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Cardiovascular risk factors such as hypertension, hyperlipidemia, and
hyperglycemia are closely associated with ocular diseases including glaucoma,
diabetic retinopathy, and dry eye syndrome. These conditions are characterized
by microvascular damage, hemodynamic alterations, and pathological
neovascularization, ultimately leading to significant visual impairment.
Traditional treatments often suffer from limitations, such as invasiveness and
poor target specificity, highlighting the urgent need for innovative therapeutic
approaches. Recent advancements in biomaterials have substantially improved
therapeutic efficacy, particularly in the areas of targeted drug delivery, smart
sensors, and tissue repair. Smart sensors like contact lenses enable continuous
monitoring of intraocular pressure, enhancing glaucoma management.
Nanotechnology and drug delivery systems improve drug targeting and
bioavailability, enhancing anti-angiogenic therapies. Additionally,
biocompatible materials and nanomaterials have shown promise in promoting
retinal and optic nerve repair, facilitating neural regeneration and reducing
aberrant neovascularization. Despite ongoing challenges, the rapid evolution
of materials science holds transformative potential for developing more effective
and personalized treatments for ocular diseases.
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1 Introduction

Ocular diseases increasingly reflect the systemic burden of cardiovascular risk factors -
including hypertension, hyperlipidemia, hyperglycemia, and hyperuricemia (Modjtahedi
et al., 2016; Skrzypecki et al., 2019; Wang and Bao, 2019; Liu L. et al., 2020; Zhou et al.,
2022)—which contribute to visual impairment through mechanisms such as microvascular
dysfunction, chronic inflammation, and metabolic stress. These systemic conditions result
in retinal damage via pathways involving oxidative stress and microvascular injury. For
example, hypertension induces abnormal shear stress in retinal vessels, leading to
endothelial dysfunction and neovascularization, while hyperglycemia disrupts the blood-
retinal barrier through VEGF imbalance and inflammatory pathways (Liu L. et al., 2020;
Jiang et al., 2024). Hyperlipidemia promotes lipid deposition, oxidative stress, and
dysfunction of corneal endothelial pumps, ultimately reducing cell density, impairing
intercellular junctions, and diminishing regenerative capacity—highlighting for the first
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time that the corneal endothelium is a previously unrecognized
target tissue of hyperlipidemic injury (Bu et al., 2020). As the global
prevalence of chronic systemic diseases continues to rise, ocular
complications are becoming increasingly common, often coexisting
in patients with complex cardiometabolic profiles.

Cardiovascular risk factors exert widespread effects on both the
anterior and posterior ocular segments. These factors not only
contribute to microvascular dysfunction in the retina but also
impair anterior structures such as the corneal endothelium and
uveal blood flow. Corneal endothelial dysfunction reduces
transparency and disrupts fluid regulation, while uveal
hypoperfusion compromises nutrient delivery to intraocular

tissues (Aşıkgarip et al., 2022; Zeng et al., 2022). Importantly,
systemic vascular conditions such as hypertension are strongly
associated with retinal vascular occlusions, underscoring a unified
pathophysiological mechanism in which cardiovascular
dysregulation leads to vascular insufficiency and ischemic damage
across the entire ocular system (Cheung et al., 2012).

Traditional ocular therapies often limited by factors such as
invasive delivery, low bioavailability, and poor patient compliance.
Standard treatments—including anti-VEGF agents and laser
photocoagulation—face therapeutic ceilings and procedural
burdens that restrict their long-term efficacy. In this context,
materials science offers powerful interdisciplinary solutions by
enabling precise drug delivery, real-time biosensing, and
bioengineered tissue regeneration. Recent breakthroughs include
microenvironment-responsive smart materials, on-demand drug
release systems, and integrated physiological monitoring
technologies. Smart contact lenses and injectable hydrogels
exemplify these advances, providing improved drug retention,
enhanced tissue integration, and personalized treatment
modalities (Zhu et al., 2022; Wang L. et al., 2024). Emerging
technologies such as smart contact lenses, sustained-release
platform, and nanostructured hydrogels are expanding
therapeutic possibilities for ocular diseases, particularly those
linked to systemic dysfunction (Liu J. et al., 2020; Jiang et al., 2024).

FIGURE 1
Bioaterial-based interventions for ocular diseases induced by cardiovascular risk factors.

Abbreviations: AGE, advanced glycation end; AMD, age-related macular
degeneration; hs-CR, Phigh-sensitivity C-reactive protein; DED, dry eye
disease; DR, diabetic retinopathy; ERS, endoplasmic reticulum stress; HDL,
high-density lipoprotein; HTN, hypertension; IL-6, interleukin-6; IOP,
intraocular pressure; LSPR, localized surface plasmon resonance; MAGNs,
Manganese-doped albumin nanogels; MGD, meibomian gland dysfunction;
MMC, mitomycin C; MMP-9, metalloproteinase-9; NAION, non-arteritic
anterior ischemic optic neuropathy; OAG, open-angle glaucoma; POAG,
primary open-angle glaucoma; RGC, retinal ganglion cell; RGD, arginine-
glycine-aspartate; RNFL, retinal nerve fiber layer; ROS, reactive oxygen
species; RPE, retinal pigment epithelium; UA, uric acid; wAMD, wet age-
related macular degeneration.
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This review presents a comprehensive analysis of six major
ocular diseases from a dual perspective: the pathogenesis driven by
cardiovascular risk factors and the therapeutic opportunities
enabled by advanced biomaterials. For each condition, we discuss
the underlying mechanisms, current treatment challenges, and how
materials science offers targeted, functional, and clinically relevant
interventions. Finally, we highlight existing challenges and propose
future directions for translational application and interdisciplinary
research (Figure 1).

