogenization,
practically doubling the levels obtained with homogenization (~9 ng/
mL vs. ~4 ng/mL, respectively). Applying Cohen’s d, a value of
approximately 4.91 was obtained for total protein measurement,
with a statistical power of around 70.7%. In contrast, for IGF-1
quantification, Cohen’s d was approximately 2.84, with a statistical
power of 35.8%. Given the large observed differences, the data from the
graphs suggest biologically significant differences.

3.5 Concentration of the sample

Finally, to improve the detectability of bioactive proteins in the
deer antler extract, the impact of supernatant concentration and
lyophilization was evaluated. After removing colloidal matter by
centrifugation, adjusting speed and time to optimize sedimentation,
lyophilized and non-lyophilized extracts were compared.

As shown in Figure 7, ELISA quantification revealed that IGF-1
was detectable only in the lyophilized extract, with a concentration
above 50 ng/mL. In contrast, IGF-1 levels were undetectable in the
non-lyophilized extract. This difference was highly significant
(p < 0.001).

FIGURE 3
Liquid removal methods comparison from deer antler velvet. Detection of total proteins (A) and IGF-1 (B) using a first desiccation or freeze-drying
step from the deer antler section. Data are presented as mean ± SEM (n = 3). **P < 0.01.
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4 Discussion

The goal in obtaining these molecules is not only to maximize
their extraction but also to ensure that they retain their activities for

future application and use. Lyophilisation preserves the integrity of
the tissue, particularly the cartilaginous and vascular regions
(Mahirogullari et al., 2007; Li et al., 2024). These areas are
highlighted because they correspond to zones of high biological

FIGURE 4
Solvent and time gradient extraction. Protein extraction using different solvents: water (A), ethanol (B), acetone (C), acetonitrile (D), 70% ethanol (E),
70% acetone (F), 70% acetonitrile (G), 40% ethanol (H), 40% acetone (I), and 40% acetonitrile (J), at various time intervals: zero time (considering how
vortex contact), 30 min, 1 h, 24 h, and 48 h. Data are presented as mean ± SEM (n = 4). Bars or data points not sharing the same letter are significantly
different (p < 0.05) between sterilization methods. significant differences are indicated as *** for p < 0.001, ** for p < 0.01, and * for p < 0.05.
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activity for growth factors and structural proteins (Li et al., 2005; Ba
et al., 2019). Various studies explain that, after hydrating proteins,
water removal thermodynamically affects protein folding
(Matejtschuk, 2007; Kasper and Friess, 2011; Molnar et al., 2021).
Therefore, lyophilization emerges as the best method for water
removal compared to conventional dehydration, as it eliminates
water without subjecting proteins to high temperatures or harsh
conditions that could denature them. This process preserves the
three-dimensional structure and functionality of many
biomolecules; however, not all proteins are equally susceptible.
For instance, insulin-like growth factor 1 (IGF-1) is less labile
and can better tolerate certain water removal processes without
undergoing significant alterations in its structure or function
(Ortega Castillo et al., 2009; Karunnanithy et al., 2024). This
factor was used as a reference for all assays, as it is mainly
present during the antler growth stage, playing a role in cell
proliferation, tissue regeneration, and antler ossification. IGF-1 is
present at low concentrations and yet its signal can still be detected,
which validates, improves the analytical sensitivity, and ensures the
quality of the extraction protocol.

