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Orbit fractures under 20 years are a medical emergency requiring urgent surgery
with the gold standardmodality being high-resolution CT. If radiography could be
used to identify patients without fractures, the number of unnecessary CT scans
could be reduced. The purpose of this study was to develop and validate a deep
learning-basedmulti-input model with a novel cross-sequence learningmethod,
which outperforms the conventional single-input models, to detect orbital
fractures on radiographs of young patients. Development datasets for this
retrospective study were acquired from two hospitals (n = 904 and n = 910).
The datasets included patients with facial trauma who underwent orbital rim view
and CT. The development dataset was split into training, tuning, and internal test
sets in 7:1:2 ratios. A radiology resident, pediatric radiologist, and ophthalmic
surgeon participated in a two-session observer study examining an internal test
set, with or without model assistance. The area under the receiver operating
characteristic curve (AUROC), sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and 95% confidence intervals (CIs) were
obtained. Our proposed model detected orbital fractures with an AUROC of
0.802. The sensitivity, specificity, PPV, and NPV of the model achieved 65.8, 86.5,
70.9, and 83.5%, respectively. With model assistance, all values for orbital fracture
detection improved for the ophthalmic surgeon, with a statistically significant
difference in specificity (P < 0.001). For the radiology resident, specificity
exhibited significant improvement with model assistance (P < 0.001). Our
proposed model was able to identify orbital fractures on radiographs,
reducing unnecessary CT scans and radiation exposure.
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1 Introduction

Orbital fractures typically occur due to blunt force trauma, with the
relatively thin structures of the orbital floor and medial wall making
them more prone to fracture (Gerber et al., 2013). In young pediatric
patients, the presence of relatively greater bone elasticity may be
associated with “trapdoor” fractures; in these cases, in which the
extraocular muscles become entrapped, urgent surgery to prevent
permanent muscle damage is required (Joseph and Glavas, 2011).
The gold standard modality to detect orbital fractures is thin-sliced
high-resolution computed tomography (CT), which provides detailed
images of the facial bones (Caranci et al., 2012). Although frequently
used to detect orbital fractures, orbital radiographs present a relatively
high false–negative rate, ranging (9–28) % (Iinuma et al., 1993).

Deep learning through artificial intelligence (AI) is rapidly
advancing, and the medical field is no exception. Deep learning-based
fracture detections in various locations, including the shoulder (Uysal
et al., 2021), scaphoid (Ozkaya et al., 2022), ribs (Zhou et al., 2020), spine
(Murata et al., 2020), and hip joint (Cheng et al., 2019), can achieve high
accuracy, with sensitivity and specificity both reaching 91%. Advances in
imagery analysis have demonstrated that computer models can assist,
and even outperform humans in detecting features of radiographs (Soffer
et al., 2019). These models use deep convolutional neural networks
(DCNNs), which enable computers to learn features and data patterns
that are not readily visible to the human eye. DCNN applications are
increasingly used for disease detection and segmentation in medical
image analysis. Building on these advances, the development of
transformer architectures has further expanded the capabilities of
medical image analysis. In particular, Vision Transformers (ViTs)
have emerged as powerful alternatives to traditional DCNNs by
processing image patches and capturing long-range dependencies
through self-attention mechanisms (Dosovitskiy et al., 2020).

Recently, multi-input learning for medical images has gained
increased interest. Multi-input models are designed to simultaneously
analyze different data formats, such as different imaging modalities or
resolutions. However, due to cost and/or time constraints, the
simultaneous acquiring of different types of data is not always
feasible. To address these limitations, some studies have focused
on improving the performance of individual image data using
cropping techniques. A two-stage network approach has been
proposed (Park et al., 2019; Cho et al., 2021), in which the model
first learns from small random patches of the original input images,
and then performs transfer learning with whole images. However, this
method requires two separate steps, and considerable training time.

