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Introduction: The plant suspension cell culture Bright Yellow-2 (BY-2) can be an
economic platform for producing complex biopharmaceuticals like cytokines
and antibodies at small- and medium-scale because of potentially reduced
cultivation and purification costs compared to mammalian cells. This is
especially relevant for rare diseases. However, the productivity is currently low
in terms of biomass formation in a typical batch fermentation. A potential reason
might be that the standard BY-2 cultivationmedium, as it is used under laboratory
shake-flask cultivation conditions, has not yet been comprehensively optimized
and tested in industrial bioreactor settings, addressing all four macronutrients
relevant for biomass formation (i.e., sucrose, ammonium, nitrate, and phosphate)
in parallel. In this article, we therefore propose a multi-variate, multi-objective,
and batch-wise Bayesian experimental design (BED) approach for optimally
parameterizing macronutrient supply in the cultivation medium, promoting
the fresh mass (FM) increase (i.e., growth rate) and final FM (i.e., biomass).
Methods: We performed a sequential and adaptive experimentation utilizing the
BED to optimize the cultivation medium in four iterations with four different
media each and confirmed the results in two additional experimentation rounds.
Results:Our results show that while nitrate and phosphate can be used to adjust
the growth rate (i.e., reaching up to 40 g/L × d FM), it is possible to reduce sucrose
and ammonium without impacting the growth rate and only affecting the final
biomass yield (i.e., reaching up to 300 g/L FM). Thereby, we improved the overall
productivity of biomass formation (i.e., as a ratio between nutrient and FM input
and FM output) for this batch fermentation process by 36%.
Discussion: The results demonstrate the advantages of BED to generate new
medium compositions (i.e., macronutrient concentrations) by unbiasedly varying
the design space. Thereby, the discovery of new process insights (i.e., impact of
individual macronutrient concentrations on the growth rate and biomass
formation) is facilitated. Moreover, we show that our data-efficient and black-
box BED approach represents a promising alternative to traditional design of
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experiments (DoE) and mechanistic white-box modeling. Established for the plant
suspension cell line BY-2, our BED approach might also apply to yeast and
mammalian cells.

KEYWORDS

biopharmaceuticals, upstream production, batch fermentation, process optimization,
Bayesian optimization

1 Introduction

The growing prosperity and aging society worldwide have led to a
constant rise of non-communicable civilization diseases such as diabetes
(affecting 30% of the world population), cancer (affecting 1% of the
world population), and numerous rare diseases (affecting in total up to
6% of the world population, whereby each individual disease accounts
for less than 0.001%). These diseases cannot be efficiently treated with
synthetic drugs (small-molecules). Accordingly, there is an increasing
demand for recombinant complex biopharmaceuticals like growth
factors, metabolic enzymes, and antibodies (biologics) (World
Health Organization, 2024). These biopharmaceuticals are
predominantly produced in mammalian cell cultures like human
embryonic kidney (HEK) or Chinese hamster ovary (CHO).
However, due to the high risk of contamination with human viruses
(requiring absolute sterility during production and sophisticated
purification processing), mammalian cells are only economic at
large-scale (e.g., 2,000-L to 20,000-L bioreactors producing kg
amounts) but not at small- or medium-scale (e.g., 5-L to 500-L
bioreactors providing g amounts), which is why production costs
can exceed 150,000 €/g of biopharmaceutical for rare diseases
(Kelley, 2009; Hernandez et al., 2018; Puetz and Wurm, 2019;
Walsh and Walsh, 2022). In these cases, plant cell cultures (PCCs)
might be a vegan alternative (free of any animal components) because
human pathogens do not replicate in plant cells, enabling simplified
production and purification processes and making this production
platform also economic at small- and mid-scale, potentially
lowering the costs to 10,000 €/g (Nausch et al., 2023b). For these
reasons, a glucocerebrosidase for the treatment ofMorbus Gaucher and
an α−galactosidase for the treatment of Morbus Fabry are already
produced in plant cells (Protalix, Israel) as approved drugs (Xu et al.,
2011; Xu andZhang, 2014; Santos et al., 2016;Moon et al., 2019; Nausch
et al., 2023b).