2 Dry eye disease

The pathogenesis of Dry Eye Disease (DED) is influenced by
systemic conditions such as hypertension, hyperlipidemia, and
hyperglycemia, which exacerbate disease progression through
mechanisms involving chronic inflammation and oxidative stress
(Thang et al., 2024; Tran Tat et al., 2024; Park and Park, 2016; Su
et al., 2022). Recent advances in materials science—particularly in
targeted drug delivery systems and biosensing technologies—have
introduced innovative diagnostic and therapeutic strategies that
support the development of personalized treatment approaches.

2.1 Pathological mechanisms of dry eye
disease induced by cardiovascular
risk factors

Clinical evidence demonstrates a strong association between
cardiovascular risk factors and the severity of DED. In patients with
primary hypertension, the prevalence of DED reaches 41.7%,
significantly higher than 18.8% observed in control groups (P <

0.001). Moreover, hypertension exhibits a stage-dependent
relationship with DED prevalence, increasing from 27.1% in
stage I to 57.6% in stage III hypertension (P < 0.001), with
comorbid diabetes further elevating risk to 55.6% in T2DN
patients (vs. 37.3% in general diabetics). Independent risk factors
include advanced age, longer hypertension duration, concurrent
diabetes, and elevated levels of plasma creatinine and high-
sensitivity C-reactive protein (hs-CRP) (P < 0.001) (Thang et al.,
2024; Tran Tat et al., 2024). Notably, antidiabetic medications choice
may also influence DED risk—a recent study found that patients
with type 2 diabetes initiating sodium-glucose cotransporter
2 inhibitors had a significantly lower incidence of DED
compared to those receiving glucagon-like peptide-1 receptor
agonists (9.0 vs. 11.5 cases per 1,000 person-years, HR = 0.78)
(Su et al., 2022). The impact of cardiovascular conditions on DED is
further exacerbated by comorbidities such as diabetes, which
compromises ocular surface integrity through metabolic
dysregulation. This indicates DED may serve as a manifestation
of broader systemic dysfunction involving inflammation, vascular
health and disturbances in the ocular microenvironment.
Dyslipidemia also contributes significantly to the pathogenesis of
DED and meibomian gland dysfunction (MGD). Elevated total
cholesterol and triglycerides are associated with an increased risk
of DED (OR = 1.6, 95% CI 1.2–2.1), with hypertriglyceridemia
independently linked to DED symptoms in females (OR = 1.13)
(Park and Park, 2016). While MGD is commonly related to lipid
abnormalities, a cohort study suggests that dyslipidemia may be
more closely tied to non-MGD forms of DED, possibly through
mechanisms involving tear film instability or the upregulation of
inflammatory markers such as interleukin-6 (IL-6) and matrix
metalloproteinase-9 (MMP-9) (Mussi et al., 2021). This finding
underscores the importance of a systems-based perspective on

TABLE 1 Materials for cardiovascular risk-linked ocular diseases.

Material type Application Target disease(s) Advantages

Smart contact lenses Real-time monitoring of intraocular pressure,
tear glucose, or inflammatory markers

DED (Yetisen et al., 2020; Mondal et al., 2023), Glaucoma
(Kim et al., 2022; Zhu et al., 2022; Kompella et al., 2021)

Non-invasive, continuous, patient-
friendly monitoring

PLGA nanoparticles Sustained release of anti-VEGF,
corticosteroids, or neuroprotectants

Glaucoma (Mahaling and Katti, 2016), DR (Rong et al., 2019),
AMD (Chen et al., 2024b; Xu et al., 2024; Bonechi et al., 2023;
Marquina et al., 2023)

Long-acting, high drug-loading
capacity, biodegradable

Liposomes/exosomes Encapsulation and targeted delivery of
mRNA, siRNA, or protein drugs

DR (Wang et al., 2024b), AMD (Chen et al., 2024b; Xu et al.,
2024), Glaucoma (Liu et al., 2020a; Durmaz et al., 2024),
Hyperuricemia-Related Ocular Diseases (Ma et al., 2025)

Biocompatible, precise targeting,
reduced systemic exposure

Hydrogel-based drug
systems

Controlled release of anti-inflammatory or
anti-scarring agents post-surgery

Glaucoma (post-surgery) (Lin et al., 2023), NAION (Liu et al.,
2024)

Reduces surgical complications,
sustained anti-scarring effect

Microneedle patches Transscleral or subconjunctival delivery of
uric acid-lowering drugs

Hyperuricemia-associated inflammation (Patel and Thakkar,
2023)

Minimally invasive, improves drug
bioavailability

Peptide
supramolecular
systems

Sequestration of inflammatory cytokines,
immune modulation

DR (Li et al., 2023b), AMD (Gao et al., 2023) High specificity, endogenous
response mimicking

Nanofiber hydrogels Dual drug release platforms for anti-
angiogenesis and anti-inflammation

AMD (Gao et al., 2023) Multimodal therapy, controlled
kinetics

LSPR biosensors Non-invasive biomarker detection in tear or
aqueous humor samples

DED (Culver et al., 2018; Wechsler et al., 2021) High sensitivity, real-time
diagnostics

Zwitterionic coatings Surface modification to enhance immune
evasion and reduce protein adsorption

All implantable materials (cross-cutting) Improved biocompatibility,
reduced immune rejection
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DED, recognizing the interconnection between cardiovascular risk
factors and ocular surface health.

