AUTHOR=Chan Zhi Xian , Chelvam Shruthi Pandi , Sin Wei-Xiang , Teo Denise Bei Lin , Abdul Rahim Ahmad Amirul Bin , Wu Ying Ying , Liu Dan , Birnbaum Michael E. , Yong Derrick , Ram Rajeev J. TITLE=Automated, aseptic sampling with small-volume capacity from microbioreactors for cell therapy process analysis JOURNAL=Frontiers in Bioengineering and Biotechnology VOLUME=Volume 13 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2025.1612648 DOI=10.3389/fbioe.2025.1612648 ISSN=2296-4185 ABSTRACT=Current workflows in autologous cell therapy manufacturing are reliant on manual processes that are difficult to scale out to meet patient demands. High throughput bioreactor systems that enable multiple cultures to occur in parallel can address this need, but require good bioprocess monitoring workflows to produce good quality cell therapy products. Commercial sampling systems have thus been developed for better feedback control and monitoring capabilities. However, they are targeted towards large scale processes and often bioreactor specific, making them less robust for integration across different bioreactor scales and types, such as perfusion-capable microbioreactors which allows for greater process intensification. Here, an automated cell culture sampling system (Auto-CeSS) was developed to eliminate laborious manual sampling while minimizing sterility risks for cell therapy manufacturing processes. The system is aseptically integrated with a variety of bioreactors of different working volumes. This system can accurately and aseptically sample a minimum volume of 30 μL and can consistently perform periodic sampling of supernatant over a minimum interval of 15 min. We integrated Auto-CeSS with a 2 mL perfusion microbioreactor and a 8 mL gas-permeable well-plate for T cell culture, collecting 200 μL of supernatant samples daily for metabolite analysis. Comparison of the metabolic profiles of the samples collected via Auto-CeSS versus manual sampling revealed insignificant differences in metabolite levels, including glucose, lactate, glutamine, and glutamate. This report demonstrates the potential of Auto-CeSS as an at-line sampling platform in a real-time T cell production run to facilitate in-process culture monitoring.