Among different PCCs like carrot (Daucus carota), rice (Oryza
sativa), and tobacco (Nicotiana tabacum), the tobacco cell line
Bright Yellow-2 (BY-2) became the prevalent PCC for the
production of biopharmaceuticals (Nagata et al., 1992; Kowalczyk
et al., 2022; Nagata, 2023). This is because the BY-2 cell line has the
highest growth rate among plant cells (μmax � 0.03/h corresponding
to a doubling time of 25–30 h compared to a μmax � 0.001–0.004 or a
doubling time of 250–500 h for other PCCs), being similar to HEK
and CHO. Moreover, the BY-2 cell line can be grown to high cell
densities of up to 600 g/L fresh mass (FM) (corresponding to 18 g/L
dry mass (DM)) in 10,000-L to 100,000-L large-scale stirred-tank
reactors (STRs), and several operation modes like batch, fed-batch,
and semi-continuous fermentation regimes are already established
(Hogue et al., 1990; Gao and Lee, 1992; Ho et al., 1995; Fischer et al.,
1999; Ullisch, 2012; Ullisch et al., 2012; Reuter et al., 2014; Raven
et al., 2015; Häkkinen et al., 2018). Given these features and due to its
higher productivity compared to other PCCs in commercial settings,

the BY-2 cell line is preferred for industrial applications, particularly
for the production of biopharmaceuticals for rare diseases. For
example, Protalix recently shifted from carrot to BY-2 cells
(Hanania et al., 2017). Nevertheless, PCCs still represent a niche
because the yields of 10 mg to 1 g/L tend to be lower than those of
100 mg to 6 g/L, which can be achieved in HEK and CHO by batch
and fed-batch fermentation (Kunert and Reinhart, 2016).

Similar to CHO cells (Schinn et al., 2021; Yeo et al., 2022), it has
been recently demonstrated that the volumetric productivity of
PCCs can be substantially increased by model-based optimization
of the cultivation in a typical batch fermentation setting (Nausch
et al., 2023a). For example, in an iterative design of experiment
(DoE)-based experiment–modeling–optimization workflow, a
mechanistic (Monod-type) white-box model was established that
linked the nutrient consumption to the biomass formation. The
model is based on the macronutrients sucrose, ammonium, nitrate,
and phosphate plus the initial FM as five controllable input variables,
whereby the macronutrients are converted by the initial FM into
new biomass, thus defining the growth rate and final FM yield.

Using sucrose concentration in the cultivation medium as a key
parameter, a substantial increase in the growth rate and final FMyield of
BY-2 cells at the end of the batch phase was achieved through multi-
criteria Pareto optimization. Although the mechanistic white-box
modeling aims to construct a model precisely representing the
collected data, the predictability of conditions not represented in the
data is neglected. Thus, the model could not predict cell growth under
non-optimal conditions deviating from the parameter space conditions
in the experiments used for model setup and refinement (Nausch et al.,
2023a). Moreover, such mechanistic white-box models become limited
in cases where (i) the relevant process knowledge is missing (e.g., the
plant cell metabolism and kinetics); (ii) not all relevant parameters can
be measured (e.g., intracellular macronutrient pools); (iii) there is high
variation in the data (e.g., between replicates).

In principle, small-scale bioreactors or evenmicrotiter plates can
be used to obtain more data. However, in the case of PCC, the data
obtained in these systems are hardly transferable to industrial large-
scale bioreactors. While suitable scale-down models were already
developed for mammalian cells (i.e., CHO), this has not yet been
achieved for PCCs due to several reasons: (i) Plant cells (with an
average diameter of 100–500 µm) have a volume that is 100 to
1,000 times larger than that of mammalian cells (which typically
measure 10–100 µm in diameter) and sediment up to 25 times faster.
Therefore, they cannot be regarded as two-phase systems consisting
of only a gas and liquid phase, with in the liquid phase
homogeneously distributed cells. Instead, PCCs represent a three-
phase system comprising a gas, liquid and solid phase, with the plant
cells as a solid phase. This introduces an additional dimension of
heterogeneity. (ii) PCCs are associated with rheological constraints
as the PCC medium represents a viscous, non-Newtonian broth,
leading to imperfect mixing. (iii) PCCs are shear sensitive, so the
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stirrer and mixing speed must be controlled during scale-up to avoid
cell damage (Doran, 1999; Kieran et al., 1997; Cheung et al., 2018).
This limits the applicability of small-scale bioreactors for process
optimization so that they are rather used for process establishment,
i.e., cell line generation and selection. For the actual process
optimization, larger bioreactors are needed to get representative
data. However, the larger the scale, the fewer conditions can be
tested (Cheung et al., 2018).