2.2 Materials science in dry eye disease

In response to the pathological mechanisms described above,
materials science has introduced innovative strategies for the
treatment of DED. These advancements have transformed DED
management through two synergistic approaches: advanced
diagnostic systems and targeted therapeutic platforms. Cutting-
edge sensing technologies capable of multi-parameter detection
and biomarker identification have greatly improved diagnostic
accuracy. For example, smart contact lenses embeded with
fluorescent corneal lenses enable quantitative analysis of tear film
properties—such as pH and electrolyte concentration—through
smartphone integration (Yetisen et al., 2020). This innovation is
particularly relevant for patients with cardiovascular comorbidities,
whose tear film dynamics and inflammatory responses may fluctuate
due to systemic conditions like hypertension, diabetes, and
dyslipidemia. Label-free biosensors based on localized surface
plasmon resonance (LSPR), incorporating gold nanoshell-
hydrogel composites (e.g., Al-OEGA-coated AuNSs, AuNS@
PNM), detect tear proteins such as lysozyme and lactoferrin
through covalent or electrostatic binding. These sensors generate
linear LSPR wavelength shifts, enabling highly sensitive, portable
detection of tear biomarkers. Such systems support early screening
of chronic DED, facilitate grading of ocular surface inflammation,
and promote personalized therapeutic strategies (Culver et al., 2018;
Wechsler et al., 2021). Targeted drug delivery technologies address
the limitations of conventional eye drops, which typically exhibit
bioavailability below 5% and often lead to side effects. Advanced
liposomal nanosystems target the ocular surface using electrostatic
adhesion and lysosomal escape, co-delivering SS-31 peptides and
insulin, demonstrating significant anti-inflammatory, antioxidant
and mitochondrial repair effects that restore tear secretion, reduce
pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and improve
mitochondrial function in DED models (Xia et al., 2024).
Contact lens-based sustained-release systems, utilizing silicone
hydrogels or vitamin E-modified carriers, have been developed to
extend the release duration of drugs such as cyclosporine A for up to
14 days. These platforms support long-term immunomodulation
and ocular surface repair, while minimizing dosing frequency—an
important factor in improving patient compliance in chronic disease
management (Mondal et al., 2023). Furthermore, integrated
theranostic systems that combine fluorescent sensing contact
lenses with drug-loaded nanocarriers (e.g., lipid nanocapsules,
micelles) offer real-time monitoring of tear film parameters
alongside hydrophobic drug delivery. These systems extend
ocular retention time and reduce administration frequency,
enhancing both therapeutic efficacy and user convenience (Joshi
et al., 2023). Despite these significant advancements, challenges
related to sensitivity, comfort, and production cost continue to
limit widespread clinical translation. Nevertheless, the integration
of real-time diagnostics, targeted drug delivery, and sustained-
release systems represents a promising paradigm shift in the
management of ocular diseases influenced by cardiovascular
risk factors.

3 Glaucoma

Glaucoma, a leading cause of irreversible blindness, is primarily
associated with elevated intraocular pressure (IOP). Cardiovascular
risk factors - such as hypertension, hyperlipidemia, and
hyperuricemia - can impair ocular blood flow, contributing to
abnormal increases in IOP and thereby elevating the risk of
glaucoma development (Kuang et al., 2020; Wang L. et al., 2024;
Zhou et al., 2022; Biggerstaff et al., 2021).