This study assumed that DCNNsour multi-input ViT architecture
combined with a novel cross-sequence learning technique could assist
physicians in identifying orbital fractures and improve patient outcomes.
Therefore, we developed and validated a straightforward deep learning-
based multi-input model with cross-sequence learning to detect orbital
fractures in the plain radiographs of patients under 20 years.

2 Materials and methods

2.1 Dataset

This retrospective study was approved by the Institutional
Review Boards of Korea University Anam Hospital (IRB no.

2022AN0214) and Korea University Ansan Hospital (IRB no.
2022AS0130), and the requirement for informed consent
was waived.

Orbit radiographs in DICOM format were collected from
hospital #1 (January 2012 − January 2022), and from hospital #2
(January 2015 − May 2022). The inclusion criteria for the
institution’s computerized medical databases were: 1) patients
younger than 20 years who had facial trauma and presented to
the emergency department, and 2) patients who underwent an
orbital rim view and concurrent facial bone or orbit CT. Orbital
rim view is an AP view of the orbit where the orbital rim aligned
horizontal to the detector and the central ray enters the head at a
10–15°. CT images were obtained with various CT scanners at two
institutions (hospital #1: Somatom Definition AS and Somatom
Definition Flash, Siemens Healthcare, Forchheim, Germany, or
Brilliance 64, Philips Healthcare, Amsterdam, Netherlands and
hospital #2: Aquilion ONE, Toshiba, Minato, Japan or
Revolution, GE Healthcare, Chicago, IL, USA). The most
frequently used scanning parameters were as follows: tube
voltage, 120 kVp; effective tube current, 250 mAs; section
thickness, 2 mm; pitch, 0.8; rotation time, 1.0 s; and collimation,
128 × 0.6 mm.Patients with postoperative state for orbital fracture
were excluded. The reference standard for orbital fracture diagnosis
is facial bone or orbit CT. Two radiologists (S.O. and G.C., with
9 and 7 years experience, respectively, of pediatric imaging
interpretation) were blinded to the clinical information, and
reviewed the CT scans independently. They evaluated the
presence of orbital fractures, and recorded their locations. The
locations were classified as superior, medial, lateral, floor, or
multiple. The reviewers resolved any disagreements by consensus.
The development dataset was randomly split into training, tuning,
and internal test sets in approximate ratios of 7:1:2 at the patient
level, in a stratified manner based on the labels. Additionally, we
employed stratified 10-fold cross validation. To improve training
quality and balance, patients without orbital fractures were
randomly selected for the training and tuning sets. Figure 1
presents the details of the data set.

2.2 Classification model

This study proposes a new learning technique termed cross-
sequence learning for multi-input image classification models. The
approach involves two parallel ViTs without specially designed
feature fusion encoders, except for one concatenation layer. A
cropped image based on the region of interest (ROI) was
generated for each image. Each cropped image was generated by
manually isolating only the head region based on the ROI and the
orbital area, excluding the neck and any background elements. Since
the cropping process only excludes regions irrelevant to diagnosis,
the label of each cropped image remains consistent with its
corresponding original image. Input image diversity was
increased by matching different input types based on their lowest
cosine similarity. To compare the performance of multi-input
models with cross-sequence learning, single- and multi-input
models without cross-sequence learning were designed, respectively.

Multi-input image classification models with cross-
sequence learning use two images for each input: the
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original, and the cropped image based on the ROI (Figure 2). In
a multi-input model with two ViTs in parallel, the first ViT
processes the original image, while the second ViT processes the
cropped image as the input. The features extracted from both
ViTs are concatenated, and passed through the fully connected
layers for binary classification. Cross-sequence learning

consists of two steps (Figures 3, 4): Step 1 determines the
pair of images by selecting the index of the cropped image
having the lowest cosine similarity with each original image. In
this step, we ensure that the matched images share the same
given label to prevent mixing data from different classes during
training, which may cause label confusion. It is also noteworthy

FIGURE 1
Overview of datasets used in this study.