As an alternative to mechanistic white-box modeling, Bayesian
experimental design (BED) is a global black-box optimization strategy
that does notmake any assumptions about the properties of the process.
BED represents an adaptive experimental design approach that utilizes
Bayesian optimization (BO) to iteratively perform experiments to
identify optimal process parameters (Duris et al., 2020; Garnett,
2023; Rainforth et al., 2024; Zhang et al., 2021; Figure 2). A key
difference between BED and mechanistic (theory-based) modeling
lies in the aim of BED not to create a model that is as accurate as
possible but to efficiently find the optimal process settings. In contrast to
traditional, non-sequential DoE methods (e.g., one-factor-at-a-time,
response surface methodology, full factorial, or partial factorial DoE),
BED represents a sequential DoE approach, builds a surrogate model of
the objective function, and utilizes an acquisition function for
maximizing the informational content of the experiment series.
Thus, BED iteratively performs experimental design, execution, and
evaluation and adapts the experimental design based on previous
experiment results in each iteration. Thereby, BED aims to
minimize the total number of experiments for the model setup and
process optimization. Moreover, whereas DoE approaches are limited
to low-dimensional design spaces with a limited number of discrete
parameter levels andmanually defined experimental designs (e.g., Bayer
et al., 2021), BED allows the exploration of higher-dimensional
continuous design spaces guided by the acquisition function that
optimizes the informational gain of each experiment. Consequently,
BED promises to be a data-driven, exploratory, bias-free, and efficient
alternative to traditional DoE that is particularly suited for complex-to-
evaluate bioreactor-based fermentation processes with multiple
parameters (i.e., batch, fed-batch, semi-continuous, and continuous)
at an industrial scale.

In this article, we investigate the applicability of BED to PCC
fermentation processes of BY-2 and maximize the productivity of
the system by means of biomass formation per time while
minimizing the resource input and additionally identifying the
best trade-off between both. In order to search for an optimal
cultivation medium composition that promotes biomass
formation (i.e., as a ratio between nutrient and FM input and
FM output) during typical batch fermentation of BY-2 cells in
STRs (Patent WO2015165583A1, Figure 1), we propose a multi-
variate, multi-objective, and batch-wise BED algorithm. With the
long-term intention to establish a mechanism for adaptive, dynamic
real-time process monitoring and control (e.g., for a semi-
continuous long-term fermentation), we focused on FM and
sucrose as parameters that can be measured in- or online.

Accordingly, the contributions of our article can be summarized
as follows:

1. We propose a novel and data-driven multi-variate, multi-
objective, and batch-wise BED approach for yield-optimal
parameterization of biomass formation.

2. We apply our proposed BED algorithm for analyzing and
finding optimal cultivation medium compositions in the batch
fermentation of BY-2 cells in STRs and report the
experiment results.

3. We analyze, interpret, and discuss the results in relation to the
findings of previous studies (i.e., parameter–parameter and
parameter–objective relationships in the BY-2 batch
fermentation).

This proof-of-concept study will demonstrate that BED can be
used to efficiently optimize a typical batch fermentation process of
BY-2 by utilizing parameters measurable in- or online, without
aiming for a complete optimization of the fermentation
process itself.

2 Materials and methods

2.1 Cultivation of tobacco cells

As a representative batch fermentation for BY-2 cells, we aimed
to optimize the patented process (Patent WO2015165583A1,
Figure 1) that employs the Murashige & Skoog (MS) medium, as
this is typically used for the cultivation of BY-2 cells (Nausch et al.,
2023b). The BY-2 cells were grown as previously described by
Nausch et al. (2023a). In summary, the cultivation of BY-2
routine cells was done in 200 mL of MS medium in 1,000-mL
Erlenmeyer shake flasks in a Climo-Shaker ISF1-X orbital shaker
(Kuhner Shaker, Herzogenrath, Germany) at 26°C and 160 rpm, and
the BY-2 cells were passaged every 7 days. For cultivation by
fermentation in STRs (Patent WO2015165583A1), these 7-day-
old BY-2 cells from the routine culture were used to inoculate
1,000 mL of a defined medium (Supplementary Table S1) in a 2,000-
mL STR (Getinge Deutschland, Rastatt, Germany).

The patented cultivation in STRs is divided into two phases
(Figure 1). In phase 1, the batch phase, the BY-2 cells are cultivated
over several days in a constant medium volume without any
additional medium feed until an FM of 100 g/L is reached. The
batch phase is followed by the semi-continuous phase, in which new
cultivation medium is continuously fed into the bioreactor to keep
the FM constant at 100 g/L, the medium is harvested daily, and the
volume is reduced to the initial one (in this example, 1,000 mL). Due
to significantly different optimization conditions between a batch
phase (quasi-discrete experiments with static parameter settings that
are independent of a previous state) and a semi-continuous phase
(long-term sequence of several interdependent parameter settings
with intermediate measurements), a two-stage optimization system
is required. Consequently, in this article, we focus solely on the
optimization of the batch phase (which is why the semi-continuous
phase is grayed out in Figure 1).

2.2 Cell biomass and macro nutrient analysis

While FM was determined through vacuum infiltration, the DM
was determined by subsequent drying in an oven at 60°C for 3 days
(Nausch et al., 2023a). Nutrients were determined by specific offline
assays (sucrose: abcam ab83387, ammonium: Sigma-Aldrich
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MAK310, nitrate: Cayman Cay780001, phosphate: abcam ab65622)
according to the manufacturer’s instructions.