3.1 Pathological mechanisms of glaucoma
induced by cardiovascular risk factors

Systemic hypertension exhibits a bidirectional relationship with
IOP, with epidemiological studies demonstrating a 1.4-fold
increased risk of primary open-angle glaucoma (POAG) (95% CI
1.2–1.7). This association is primarily mediated through impaired
ocular hemodynamics and disrupted axonal transport in the optic
nerve (Kuang et al., 2020; Wang L. et al., 2024). In addition to
elevated blood pressure, dyslipidemia plays a significant role in the
pathogenesis of glaucoma. Elevated triglyceride levels are associated
with an increased risk of glaucoma (HR = 1.4, 95% CI: 1.2–1.7), and
polymorphisms in the APOB gene further modulate susceptibility
(Kang et al., 2024). Interestingly, statin use demonstrates
population-specific effects, with increased glaucoma risk observed
in individuals aged 60–69 or those with LDL-C levels ≥4.1 mmol/L
(RR = 1.2, P = 0.04) (Lee et al., 2024). Disorders of glucose
metabolism, particularly diabetes, also represent a major risk
factor for glaucoma, though the underlying mechanisms are
multifaceted. Diabetes significantly elevates glaucoma risk - as
evidenced in the Blue Mountain Eye Study (OR = 2.12, 1997) -
with hyperglycemia-induced retinal ganglion cell (RGC) apoptosis
through endoplasmic reticulum stress (ERS). Notably, ERS
inhibitors such as 4-phenylbutyric acid have been shown to
reverse these effects (Zhou et al., 2022). Furthermore,
hyperglycemia suppresses the expression of Brn3b via signaling
pathways involving NO, NF-κB, and TNF-α, further accelerating
RGC apoptosis (Tjandra et al., 2020). The risk is compounded by
other metabolic syndrome components such as hypertension and
prolonged hyperglycemia. Elevated fasting glucose levels and longer
diabetes duration are strongly correlated with increased glaucoma
risk (AlDarrab et al., 2023; Li et al., 2024). In postmenopausal
women, the severity of diabetes is particularly impactful, with insulin
use associated with a nearly twofold increased glaucoma risk (HR =
1.884) (Jung et al., 2021). Neovascular glaucoma, often secondary to
diabetic retinopathy (DR) requires comprehensive management.
However, genetic heterogeneity - such as GLIS3 mutations - and
paradoxical findings, such as reduced open-angle glaucoma (OAG)
risk in some diabetic populations, suggest that distinct molecular
subtypes may underlie disease progression (Boddu et al., 2022; 2022;
Virtanen et al., 2023). Overall, hyperglycemia promotes glaucoma
development through mechanisms involving ERS, inflammation,
and vascular injury, underscoring the importance of early screening
and glycemic control (Yang et al., 2021). Among metabolic risk
factors, uric acid (UA) plays a paradoxical and still controversial
role. While gout has been associated with a 19% lower risk of POAG
(HR = 0.81) (HR = 0.81) (Biggerstaff et al., 2021), lower serum UA
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levels have also been correlated with increased POAG risk (Serra
et al., 2021). These findings suggest that uric acid may participate in
glaucoma pathogenesis via complex inflammatory mediator
networks, highlighting the potential role of anti-inflammatory
strategies. Proinflammatory cytokines such as IL-6 and TNF-α
serve as molecular bridges between cardiovascular and ocular
diseases. IL-6 may enhance aqueous humor outflow in the short
term but contributes to long-term trabecular meshwork damage,
thereby impairing IOP regulation (Xiao et al., 2023). TNF-α
facilitates RGC apoptosis and glaucomatous tissue injury by
activating the NF-κB and MAPK signaling pathways (Li et al.,
2021). Taken together, these findings reveal a complex,
multifactorial interplay between cardiovascular risk factors and
glaucoma development, mediated by cellular dysfunction,
inflammatory responses, and vascular remodeling. Understanding
these mechanisms underscores the importance of exploring
molecular pathways and investigating innovative material-based
strategies targeting these pathological processes. Ultimately, an
integrated, systemic-ocular approach is essential to improve
clinical outcomes in glaucoma management.

3.2 Application of materials science
in glaucoma

Given the influence of cardiovascular comorbidities such as
hypertension and diabetes on the pathogenesis of glaucoma,
biosensing technologies that integrate intraocular pressure (IOP)
monitoring with metabolic parameters (e.g., tear glucose and
inflammatory cytokines) represent promising tools for early
detection and intervention in patients at cardiometabolic risk.
Sensing technologies have rapidly advanced in medical
applications, especially for real-time disease monitoring and
therapeutic guidance. Modern systems now combine biosensors
with data acquisition platforms, enabling continuous, real-time
tracking of IOP and other relevant parameters (Shean et al.,
2024; Shao et al., 2025). Compared to traditional diagnostic
approaches, these technologies support more precise,
personalized, and multi-parametric health management (Shin
et al., 2021). As mechanistic understanding of
cardiovascular–IOP interactions deepens, intelligent sensors are
becoming indispensable in translating this knowledge into
individualized glaucoma care. Nonetheless, limitations remain,
including suboptimal sensitivity, limited stability, constrained
integration capacity, and dependence on single time-point
measurements—as typified by Goldmann applanation tonometry
(Moses, 1958). To address these challenges, smart contact lenses
incorporating flexible sensors and wireless communication modules
have been developed (Kim et al., 2022; Zhu et al., 2022). Innovative
sensor designs using silver nanowires and hollow gold nanowires
have demonstrated excellent sensitivity and biocompatibility for
ocular applications (Kim et al., 2021; Kim et al., 2022). Most
significantly, the hollow gold nanowire-based design achieves
11%–25% greater sensitivity compared to conventional thick
Parylene C substrates when measuring equivalent IOP levels.
Now providing 24-h IOP monitoring, facilitating early glaucoma
detection and personalized treatment (Zhang J. et al., 2022). These
platforms are evolving into multifunctional systems, where sensor

feedback can trigger on-demand drug release (Kim et al., 2022),
Hydrogel-based biosensors—such as those using Ti3C2Tx
MXene—allow for simultaneous detection of tear glucose and
IOP, supporting remote monitoring and real-time health display
(Kim et al., 2017; Zhu et al., 2022; Duan et al., 2024). These
multifunctional platforms enable long-term, non-invasive, real-
time continuous IOP monitoring, marking a transformative shift
in glaucoma diagnosis and the broader management of
chronic diseases.