The wide range of molecules present in antlers have different
effects on human health. Extensive reviews show the impact of
extracts obtained through enzymes, fermentation, organic
solvents, and aqueous solvents (Wu et al., 2013; Xia et al.,
2022). TCM use of growing antlers of deer is mostly used with
water extraction (Kawtikwar et al., 2010), although alcohol one is
also used. Other studies have described that these extracts
obtained with aqueous solvents exhibit anti-osteoporosis
activity (Zhang et al., 2013; Tseng et al., 2016; REN et al.,
2019), anti-arthritis activity (Kim et al., 2004; 2005; Cheng
et al., 2022), anti-inflammatory activity (Zhao et al., 2016; Kuo
et al., 2018; Yao et al., 2018; Cheng et al., 2022),
immunomodulatory activity (Yao et al., 2018), antioxidant
activity (Li et al., 2020), antidopaminergic activity (Kim and
Lim, 1999), neuroprotective activity (Kim et al., 1999; 2014; Liu
et al., 2024), and anticancer activity (Tang et al., 2019; Zheng
et al., 2020; Chonco et al., 2021; Rossetti et al., 2024). However,
the various components extracted with other solvents such as
ethanol, acetone, or acetic acid also possess several properties,
among which antioxidant capacity stands out (Xia et al., 2022),

TABLE 3 Solvents characteristics.

Solvent Polarity index Proticity Denaturing level Dielectric constant Viscosity

Water 10.2 Protic Low ~80 0.89 mPa s

Ethanol 5.2 Protic Moderate ~24.3 1.2 mPa s

70° ethanol 7.2 Protic Moderate ~55 ~1.3 mPa s

40° ethanol 8.2 Protic Moderate ~65–70 ~1.5 mPa s

Acetone 5.1 Aprotic High 20.7 0.32 mPa s

70° acetone 7 Aprotic High ~55 ~0.6 mPa s

40° acetone 8 Aprotic High ~65–70 ~0.8 mPa s

Acetonitrile 5.8 Aprotic Low 37.5 0.34 mPa s

70°Acetonitrile 7 Aprotic Low ~55 ~0.5 mPa s

40°Acetonitrile 8 Aprotic Low ~65–70 ~0.6 mPa s

TABLE 4 Optimal extraction in relation solvent/time.

Solvent Optimal time (h) Max extraction (mg/g) Error (±mg/g)

H2O 1 164.3 31.8

Et OH 1 3.0 1.3

Acet 24 2.7 1.1

ACN 24 0.4 0.1

EtOH 70% 0.5 4.6 1.6

Acet 70% 48 2.7 0.4

ACN 70% 48 4.0 0.8

EtOH 40% 1 26.6 2.9

Acet 40% 1 29.0 4.7

ACN 40% 1 34.0 9.1
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but also anticancer ones (Yang et al., 2017; Yao et al., 2018). The
differences between extracts are due to the characteristics of the
solvents. Table 1 adequately explains the low protein extraction
yield of ethanol and acetone. Both solvents have high levels of
protein denaturation due to dehydration. As their concentration
decreases, they are better able to capture proteins. On the other
hand, acetonitrile has a low denaturing effect; however, it lacks
the ability to donate hydrogen for bond formation and
molecule capture.

Water was selected as the best solvent, not only because it
extracts the majority of the protein population and has shown
positive results in previous studies, but also because the clinical
applications or biomedical applications of ethanol, acetone, and
acetonitrile have not been detailed in literature.

Although PBS was more efficient in protein extraction than
water (without significant differences; Figure 5), it was decided to
standardise the extraction with water to avoid the concentration of
salts in a subsequent lyophilisation step. The main difference we can
find between extraction with water and a buffer is that a low salt
concentration increases the solubility of proteins. Conversely, if the
salt concentration is high, the proteins will precipitate (Hassan,
2005). If we consider a scaling of the process, water solvent allows a
greater productivity at industrial level to generate extracts without
needing a final step of dialysis or concentration of protein. Authors
have shown that a 1:10 ratio maintains adequate mass transfer and
dissolution without promoting thermal degradation in processes
involving heat and optimizes the efficiency of compound extraction
(Wang et al., 2018; Zhang et al., 2018; Crăciun and Gutt, 2023;

FIGURE 5
Ratio, temperature, and water/PBS extraction comparison. (A) Ratio comparison between 1:10, 1:20, and 1:40 weight: volume. (B) Total proteins of
temperature comparison between room temperature and 4°C. (C) Detection of total proteins using H2O and PBS (0.1 M) as solvent of choice. Data are
presented as mean ± SEM (n = 3). The significant differences are indicated as **p < 0.01, *p < 0.05.