2.3 Bayesian experimental design (BED)

BO is a sample-efficient statistical method for surrogate-based
global optimization of expensive-to-evaluate and noisy objective
functions y � f(x) + ε (Greenhill et al., 2020; Kumar et al., 2022).
Based on the BO framework, BED represents a sequential DoE
method for scientific experimentation in engineering systems. BED
is a global optimization approach that does not make any
assumptions about the properties of the to-be-optimized system.
As a black-box optimization algorithm, BED can be applied (but
limited) to black-box systems that (1) do not have a closed-form
representation; (2) do not provide functional derivatives; (3) only
allow for point-wise evaluation (Greenhill et al., 2020). Under the
influence of a noise term ε, the objective function f(x) transforms a
vector of n independent input variables x �
[x1, x2, . . . , xn]T ∈ X ⊆ Rn into m dependent objective variables
y � [y1, y2, . . .ym]T ∈ Y ⊆ Rm. The multi-variate and multi-
objective global black-box optimization problem can be expressed
as finding the solution to Equation 1:

x* � argmax
x∈X

f x( ) (1)

by optimizing the analytically unknown objective function yielding
Equation 2:

y* � max
x∈X

f x( ) � f x*( ) (2)

Therefore, the aim of BED is to find the optimal
parameterization x* within the n-dimensional design space
X ∈ Rn that yields an optimal process output y* in the
m-dimensional objective space Y ∈ Rm. For sequential
optimization, BED comprises two core components: (1) a
surrogate model to model f(x) and (2) an acquisition function
α(x) to determine the next experiments. While extra trees, random
forests, tree parzen estimators, support vector machines, and
Bayesian neural networks are suitable surrogate model options,
Gaussian processes (GPs) (also known as Gaussian process
regressors) (Rasmussen, 2004) are the preferred surrogate model

choice because of their data efficiency, flexibility, simplicity, and
built-in quantification of uncertainty (Garnett, 2023; Johnson et al.,
2025; Kariminejad et al., 2024; Harris et al., 2024; Kumar et al., 2022;
Rodemann et al., 2024). Consequently, GPs are the most commonly
used surrogate models in data-sparse, noisy, and low-dimensional
optimization problems. GPs are non-parametric and probabilistic
models that are constructed directly from a dataset, allowing the
complexity of the model to grow with the number of data elements
(Duris et al., 2020). GPs fulfill the requirement of the acquisition
function to provide uncertainty estimates of the objective function
for given parameter sets (Duris et al., 2020). A GP comprises a mean
m(x) and a covariance function (also denoted kernel) k(x, x′)
(Equation 3). The kernel describes the similarities between two
sets of input parameters x and x′ (Duris et al., 2020).

f x( ) ~ GP m x( ), k x, x′( )( ) (3)

BED substitutes the optimization of the expensive-to-evaluate
objective function with the optimization of an inexpensive,
analytically differentiable, and therefore, more tractable
acquisition function α: X → R (Garnett, 2023). The acquisition
function α(x) uses the expected mean m(x) and uncertainty
k(x, x′) of the GP to make an informed decision about the next
set of parameter values by assigning a score to each parameter
location to maximize the information gain (Gabler and Wollherr,
2022; Garnett, 2023).

According to the BED algorithm (Figure 2), starting with a
predefined design spaceX comprising one or multiple parameters xi

and based on an initial dataset D(x, y), BED iteratively proposes a
set of parameter values (e.g., nutrient concentrations) that defines
the next set of experiments (step 1). The initial dataset D(x, y) can
contain historical process data or can be systematically collected
using quasi-random sampling approaches (e.g., Sobol algorithm
(Sobol’, 1967) or space-filling designs) that aim to equidistantly
cover and explore X . After BED has proposed a parameter vector xt
at iteration t, the experiments are conducted and evaluated (step 2).
The evaluation (measuring and quantifying the process outcomes
for each objective) yields the experiment results yt for each
parameter set x (step 3). The results of the experiments are
added to the dataset D(x, y) (step 4). The GP surrogate model is
then updated (step 5), and afterward, the fulfillment of the
termination criterion is checked (step 6). This constitutes the end

FIGURE 1
Typical cultivation process of BY-2 cells consisting of an initial 1-week batch phase followed by a multi-week semi-continuous phase.
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of the iteration. The termination criterion can be arbitrarily defined
by the expert and can include acceptance levels for each objective,
experimental budgets, and convergence measures. As long as the
termination criterion is not fulfilled and the optimization has not
been manually terminated by the expert, experimentation continues.