Drug delivery technologies are also crucial in addressing the
limitations of conventional treatments, particularly for glaucoma
and diabetic retinopathy. Ocular anatomical barriers—such as tear
turnover and the blood–retinal barrier—severely restrict the
bioavailability of topical agents, often reducing it to below 5%
(Tomi and Hosoya, 2010). Therefore, innovative delivery
platforms are essential for enhancing drug retention, decreasing
dosing frequency, and minimizing systemic exposure (Akulo et al.,
2022; Lin et al., 2023). Cardiovascular risk factors exacerbate
glaucoma progression through multiple pathways (see Section
2.1), making precisely targeted delivery systems imperative:
Nanocarrier platforms utilizing extracellular vesicles and
exosomes can encapsulate RNA, proteins, and lipids, thereby
enhancing drug targeting while minimizing side effects (Liu
J. et al., 2020; Durmaz et al., 2024). Furthermore, Brugenera et al.
developed a novel preservative-free liposomal delivery system (LAT-
HA-LIP) that simultaneously achieves sustained IOP control and
protects the ocular surface—addressing the limitations of
conventional anti-glaucoma eyedrops, which may destabilize the
tear film and cause DED due to preservative toxicity (Brugnera et al.,
2025). Moreover, recent studies show that core-shell nanoparticles
with PLGA carriers achieve 1.8-fold higher bioavailability in the
choroid compared to PLA carriers when delivered via the
conjunctival-scleral pathway (p = 0.003), offering new therapeutic
strategies for posterior segment diseases (Mahaling and Katti, 2016).
This underscores a shift toward more precise, controlled, and
sustainable drug delivery, with nanotechnology enhancing both
drug penetration and the safety profile of ocular therapies.
Periocular routes—such as subconjunctival injections—also
enable sustained drug delivery to the posterior segment, offering
a minimally invasive yet effective approach (Rafiei et al., 2020).
Sustained-release technologies, including drug-loaded contact
lenses, wearable devices, and intraocular implants, offer precise
control over drug release kinetics and improve patient adherence
(Kompella et al., 2021; Al-Qaysi et al., 2023). Hydrogel-based
systems and dendritic polymers—owing to their high water
content, drug-protective capacity, tunable release profiles, and
anti-inflammatory properties—optimize retention on the ocular
surface (Akulo et al., 2022; Wang et al., 2023). Overall, these
systems allow efficient penetration into ocular tissues and
represent a significant improvement over traditional
topical therapies.

Tissue repair materials are widely applied in ophthalmology,
especially for managing postoperative scarring and
neurodegeneration in glaucoma. Chronic inflammation induced
by cardiovascular risk factors exacerbates fibrosis following
glaucoma surgery. These biomaterials work by accelerating tissue
healing, modulating inflammation, and guiding cell growth using
physical scaffolds or bioactive agents. However, challenges remain
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regarding biodegradability, long-term efficacy, and target specificity.
Advances in biomaterials, nanotechnology, and bioengineering have
greatly expanded their clinical potential (Kompella et al., 2021; Sun
et al., 2021). In glaucoma surgery, photo crosslinkable hydrogels
such as GelDex-S58 inhibit postoperative fibrosis by controlling
TGF-β signaling (Lin et al., 2023). Likewise, RGD
(arginine–glycine–aspartate)-functionalized hydrogels target β1-
integrin/FAK/Akt signaling pathways to suppress Tenon’s
fibroblast activation, thereby reducing fibrotic scar formation
(Chen B. et al., 2024). Beyond surgical applications, hydrogels
can serve as reservoirs for sustained drug delivery. Mitomycin C
(MMC)-loaded hydrogels, including those combined with RGD-
modified carriers, provide prolonged anti-fibrotic effects with fewer
side effects compared to conventional MMC treatments (Tu et al.,
2023; Wu et al., 2023). Importantly, hypertension—a key
cardiovascular risk factor—can directly elevate IOP through
mechanical compression of the optic nerve or induce ischemic
optic nerve damage via microvascular pathologies. Thus, in
addition to structural repair, thermosensitive hydrogels loaded
with neuroprotective agents have been developed. These
hydrogels not only promote optic nerve regeneration but also
help preserve visual function (Wang L. et al., 2024). With sensor
integration, these materials provide a platform for real-time,
feedback-controlled therapy—supporting both tissue recovery and
functional vision preservation.

4 Ocular diseases related to
hyperuricemia

Hyperuricemia, defined by elevated serum uric acid (UA) levels,
has been implicated in a variety of systemic conditions, including
gout, renal dysfunction, and cardiovascular diseases. Emerging
evidence suggests that hyperuricemia is also linked to several
ocular disorders, such as age-related macular degeneration
(AMD), diabetic retinopathy (DR), and glaucoma. Elevated UA
levels may contribute to the development and progression of these
ocular pathologies by inducing oxidative stress, promoting
inflammatory responses, and compromising the integrity of the
blood-retinal barrier (Biggerstaff et al., 2021; Serra et al., 2021).

4.1 Pathological mechanisms of
hyperuricemia in ocular diseases

Elevated serum uric acid (UA) contributes to ocular damage
through multiple pathogenic pathways. High UA levels can promote
endothelial cell dysfunction and increase vascular permeability,
thereby accelerating the progression of DR and other retinal
disorders (Ao et al., 2017; Li et al., 2019). Hyperuricemia
exacerbates retinal microvascular and neuronal damage, with
distinct mechanistic insights emerging from recent studies. Lu
et al. (2022) reported an 18.3% reduction in superficial capillary
plexus density among hyperuricemic women (p < 0.01), showing a
significant linear correlation with serum urate levels (β = −0.24, p =
0.003). Complementarily, Yang et al. (2023) found that in males,
each 1 mg/dL increase in serum UA was associated with a 13%
increase in deep retinal capillary non-perfusion areas (OR = 1.13,

95% CI 1.05–1.22). Wei et al. (2023) further demonstrated that
hypertensive patients with cerebral white matter lesions exhibited
impaired macular microvascular architecture (FD-300, r = −0.41,
p = 0.007), implicating disruption of the blood–retinal barrier.