FIGURE 2
A multi-input image classification model generating two images for each input image: The original image and a cropped image based on the ROI.
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that we calculated the cosine similarity based on the raw pixel
values of each image. In step 2) prohibits the selected cropped
images from being chosen again to increase input diversity. The
matched original and cropped images were then combined and
used as inputs for the multi-input classification model. Both the
ViTs processed the original and the ROI-cropped images. The

extracted features were concatenated sequentially for the final
classification. Cross-sequence learning was not necessary for
the validation and testing processes. The original and ROI-
cropped images with the same indices were used as inputs for
the multi-input model. More algorithmic details can be found in
the Appendix.

FIGURE 3
System overview ofmulti-inputmodels with cross-sequence learning for orbital fracture detection. The dotted line indicates cases that could not be
matched due to having the highest values, while the solid line represents cases that werematched because they had the lowest values. After the similarity
matching process, the paired images are used as input to the model. Training is then conducted using the Vision Transformer for original images and the
Vision Transformer for ROI-cropped images, respectively.

FIGURE 4
Algorithmic pipeline of cross-sequence learning.
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2.3 Clinical validation

Clinical validation was performed using internal validation
test. Three readers participated in a two-session review of the
orbital rim view: a pediatric radiologist with 9 years of experience
(reader 1), an ophthalmic surgeon with 9 years of experience
(reader 2), and a radiology resident with 2 years of experience
(reader 3). Anonymized original DICOM files (excluding age and
sex) were provided. Readers were informed that the study
included young patients with facial trauma. Radiographs only
were obtained in the first session. The second session was held
1 month after the first session. Readers were provided with model
assistance, and the review order of the patients was altered. High-
probability areas were highlighted as the most likely fracture sites
in the original image. In both sessions, the readers recorded the
final reading of each patient’s orbital fracture (with or without AI
results) on a five-point scale (1 = definitely normal; 2 = probably
normal; 3 = indeterminate; 4 = probable fracture; 5 =
definite fracture).

2.4 Statistical analysis

Fracture detection accuracy was evaluated using the area
under the receiver operating characteristic curve (AUROC),
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV). Optimal cutoff values for
sensitivity and specificity were assessed using the Youden
index (Youden, 1950), which is the point on the ROC that
maximizes both sensitivity and specificity.

For human readers, AUROC values were obtained using five-
point diagnostic confidence levels, and then dichotomized into
normal (scores (1–3)) and fractured (scores 4 and 5) for binary
diagnosis. Sensitivity, specificity, PPV, and NPV were obtained from
the confusion matrices. The DeLong method (DeLong et al., 1988)
was used to compare individual AUROC values, and McNemar’s
test was used to compare the sensitivity and specificity values. A P
value of less than 0.05 was considered statistically significant.
MedCalc version 22.007 (MedCalc Software BVBA) was used for
all statistical analyses.

3 Results

3.1 Patients

This study included 172 patients with orbital fracture, and
732 without, from Hospital #1; and 158 with, and 752 without,
from Hospital #2. Of the 1,814 included radiographs (330 [18%]
with orbital fracture, and 1,484 [82%] without), the most common
site of orbital fractures was the orbital floor (35%, 116/330), followed
by multiple fractures (32%, 104/330), and medial wall fractures
(28%, 91/330). A total of 206 patients (62%) underwent surgery for
orbital fracture repair, with a median interval of 4 days (interquartile
range, 2–7 days) between diagnosis and surgery. The most common
surgical site was multiple orbital walls (40%, 82/206), with 70% (81/
116) of the patients undergoing surgery for orbital floor
fractures (Table 1).

3.2 Standalone performance of the deep
learning model

The single-input model created with ViT achieved an AUROC
of 0.670 and a specificity of 0.871 (Table 2; Figure 5), and a low
sensitivity (0.387), with PPV of 0.600 and an NPV of 0.740. The
multi-input model without cross-sequence learning showed
improved sensitivity (0.580) and AUROC (0.800), with slightly
improved PPV and NPV (0.666 and 0.803, respectively).