2.4 Multi-variate, multi-objective, and
batch-wise Bayesian experimental design
for optimization of the BY-2 batch
fermentation

To establish BED for the optimization of biomass formation and
nutrient consumption of BY-2 in batch cultivationmode, we define a
five-dimensional design space comprising the five individual
macronutrients of the cultivation medium, that is, sucrose,
ammonium, nitrate, and phosphate, and the initial FM
concentration. The lower and upper limits for each medium
component were determined in previous experiments (Nausch
et al., 2023a). Macronutrient concentrations were chosen so that
reducing or increasing them further did not enhance the BY-2
growth rate or final biomass yield or even reduced them.
Furthermore, we define a two-dimensional target space that
comprises the final FM concentration (i.e., biomass) and the
corresponding FM concentration increase per hour (i.e., growth
rate). The full specifications of the to-be-optimized biomass
formation process, including parameters and objectives, are given
in Figure 3. Details on the parameters (units and valid value ranges)
and objectives (units, minimum andmaximum values, and direction
of optimization) are contained in Tables 1, 2. As stated above,
minimum and maximum values are based on process experience
and previous experiments (Nausch et al., 2023a). Accordingly, we
define the biomass formation as a multi-variate and multi-objective
optimization problem y � f(x), assuming a black-box system
comprising five controllable input parameters and two fully
observable objectives (FM concentration (g/L) and FM

concentration increase (g/(Lph)) with xi being the set of input
parameters with
i ∈ {sucrose, phosphate, ammonium, nitrate, start FM} and yj

being the two objective variables with j ∈ {final FM, FM increase}.
We utilize BED as a statistical sequential optimization method

that aims to efficiently identify optimal parameter values x* that
yield an optimal process outcome y* of the objective function f(x)
(Greenhill et al., 2020). Due to the high complexity of fermentation
processes in STRs at industrial scales, only a limited number of
experiments can be carried out. Given the small dataset size, we
decided to use GPs as surrogate models because of their data
efficiency. For multi-objective optimization, a multi-objective GP
is used to model the two objectives of FM concentration and FM
concentration increase (i.e., growth rate). Based on the five input
variables, the GP performs a regression task predicting the objective
value for each one of the objectives within the corresponding value
range. The GP is initialized using a constant mean as the mean
function and the Matérn-5/2 kernel as the covariance function. We
initialize the GPs on historical data from Nausch et al. (2023a),
comprising a total of ten experiments (Batch 0 in Supplementary
Tables S2, S3). Due to the duration of individual experiments of
7 days (164–172 h), we decided to run four optimization iterations
(termination criterion), followed by two iterations for confirmation
of the results. The GP models the input noise as homoscedastic
noise. Automatic relevance determination (ARD) is used to
iteratively determine the relevance of each parameter and adjust
the GP’s length scale parameters iteratively during optimization
(Duvenaud, 2014).

Because the fermentation setup in this study allows the
simultaneous fermentation of four separate medium
compositions, we propose batch-wise BED allowing the
simultaneous provision of four experiment sets (batch-size q � 4).
Accordingly, in each iteration (batch), BED proposes a set of four
different medium compositions (experiments). In contrast to single-
point optimization (q � 1), where the parameter set with the highest
acquisition function value is selected, a set of q experiments with the q

FIGURE 2
Bayesian experimental design procedure and Bayesian optimization components (based on Al-Hafez, 2021).
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highest acquisition function values is proposed. Although, the batch
size positively correlates with the required number of experiments
because parameter sets with suboptimal informational gain are
selected (Zhan et al., 2024), we decided to parallelize
experimentation across all four STRs to reduce experimentation
time by a factor of four. As a multi-objective, noisy, and batch-
wise acquisition function α(x), q Noisy Expected Hypervolume
Improvement (qNEHVI) is used (Daulton et al., 2021). α(x) uses
the hypervolume (HV) metric as a multi-objective performance
metric and determines next experiment locations based on the
approximated improvement of the HV (Audet et al., 2021).

2.5 Software implementation,
computational resources, and source code

Our approach for multi-variate, multi-objective, and batch-wise
BED was implemented using the Python programming language
and the Python library BoTorch (Balandat et al., 2019). BoTorch is a
BO programming framework that is built on top of PyTorch (Paszke

et al., 2019). The source code is available on GitLab (https://gitlab.cc-
asp.fraunhofer.de/fraunhofer-ipt/biodapt). Calculations were
performed on hardware running Linux Ubuntu 22.04 equipped
with Dual Intel Xeon Gold CPUs with 16 cores, Dual Nvidia
Quadro RTX5000 with 16 GB, and 384 GB of DDR4 RAM.