Gout, a condition intrinsically linked to hyperuricemia, also
presents with distinct ocular manifestations. Studies by Sharon and
Schlesinger and Ao et al. (Sharon and Schlesinger, 2016; Ao et al.,
2017) reported conjunctival urate crystal deposits in 33% of patients
and neurotrophic dry eye in 22%. Karti et al. (2024) quantified
retinal neurodegeneration in gout patients, showing sectoral
thinning of the retinal nerve fiber layer (RNFL: −9.6 μm nasal)
and ganglion cell complex (GCC: −12.3 µm inferior; p ≤ 0.005).
These findings suggest that crystalline deposition within ocular
tissues can provoke both inflammation and neurodegeneration.
Meyer et al. (2024) provided pathological evidence of this process
through a case of eyelid tophus, linking IL-1β–driven
M1 macrophage polarization to chronic ocular inflammation. UA
crystals activate the NLRP3 inflammasome, leading to the release of
pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α. These
mediators contribute to retinal neovascularization and macular
edema in conditions such as DR and AMD (Thounaojam et al.,
2019). In the pathogenesis of OAG, UA induces oxidative stress in
the trabecular meshwork, impairing aqueous humor outflow and
leading to elevated IOP. Additionally, crystal deposition contributes
to RGC apoptosis (Biggerstaff et al., 2021; Serra et al., 2021).
Moreover, hyperuricemia may exacerbate AMD by promoting
choroidal inflammation. Elevated UA levels trigger the release of
inflammatory mediators in the retina, damaging retinal pigment
epithelial (RPE) cells and fostering the development of choroidal
neovascularization (Pai et al., 2021; Pai et al., 2024). These findings
underscore the dual role of UA in AMD - as both a systemic marker
of oxidative stress and a direct mediator of ocular tissue injury -
contributing to disease mechanisms across both anterior and
posterior segment disorders.

4.2 Materials science in the treatment of
hyperuricemia-related ocular diseases

Emerging biomaterial-based strategies are transforming the
management of hyperuricemia-related ocular pathologies through
precision-targeted interventions. Hyperuricemia, which is closely
linked to gout and ocular diseases such as uveitis and retinal vascular
occlusion, can be effectively addressed using advanced drug
delivery systems.

Hydrogel microneedles loaded with colchicine have shown
promise in localized treatment by effectively reducing
inflammatory cytokine levels (Jiang et al., 2023). Macrophage-
targeted liposomes encapsulating melatonin have demonstrated
the ability to reprogram macrophage metabolism, presenting a
novel therapeutic approach for ocular inflammation (Ma et al.,
2025). A chitosan-based microneedle platform co-delivering
colchicine and uricase enables sustained drug release, thereby
improving patient adherence and supporting systemic uric acid
management (Yang et al., 2023). Manganese-doped albumin
nanogels (MAGNs) loaded with berberine have also shown
efficient bioavailability and targeted delivery to inflamed tissues,
which could be beneficial in treating hyperuricemia-associated

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Chen et al. 10.3389/fbioe.2025.1618232

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1618232


ocular inflammation (Sun et al., 2023). Furthermore, red blood cell-
encapsulated uricase formulations extend circulation time and
enhance uric acid reduction, offering a promising strategy for
enzyme replacement therapy (Ban et al., 2024). Microneedles
provide a controlled and localized drug delivery system, with
potential applications for ocular diseases linked to hyperuricemia
(Yi et al., 2024). Febuxostat-loaded microneedles and nanogels
enhance drug bioavailability and penetration, offering a solution
for treating hyperuricemia-related eye conditions (Patel and
Thakkar, 2023; Khan et al., 2024). In conclusion, these advances
in materials science offer effective, non-invasive treatment options
for hyperuricemia-related ocular diseases by enhancing drug
targeting, minimizing systemic side effects, and improving patient
compliance.

5 Diabetic retinopathy

Diabetic retinopathy is the leading cause of vision loss among
individuals with diabetes. As the global prevalence of diabetes
continues to rise, the incidence of DR is also increasing. The
hallmark pathological features of DR include microvascular
damage and pathological neovascularization.

5.1 Pathological mechanisms of diabetic
retinopathy induced by cardiovascular
risk factors

The pathological mechanisms by which cardiovascular risk
factors contribute to DR underscore the disease’s complexity and
the profound influence of systemic health on ocular outcomes.
Hypertension (HTN) independently elevates the risk of DR, with
each 1-unit increase in systolic blood pressure variability associated
with a 2% higher risk (RR = 1.02), and even high-normal blood
pressure (≥120/80 mmHg) showing a significant association with
DR incidence (aOR = 1.114) (Zhang et al., 2023; Noroozi et al.,
2024). These findings suggest that effective DR management must
incorporate systemic parameters such as blood pressure, as they play
a critical role in modulating retinal damage progression. Mendelian
randomization studies further support a causal relationship between
HTN and DR, with elevated intraocular pressure (IOP) also
contributing to DR risk (OR = 1.090) (Wang X.-F. et al., 2024).
Hypertension accelerates both retinal neurodegeneration and
microvascular damage, leading to decreased peripapillary retinal
nerve fiber layer (pRNFL) thickness, ganglion cell complex thinning,
and reduced microvascular density compared to normotensive
individuals with DR. It also promotes disease progression from
early arteriolar thickening to advanced capillary occlusion (Huang
and Fawzi, 2024; Sung et al., 2024; Yu et al., 2025). While achieving
blood pressure control (target <130/80 mmHg) reduces the risk of
DR onset (RR = 0.78), its effect on disease progression is modest
(RR = 0.94). Notably, up to 19.7% of diabetic patients with a disease
duration of ≥8 years remain undiagnosed with HTN (Woodward
et al., 2020; Qureshi et al., 2025), underscoring the need for
integrated retinal and blood pressure monitoring. The
progression from arteriolar thickening to capillary occlusion
illustrates how vascular injury leads to impaired retinal

perfusion, exacerbating ischemia and contributing to retinal
degeneration.