Multi-input image classification models using cross-sequence
learning matched the original images with the cropped images of
other patients to increase learning diversity. By setting the number
of epochs to 400, all values exhibited slight improvement (AUROC,
0.802; sensitivity, 0.658; specificity, 0.865; PPV, 0.709; NPV, 0.835).
Figure 6 presents the representative true–positive and true–negative
cases from the internal test set.

3.3 Observer performance with and without
deep learning model assistance

Table 3 and Figure 7 show the diagnostic performance of human
readers in the internal test set with, and without, model assistance. In
the first session, reader AUROCs ranged (0.611–0.676). The
sensitivity and specificity of the observers ranged (38.7–64.5) %,
and (63.6–80.9) %, respectively. The range of PPV of the readers was
relatively low at (28.6–38.2) %, compared to that of NPV
at (80.8–86.4) %.

In the second session with model assistance, some performance
parameters improved for some readers. All readers exhibited higher
specificities (improvements of (9.1–16.4) %), with statistical
significance for two readers (P < 0.001 for reader 2, and P <
0.001 for reader 3). Compared to the first session, all readers
showed AUROC improvements (reader 1: 0.075; 95% confidence
interval [CI], (−0.073–0.222); P = 0.323; reader 2: 0.089; 95% CI,
(−0.061–0.240); P = 0.245; reader 3: 0.025; 95% CI, (−0.038–0.088);
P = 0.432), without statistical significance. Readers 1 and 2 yielded
significant improvements in PPV at (11.8 and 23.4) %, respectively,
whereas reader 3 exhibited minimal improvement in PPV (1.5%).

4 Discussion

This study developed and validated deep learning-based models
to differentiate normal and fractured orbits on plain radiographs.
With an AUROC of 0.802, the results of our multi-input model with
cross-sequence learning suggest that deep learning methods, such as
those analyzing orbital fractures, can detect bone fractures that are
difficult for human readers to evaluate. This study also
demonstrated the feasibility and clinical validity of a deep
learning algorithm to diagnose orbital fractures on plain
radiographs. Several recent studies have applied convolutional
neural network training models to detect different types of
fractures in radiographs (Yang et al., 2020; Gan et al., 2019).
Their performance in long bone or limb joint fractures achieved
excellent accuracy of approximately 90% (Lindsey et al., 2018;
Chung et al., 2018; Pelka et al., 2018; Kuo et al., 2022). Few
studies have investigated the pediatric population (Choi et al.,
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2020; Hayashi et al., 2022; Zech et al., 2023), and only one study
involved fractures other than those in the long bones (Choi et al.,
2022). To the best of our knowledge, this is the first study to develop
a deep neural network model to detect orbital fractures on plain
radiographs in a population under 20 years. Li et al. reported an
AUROC of 0.958 to detect orbital fractures using orbital CT scans in
an adult population (Li et al., 2020).

Orbital fractures have various presentations and clinical
severities. The anatomical complexity of the orbital and
intraorbital structures also creates confusion (Caranci et al.,
2012). Radiography has a sensitivity of (64–78) % for fractures.
Currently, radiographic examination of the orbits is rarely
performed (Iinuma et al., 1994). CT is considered the imaging
modality of choice to evaluate orbital trauma (Kubal, 2008).
Three-dimensional reformation is a useful tool for guide
treatment (Rhea et al., 1999), though it requires prolonged
hospitalization and radiation exposure. Pediatric orbital fractures
differ from those in adults, with diplopia, muscle entrapment, and
trapdoor configuration fractures being more common in children
(Lane et al., 2007). Urgent surgery is indicated to prevent soft tissue
scarring and its long-term sequelae (Bansagi and Meyer, 2000). Our
study demonstrated a short interval between orbital fracture
diagnosis and surgery in clinical practice. Additionally, orbital
fractures were present in only 18% of the patients who
underwent CT at our institutions, suggesting unnecessary
radiation exposure. If radiography could be used to identify

TABLE 1 Baseline clinical characteristics of the patients with orbital
fractures.