3 Results and discussion

3.1 The BY-2 growth rate can be regulated by
nitrate and phosphate, while it is possible to
reduce sucrose and ammonium without
impacting the growth rate and only affecting
the final biomass yield

The batch fermentation lasted for 7 days (164–172 h) with daily
FM measurements (intervals of 22–26 h). The FM increase was
determined for these 7 days (at the end of fermentation) and for
4 days (at the time point at which 100 g/L FM is usually reached and
the semi-continuous phase is typically started). The BED algorithm

FIGURE 3
Process scheme with controllable input parameters (independent variables) and objectives (dependent variables) for the biomass formation in a
batch fermentation process of BY-2 cells.

TABLE 1 Overview of controllable input parameters (design space) for biomass formation in a batch fermentation process of BY-2 cells.

Design parameter cultivation medium component Unit Minimum value Maximum value

Sucrose concentration (C12H22O11) mM 20 175

Ammonium concentration (NH4
+) mM 5 60

Phosphate concentration (PO4
3−) mM 2 15

Nitrate concentration (NO3
−) mM 5 150

Start fresh mass concentration g/L 5 22

TABLE 2 Overview of objectives (objective space) for biomass formation in a batch fermentation process of BY-2 cells.

Target variables Unit Minimum value Maximum value Optimization type

Fresh mass concentration g/L 0 200 Maximization

Fresh mass concentration increase g/(L×h) 0 25 Maximization
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for the optimization of macronutrients and biomass formation
(Figure 3; Table 1; Table 2) showed convergence behavior
(i.e., stabilization of parameters and objectives over the number
of iterations and rapprochement toward consistent values) within
the four iterations comprising a total of 16 different media (Figure 4;
Supplementary Table S1). The medium composition that led to the
highest growth rate and final biomass yield was confirmed in two
further iterations. Accordingly, Supplementary Table S1 contains
the experimental results, and Figure 4 shows the evolution of the
distributions of parameters and objectives along the iterations. In
detail, the distributions of all five parameters after all iterations are
shown in Figure 5. In analogy, Figure 6 shows the distribution of
both FM and FM increase after all iterations. Please refer to the
appendix for a detailed analysis of the progressions of parameters
and objectives along all iterations (Supplementary Figure S1
(sucrose), Supplementary Figure S2 (ammonium), Supplementary
Figure S3 (nitrate), Supplementary Figure S4 (phosphate),
Supplementary Figure S5 (start FM), Supplementary Figure S6
(final FM), and Supplementary Figure S7 (FM increase)).

Iteration 0 contains historical data from previous
experiments (Nausch et al., 2023a). Iterations 1–4 are the
optimization runs, and iterations 5 and 6 are the confirmation
runs. The convergence behavior within the first four iterations
(iteration 0 not included) is indicated by the narrowing
distributions of the values for all four macronutrients
(sucrose, ammonium, nitrate, phosphate) and the initial FM
(Figure 4). Based on the results of iterations 1 to 4, we

selected the set of parameter values that led to the highest
final biomass yield (FM) and growth rate (FM increase) while
requiring comparatively less concentration of the individual
media components (highlighted in blue in Supplementary
Table S1). The selected medium was then confirmed in a side-
by-side comparison with the standard MS medium used for the
cultivation of BY-2 (iteration 5), and we confirmed its
reproducibility by parallel fermentations (iteration 6).

During early iterations of the BED algorithm, the starting FM
showed the widest spread of the input parameters, and sucrose and
ammonium displayed a broader distribution than nitrate and
phosphate, which exhibited a strong concentration around
specific parameter values (Figure 4). The greater spread of the
initial FM, sucrose, and ammonium during the optimization
process, compared to nitrate and phosphate, can be interpreted
as the BED algorithm is attributing a higher relevance to these
parameters, leading to a greater variation compared to those
considered less relevant. However, in the case of sucrose and
ammonium, the data also indicated that these two parameters
can be altered without a substantial impact on the growth rate,
although there was a pronounced effect on the final biomass
(Figure 6). Vice versa, because of the strong impact of nitrate
and phosphate on FM increase (growth rate), these two
parameters seem to converge toward specific values and thus can
be used to regulate the growth rate.

In analogy to the distributions of the media components
(Figure 5), Figure 6 shows the distribution of final FM and

FIGURE 4
Parameter levels of the input and output parameters for the Bayesian experimental designmodel setup and refinement for the biomass formation in
a batch fermentation process of BY-2 cells. Iterations 1–4: Calibration experiments, Iterations 5–6: Confirmation experiments.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Leyendecker et al. 10.3389/fbioe.2025.1617319

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1617319


growth rate. The final FM exhibits a broader distribution than the
growth rate. The wider spreading of final FM might result from the
fact that this objective is affected by all five parameters and their
corresponding changes, while the growth rate is mainly affected by
nitrate and phosphate.

Compared to the MS standard medium, the final medium
M31 had a substantially reduced sucrose concentration as carbon
source of −38%, which complies with the previous study, in which
the cultivation medium was optimized via a mechanistic model for
the nutrient consumption, indicating that sucrose is in excess in the

MS medium and can be reduced without impacting growth rate and
only affecting the final biomass (Nausch et al., 2023a).