Hyperglycemia also plays a central role in DR pathogenesis by
amplifying oxidative stress and inflammation, largely via the
metabolic memory effect (Taurone et al., 2020; Huang et al.,
2024). Elevated glucose levels trigger pericyte apoptosis, blood-
retinal barrier (BRB) disruption, and vascular leakage through
several mechanisms: mitochondrial reactive oxygen species (ROS)
generation, advanced glycation end-product (AGE)–receptor for
AGE (RAGE) signaling, VEGF upregulation, and microglial
exosomal release of miR-155 (Lin et al., 2021; Tang et al., 2023;
Wang X. et al., 2024). These pathways synergistically exacerbate
retinal ischemia, as evidenced by increased central foveal thickness
(Δ = +45 μm, P = 0.002) (Wang X. et al., 2024). Thus, comprehensive
DR management must address not only local retinal pathology but
also systemic metabolic and hemodynamic dysfunction.

Among ocular diseases associated with cardiovascular risk
factors, DR is one of the most prevalent and severe. Sensing
technologies are proving highly valuable in the monitoring,
diagnosis, and treatment of such conditions (Keum et al., 2020).
While current treatments primarily rely on intravitreal injection of
anti-VEGF antibodies, long-term use of these agents can result in
complications such as endogenous endophthalmitis (Li Y.-N. et al.,
2023). Consequently, there is an urgent need for non-invasive
diagnostic and therapeutic alternatives. To overcome the
limitations of conventional injection-based therapies, nanoparticle
drug delivery systems offer unique advantages, including targeted
delivery and sustained release. For example, core-shell
polycaprolactone/Pluronic® F68 nanoparticles loaded with
triamcinolone acetonide alleviate both inflammation and vascular
abnormalities (Mahaling et al., 2018) loaded with triamcinolone
acetonide simultaneously alleviate inflammation and vascular
abnormalities. IL-12-loaded polymeric nanoparticles (IL-12-
PNPs) inhibit VEGF-A and MMP-9 expression, helping to
restore retinal thickness (Zeng et al., 2019). Fenofibrate-loaded
nanoparticles (Feno-NPs) maintain therapeutic efficacy for up to
60 days after a single injection, reducing vascular leakage and
neovascularization (Qiu et al., 2019). Chitosan/PLGA-based
hydrogels delivered via subconjunctival injection modulate the
VEGF/Occludin balance and reduce retinal apoptosis (Rong
et al., 2019). Magnetic nanoparticle-optical coherence
tomography (OCT) conjugates improve drug activity by over
100-fold and achieve targeted distribution to the retina (Amato
et al., 2020). These advanced delivery systems integrate anti-
inflammatory, anti-angiogenic, and neuroprotective mechanisms,
offering sustained drug release (ranging from weeks to months) with
minimal invasiveness via intravitreal or subconjunctival routes. As a
result, they significantly enhance bioavailability and reduce
treatment-associated risks, pushing DR therapy toward a
precision medicine model. Emerging solutions include quantum
dot-based immunosensors for tear biomarker detection in diabetic
retinopathy (LOD = 110 pg/mL) and SGLT2 inhibitors reduce 46%
ROS accumulation and significantly attenuate retinal apoptosis
independent of glucose lowering, through the ERK1/
2–cPLA2–AA–ROS signaling cascade (Wang et al., 2017; Hu
et al., 2022).

In parallel, non-invasive treatment strategies have made notable
progress. Smart supramolecular peptide-based eye drops capable of
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selectively binding soluble Semaphorin 4D effectively reduce
pathological retinal neovascularization and leakage in DR models
(Li Y.-N. et al., 2023). These innovations complement nanoparticle-
based therapies, with sensing technologies - such as near-infrared
contact lenses and fingertip AGE detectors-enabling early-stage
diagnosis, while drug delivery systems target mid- and late-stage
pathology through multi-target interventions (anti-inflammatory,
anti-angiogenic, neuroprotective). The integration of sensor arrays
with machine learning has further enabled rapid, cost-effective, and
reliable diagnostic tools for diabetes and DR, particularly via non-
invasive biomarker detection (Faura et al., 2022). These material-
science - driven advancements not only improve patient compliance
but also establish a new paradigm for DR management by precisely
modulating key pathological pathways, including VEGF, ICAM-1,
and Occludin.

6 Age-related macular degeneration

Age-related macular degeneration is the leading cause of vision
loss in the elderly population. In addition to increasing the risk of
cardiovascular diseases, cardiovascular risk factors are closely linked
to both the onset and progression of AMD (Chen et al., 2023;
Nahavandipour et al., 2020; Yadav et al., 2024). The underlying
mechanisms connecting these conditions involve metabolic
dysregulation, chronic inflammation, and vascular damage, which
interact in complex and synergistic ways.