Characteristic Value

Sex

Male 291 (88)

Female 39 (12)

Age at orbital fracture diagnosis, yearsa 16.1 ± 4.1

Fracture site

Floor 116 (35)

Medial 91 (28)

Superior 16 (5)

Lateral 3 (1)

Multiple 104 (32)

Surgery 206 (62)

Floorb 81 (70)

Medialb 39 (43)

Superiorb 3 (19)

Lateralb 1 (33)

Multipleb 82 (79)

Interval between orbital fracture diagnosis and surgery, daysc 4 (2–7)

Unless otherwise indicated, data are numbers of patients with percentages in parentheses.
aData are presented as means ± standard deviation.
bPercentages of patients who underwent surgery within the fracture site are indicated in

parentheses.
cData are presented as medians with interquartile ranges in parentheses.

TABLE 2 Model performance to detect orbital fractures according to input and cross-sequence learning.

AUROC Sensitivity Specificity PPV NPV F1-score

Single-input model 0.670 0.387 0.871 0.600 0.740 0.471

Multi-input model

Without cross-sequence learning 0.800 0.580 0.855 0.666 0.803 0.620

With cross-sequence learning 0.802 0.658 0.865 0.709 0.835 0.683

AUROC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.

FIGURE 5
ConfusionMatrices for the Three Settings: single-input, multi-input without/with cross-sequence learning. It is noteworthy that we have conducted
stratified 10-fold cross validation.
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patients without fractures, the number of unnecessary CT scans and
radiation could be reduced.

Deep learning-based models can learn features and data patterns
that are invisible to the human eye. Training deep learning-based
models for medical image analysis requires access to substantial,
high-quality, and well-annotated datasets. A multi-input approach
was proposed to improve the quality of the dataset. This approach
can be applied to various tasks that include image classification,
segmentation, and restoration (Duarte et al., 2018; Chen et al., 2022;
Yang et al., 2022). For example, a multi-modal fusion method (Chen
et al., 2022) combines the analysis of images, graphs, and genomic
data, whereas a multi-resolution fusion model (Yang et al., 2022)
examines the same object from various perspectives. However, due
to cost and/or time constraints, most multi-input models that
simultaneously obtain different types of data are infeasible.
Furthermore, most multi-input models typically involve
specialized preceding architectures for feature fusion. Previous
studies (Duarte et al., 2018; Chen et al., 2022) introduced
Siamese networks and Kronecker products for multi-input image
analysis. However, when compared to single models, these models
tend to be more complex. Other studies have proposed a two-stage
network approach (Park et al., 2019; Cho et al., 2021), in which the
model first learns from small random patches of the original input
images, and then performs transfer learning with whole images.
Nevertheless, this method requires two separate steps and
considerable training time, as sufficient patches are required to
achieve a meaningful performance.

This study developed a multi-input ViT architecture with a
similarity-matching mechanism to identify the original and ROI-
cropped images with the lowest cosine similarity for multi-input
image classification. Our experiments validate the effectiveness of
the proposed framework using two different datasets. We also
considered that similarity matching could reduce unintended
errors, and provide important information regarding ROIs. This
matching can quantitatively and qualitatively enhance the
performance of multi-input models. Future work will incorporate
graph neural networks to create a trainable similarity function rather
than a cosine similarity function, and use multiple parallel
architectures to generate cropped images of various sizes from
the original images.