Similarly to sucrose, the nitrogen source ammonium was also
drastically lowered in the M31 medium by −76%, which in turn
complies with the fact that alternative cultivation media such as the
Gamborg B5 (Gamborg et al., 1968), Schenk and Hildebrandt (SH)
(Schenk and Hildebrandt, 1972), and Chu N6 Chih-ching (Chu
et al., 1975) contain only low levels of ammonium at 2.02 mM,
2.61 mM and 7.00 mM, respectively. This might be explained by the
fact that BY-2 cannot grow in a medium without ammonium

FIGURE 5
Distribution of all five input parameters after all iterations, including upper (blue) and lower (red) design space limits (dashed lines) in a batch
fermentation process of BY-2 cells.

FIGURE 6
Distribution of all two objective values after all iterations, including upper (blue) and lower (red) objective value limit ranges.
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(Holland et al., 2010; Ullisch, 2012), but higher ammonium levels are
potentially cytotoxic (Behrend and Mateles, 1975; Behrend and
Mateles, 1976). However, as already discussed by Nausch et al.
(2023a), another study in which the MS medium was optimized
using DoE showed that a reduction of ammonium to 6.87 mM led to
a decreased final biomass after a 7-day batch cultivation in shake
flasks (Häkkinen et al., 2018). In addition, in two further studies, it
has been observed for a similar shake-flask setting that an increase of
ammonium up to 51.54 mM promotes the BY-2 final biomass
(Holland et al., 2010; Ullisch, 2012; Ullisch et al., 2012; Holland,
2013). Hence, even though lower ammonium concentrations did not
seem to affect the growth rate, they did limit the final biomass yield.

In contrast to ammonium, the nitrate level as the second
nitrogen source was only slightly altered in the M31 medium
at −13%. The reasons for that might be that, on the one hand,
nitrate is metabolized to ammonium and thus must compensate for
the reduction in ammonium in the medium. On the other hand, an
increase in the nitrate concentration negatively impacts the BY-2
growth, as previously shown (Holland et al., 2010; Ullisch, 2012;
Ullisch et al., 2012; Holland, 2013; Vasilev et al., 2013). Accordingly,
nitrate might be used to adjust the growth rate if needed.

Phosphate remained nearly constant with +2% in the
M31 medium, even though it has already been found that
increasing phosphate concentration in the MS medium from
2.72 mM to 10.00 mM boosted the biomass accumulation five-
fold in a 7-day batch fermentation in shake flasks (Holland, 2013).
Hence, adjusting the phosphate might be another option to alter the
growth rate in the batch fermentation process.

With respect to the initial FM, the results show that lowering the
inoculation FM did not lead to a higher growth rate but rather
resulted in a lower final biomass, which contradicts the observation
in the previous study (Nausch et al., 2023a). The reason for that must
be elucidated. Nevertheless, while the initial conditions yielded a final
biomass of up to 81.41 g/L FM and a growth rate of 0.63 g/(L × h), this
was increased to 212.41 g/L FM and 1.17 g/(L × h) in the medium
M31 in iteration 3.

3.2 The BY-2 biomass yield was
compromised by the lower sucrose
concentration

To confirm the observations from the BED experiments, a side-
by-side comparison of bothmedia in a 7-day batch fermentation was
conducted (iteration 5), and its reproducibility was confirmed by
parallel fermentations (iteration 6).

Notably, there was a high variation between identical runs with
both the MS and M31 medium. Such variations are normal and
possibly result from the natural variability of the BY-2 cells as a
biological component. Nevertheless, the BY-2 growth rates and
biomass yields were similar for the MS and M31 media until day
4. Afterward, the BY-2 growth rate declined in theM31 and yielded a
substantially lower final biomass at day seven because the sucrose
was depleted in the M31 medium (Supplementary Figure S1;
Supplementary Table S1). This confirms that a lower sucrose
concentration does not impact the growth rate but limits the
final FM yield. However, at day 4 to day 5, the FM concentration
reached 100 g/L, where typically the semi-continuous phase starts,

such as in the historical data used to initialize the BED algorithm,
whichmight explain this mismatch in the optimization. Ammonium
was consumed completely within 2 days of fermentation but led to
an increased degradation of nitrate without any obvious negative
impact on growth rate, which was also true for phosphate, which was
consumed within 2 days as well. The latter confirms the previously
discussed assumption that BY-2 cells seem to have an intracellular
pool for phosphate that is used in case this macronutrient is depleted
in the medium (Nausch et al., 2023a). Hence, the final M31 medium
yielded similar growth rates to the standard MS medium, while the
final biomass yield was lower due to the lower sucrose concentration.