FIGURE 6
Comparison of protein extraction using or not using a homogenizer. Comparison of double extraction using maceration and a homogenizer
(polytron) with using a single maceration step. (A) is comparison respect at total protein, and (B) is the comparison of IGF-1. Data are presented asmean ±
SEM (n = 2).
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Popova and Bankova, 2023). On the other hand, after testing two
temperatures at different time intervals, no significant differences
were detected when comparing extraction at room temperature and
at 4°C. Considering that homogenization at room temperature

improves the solubility of molecules and increases the extraction
rate, and that extraction at 4°C preserves temperature-sensitive
molecules, both approaches have their respective advantages
(Chemat et al., 2020; Huber et al., 2021; Shi et al., 2022).

In other hand, a second extraction was performed to improve
extraction efficiency. According to several studies, repeating the
process or using a second solvent has shown significant
improvements in the final yield (Luo et al., 2017; Villaret-
Cazadamont et al., 2020). In general, double extraction allows for
maximizing compound recovery and increases the purity of the
extract if the solvents used are changed (Martínez-Maqueda et al.,
2013; Yang et al., 2021). Without homogenization, an increase in the
amount of total protein is observed (up to 66% more), and twice the
amount of IGF-1 is extracted. However, this does not mean that
these data are absolute, as cellular content, favoured by the use of the
homogenizer, may cause interference in detections, which would
confirm the increase in extract purity for certain types of proteins.

Finally, the results obtained demonstrate the need for a sample
concentration step for the correct detection of biomolecules in the
extract. Although the centrifugation process eliminated solid
impurities and colloidal components, some soluble molecules,
especially those present at low concentrations, remain below the
detection limit if a concentration procedure is not applied.

Lyophilization proved to be an effective strategy for increasing
the detection sensitivity of specific proteins such as IGF-1. This
result is consistent with previous studies indicating that many
growth factors or bioactive peptides are present in trace amounts
in complex biological matrices and require prior concentration for
quantitative analysis using immunoenzymatic techniques such
as ELISA.

In addition to its ability to concentrate the analyte,
lyophilization offers the advantage of preserving the structural

FIGURE 7
Final lyophilization process comparison. IGF-1 detection after
protein extraction using a final freeze-drying step or not to
concentrate the sample. Data are presented as mean ± SEM (n = 5).
*** P < 0.001.

FIGURE 8
Final protocol for the protein extraction for deer velvet antler. RT, room temperature.
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stability of heat-sensitive proteins, maintaining their biological
activity intact. Therefore, this final procedure was incorporated
as a standard step in the preparation of the protein extract,
ensuring the recovery and detection of functionally relevant
components.

All these results do not mean that water is the only solvent
able to extract biomolecules with biomedicine applications
(i.e., there may be other molecules with medical applications
not soluble in water). However, water is the solvent with the
greatest capacity to extract protein (and most molecules with
medical applications are likely to be proteins). It is important to
assess if extracts with solvents different to water also have
biomedical application, even if water is already showing many
of these.

In conclusion, the optimal conditions for extracting bioactive
compounds from growing antlers, focusing primarily on protein
content, involve obtaining the antlers, freezing them at −80°C for
lyophilisation, and cutting them into 2.5–5 cm thick sections.
Subsequently, milling the material and performing molecular
extraction in a 1:10 w/v ratio with sterile Milli-Q water for 1 h at
room temperature. Finally, the optimal method involves centrifuge
at 6,500 × g for 20 min at 4°C, and lyophilize the supernatant to
concentrate the biomolecules, resuspending them in 1X PBS (NaCl
27 g/L; KCl 0.2 g/L; Na2HPO4 1.15 g/L; KH2PO4 0.2 g/L, adjust
pH to 7.4). Figure 8 represents the final protocol for protein
extraction for DVA.
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