This study has limitations. Our models were trained on large
datasets from two academic institutions. Hence, to improve the
accuracy and generalization of models, further assessment of large
datasets from other centers is required. Despite balancing the
training and tuning sets, our model exhibited a relatively low
sensitivity, possibly due to the small number of orbital fractures
included in the study. However, the improved sensitivity of multi-
input models with cross-sequence learning indicates that our
proposed models can detect non-visible fractures. Although the
sensitivity of our model is relatively low, it remains comparable to
that of expert clinicians. We anticipate that, in emergency settings,
our model could still provide more reliable results than those
obtained by individuals who are less experienced in interpreting
orbital radiographs. Finally, as not all patients with facial trauma
undergo both orbital radiography and CT, indication bias is another
potential limitation, considering that the patients included in the
training set had a high likelihood of orbit fractures and
underwent CT.T
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In this study, our multi-input ViTs with cross-sequence learning
method were developed to identify orbital fractures using
radiography. Sensitivity and specificity at encouraging levels were
achieved, suggesting that the models can detect bone fractures that
are difficult for human readers to evaluate. This study also
determined that the multi-input models with cross-sequence
learning could improve the detection of fractures that are not
readily visible to physicians. This enhanced diagnostic capacity

can help solve medical problems with high monetary or quality-
of-life costs, and improve fracture care.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

FIGURE 7
AUROC curves of human readers diagnosing orbital fracture on the internal test set. Dashed and solid lines indicate the first session without model
assistance and the second session with model assistance, respectively.

FIGURE 6
Localizing fracture sites using gradient-weighted class activation mapping. (A) Representative true-positive case of a 10-year-old boy with orbital
fracture. Right medial wall fracture of the orbit was correctly localized by themodel (black box). (B) Representative true-negative case of a 3-year-old girl
without an orbital fracture. This model does not identify any fractures; therefore, no bounding box is offered.
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Appendix

Configuration of Vision Transformer (ViT): We use the pre-
trained ViT-L/32 as our backbone network, which is a large variant
of Vision Transformer with a patch size of 32 × 32 with an
embedding dimension of 1,024, 24 transformer layers, and
16 attention heads. The model is further fine-tuned on our
custom dataset, and two parallel ViTs are trained independently.

Feature Representations: We extract the full sequence of patch
token embeddings from the final transformer layer of ViT-L/32,
excluding the CLS token. Especially, we extract features from the last
normalization layer of ViT, before the final attention block. An input
resolution of 384 × 384 results in 12 × 12 patches, each with a 1024-
dimensional embedding. This eventually yields a total feature shape
of 144 × 1024 per image. Instead of relying on the CLS token, we use
the full set of patch embeddings to retrain richer spatial features for
downstream classification tasks.

Concatenating two outputs of ViTs: We concatenate the outputs
along the patch dimension, resulting in a combined shape of
288 × 1024. This is then flattened to a 1D vector before being
passed to the fully connected layers.

Final Classifier Architecture, Final Classifier Architecture: The
concatenated feature vector is fed into a fully connected (FC)
classifier with the following architecture.

(1) FC Layer (R294912 →R1000), followed by Batch Normalization,
Dropout with a ratio of 0.3, and ReLU

(2) FC Layer (R1000 → R100), followed by Batch Normalization,
Dropout with a ratio of 0.3, and ReLU

(3) FC Layer (R100 → R1), followed by Sigmoid activation for
binary classification

Training details: The goal of our experiments is to reduce the
binary cross entropy loss, using a batch size of 64 and an initial
learning rate of 0.001. We use the Adam optimizer and apply
learning rate decay via a LambdaLR scheduler, which multiplies
the learning rate by 0.95 after every epoch. The training is conducted
for 100 epochs. All experiments are performed on a GPU server
running Ubuntu 20.04 with CUDA 11.2 and three 24 GB Titan RTX
graphics cards. All models are implemented using PyTorch 1.8.0.

Data Preprocessing: For all images, including cropped ones, we
apply standard scaling and then resize images to 384 × 384 using the
Lanczos interpolation over 8 × 8 neighborhoods.

Algorithmic Details of Cosine Similarity-based Matching:
The entire pipeline is illustrated in Figure 4, along with the
algorithm and corresponding graphics.
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