3.3 The fresh mass might be used as a
surrogate parameter for the biomass for
real-time monitoring and optimization of a
BY-2 fermentation process

With the long-term intention of establishing a mechanism for
adaptive, dynamic real-time process monitoring and control (e.g.,
for a semi-continuous long-term fermentation), we focused on FM
and sucrose as modeling parameters as these can be measured in- or
online, allowing adaptive real-time process monitoring and
optimization. However, the FM might be an error-prone
parameter as it can be impacted by excessive water uptake or
loss, while DM represents the actual biomass more accurately.
For example, it is well known that when BY-2 cells enter the
stationary phase, they stop growing and the DM remains
constant, whereas they still consume water so that FM further
increases. Thus, we compared the FM/DM ratio in the various
runs as shown in Figure 7 and Supplementary Table S2 and
Supplementary Table S3.

For most of the iterations in which BY-2 grew (including
medium M31), the FM/DM ratio slightly decreased when the
cells shifted from the lag to the exponential phase at days 1–3.
Starting from days 5–6, this trend changed, and the FM/DM ratio
tended to increase, indicating that the cells then entered the
stationary phase from the exponential phase. In the case of the
MS reference medium, the increase started at days 6–7. This
difference might be explained by the fact that the MS medium
was designed to enable a typical 7-day shake-flask batch
cultivation, while the BED algorithm was trained on historical
data, in which the batch fermentation ended at day 4–5 and the
semi-continuous phase with feed supplementation started, as
mentioned previously. Nevertheless, the FM/DM ratio seems
to be rather constant when the BY-2 cells are in the
exponential phase (i.e., between the lag and stationary phase),
as it is the case in the semi-continuous long-term fermentation of
BY-2 cells, in which the FM concentration is kept at 100 g/L FM
by feeding (Figure 1). Thus, the FM might be used as a surrogate
parameter for biomass for real-time monitoring and
optimization of a BY-2 fermentation process.

4 Conclusion

The biomass formation of the plant suspension cell line BY-2 in
a typical batch fermentation process was successfully analyzed and
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significantly improved by adapting the nutrient composition in the
cultivation medium with only a few experiments and iterations,
using a sequential and adaptive BED algorithm, and only using
parameters that can be measured in- or online. Notably, the
performance equaled that of a previously developed mechanistic
white-box model, demonstrating that BED represents an alternative
approach for the optimization of biomass formation, particularly in
the case when experimental data are limited, which is usually the
case for industrial fermentation settings. Our data-driven, black-box
BED algorithm allows a bias-free investigation of the experimental
design space and thereby facilitates the discovery of novel
process insights.

Specifically, our results indicate that nitrate and phosphate can
be utilized to regulate the growth rate (up to 40 g/L·d), whereas
sucrose and ammonium can be reduced without affecting the
growth rate, though this may influence the final biomass yield
(up to 300 g/L FM). Notably, when comparing the concentration
of the four macronutrients in the MS medium plus the standard
initial FM to the one used in the final M31medium with the reduced
initial FM, the optimized setting led to a 36% increase in the biomass
yield by means of a ratio between macronutrient and FM input to
FM output.

Importantly, this study aimed to provide the proof-of-
concept that BED can be used to optimize typical
fermentation processes without aiming to fully optimize the
fermentation process itself. Hence, we did not fully analyze
the fermentation process to resolve the trade-off between
growth rate and final biomass yield. For example, the impact
of reduced sucrose and ammonium concentrations on the final
biomass yield and growth rate has to be elaborated in the future,
as the final biomass yield was compromised through the
optimization rounds. Moreover, we will conduct further
experiment series using our BED algorithm to analyze its
optimization behavior and robustness.

Beyond, we focused on the quasi-discrete optimization of the
batch phase. Given the state-dependent and long-term
characteristics of the subsequent semi-continuous

fermentation phase, regular BED does not represent a suitable
approach. In future work, we will therefore investigate contextual
BO (Char et al., 2019; Fiducioso et al., 2019) for the optimization
of the semi-continuous phase. Moreover, to make BED more
efficient and to strengthen acceptance of BED among
biopharmaceutical experts, our research will focus on
intensifying the collaboration between algorithm and domain
experts to investigate how domain knowledge can be integrated
into the BED workflow before, during, and after optimization
(Kanarik et al., 2023; Hvarfner et al., 2022; Savage and Del
Chanona, 2023). To further enhance the overall
experimentation, the relationship between batch size and cost-
to-target must be analyzed as well.

Nevertheless, we demonstrated the applicability of data-driven
BED for data-efficient non-sequential experimental design for the
plant cell line BY-2. BED might also be applicable to microbial and
mammalian cell lines in batch fermentation mode.
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