6.1 Pathological mechanisms of AMD
induced by cardiovascular risk factors

Hypertension significantly increases the risk of wet age-related
macular degeneration (wAMD). It is also associated with a greater
need for anti-VEGF treatments, largely due to choroidal
endothelial dysfunction. The impact of pharmacological
interventions varies: β-blockers such as propranolol have been
shown to reduce late-stage AMD risk by 30%, likely through
improved choroidal perfusion and suppression of interleukin-6
(IL-6). In contrast, thiazide diuretics are associated with a 45%
increased risk of AMD in women—an effect that appears to be
mitigated when co-administered with ACE inhibitors or
angiotensin receptor blockers (Xu et al., 2020; Faura et al.,
2022; Luo et al., 2023). Dyslipidemia also contributes to AMD
risk in a nonlinear fashion, with both very high (≥77 mg/dL) and
very low (<40 mg/dL) high-density lipoprotein cholesterol (HDL-
C) levels linked to increased susceptibility. Genetic polymorphisms
related to lipid metabolism - such as CETP rs173539 and
COLEC12 rs1999930 - further influence this relationship (Chen
et al., 2025). A Korean study reported a 52% increased risk of AMD
in individuals with hyperlipidemia (aHR = 1.52), while long-term
statin use (e.g., atorvastatin for ≥5 years) was associated with a
dose-dependent risk reduction (aHR = 0.70), likely due to statins’
anti-inflammatory and antioxidant properties (Chen et al., 2023).
These findings support the potential for statins to play a dual role
in cardiovascular risk reduction and AMD progression, promoting
an integrated treatment strategy that addresses both systemic and
ocular health.

Data from Iran showed a 6.4% prevalence of AMD among
patients with hyperlipidemia, with increased risk observed in those
with concurrent hypertension and diabetes, emphasizing the
broader impact of metabolic syndrome on ocular health (Panahi
et al., 2023). The relationship between diabetes and AMD is complex
and heterogeneous. For instance, newly diagnosed diabetic patients
face a 30% increased risk of wAMD, while insulin-treated
individuals show a 23% higher incidence (aHR = 1.23). Those
with vision-threatening diabetic retinopathy (DR) have an even
greater risk (aHR = 1.35), likely mediated by hyperglycemia-induced
VEGF activation (Hwang et al., 2023; Lee et al., 2023). Meta-analyses
affirm a significant association between diabetes and advanced
AMD (OR = 1.38, 95% CI: 1.12–1.71), although cross-sectional
studies have reported inconsistent findings regarding wAMD
prevalence (Zhang Y. P. et al., 2022; Virtanen et al., 2023). IL-6
has emerged as a key molecular mediator in this process, with
systemic levels significantly elevated in late-stage age-related
macular degeneration (AMD), including geographic atrophy and
neovascular subtypes, while showing only marginal association with
early AMD (Nahavandipour et al., 2020; Yadav et al., 2024). Within
the local ocular microenvironment, IL-6 levels are closely correlated
with VEGF-A and ICAM-1 expression, implicating activation of the
STAT3 signaling pathway in neovascularization and disruption of
the blood-retina barrier (Li et al., 2022). Systemic inflammatory
markers also correlate strongly with disease severity. For instance,
each 1 mg/L increase in CRP is associated with an 8.2 μm reduction
in choroidal thickness. Elevated E-selectin levels not only predict
AMD progression but also indicate heightened cardiovascular risk
(Chen et al., 2021; Nashine et al., 2022), underscoring the shared
pathophysiology between endothelial dysfunction, vascular
compromise, and retinal degeneration.

The intricate interplay among systemic inflammation, vascular
health, and retinal pathology calls for an integrated, cross-
disciplinary approach that bridges cardiovascular and ocular care.
Targeting systemic inflammation may be critical in halting AMD
progression and mitigating its association with other
systemic diseases.

6.2 Materials science in age-related macular
degeneration

Materials science has revolutionized the treatment of AMD by
addressing the limitations of conventional anti-VEGF therapies.
Implantable drug depot systems now enable sustained release of
ranibizumab for up to 6 months, eliminating the need for additional
injections in 98% of patients and reducing intraocular drug level
fluctuations by 60% compared to monthly dosing (Khanani et al.,
2021; Patel et al., 2021). Nanotechnology-based delivery platforms
have significantly enhanced targeting efficiency. For example, pH-
sensitive PLGA nanoparticles extend the vitreous half-life of
bevacizumab from 9.8 to 34.5 days, while RGD-modified
liposomes achieve fivefold higher drug accumulation at lesion
sites (Chen X. et al., 2024; Xu et al., 2024). Synthetic HDL
nanoparticles engineered to deliver rapamycin to retinal pigment
epithelial (RPE) cells have demonstrated a 68% reduction in
choroidal neovascularization (Mei et al., 2022). Hydrogels, as
multifunctional carriers, also show great promise. Nanofiber
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hydrogels co-loaded with dexamethasone and ranibizumab
prolonged anti-VEGF efficacy up to 12 weeks in rabbit models
and reduced vitreous inflammation by 73% (Gao et al., 2023). Gene
therapy represents another major advancement. Adeno-associated
virus (AAV) vectors, such as RGX-314 delivered via subretinal
injection, can suppress VEGF expression for over 2 years. In
phase I/IIa clinical trials, 84% of patients required no additional
treatment during the study period (Campochiaro et al., 2024). This
approach offers the potential to replace years of repeated intravitreal
injections with a single, long-lasting intervention, exemplifying the
promise of regenerative medicine for chronic ocular conditions.

In the regenerative domain, collagen glue hydrogels that mimic
the biomechanical properties of the native extracellular matrix have
been used to support the differentiation of human embryonic stem
cells into RPE-like cells. These constructs enhanced photoreceptor
survival by 41% following transplantation (Moyo et al., 2024).
Interdisciplinary innovations are shifting AMD therapy from
passive treatment toward precision modulation. For example, the
novel rGO/PBASE electrochemical biosensor enables rapid
detection of complement C3 protein within 15 min (limit of
detection: 0.43 ng/mL), offering a high-sensitivity tool for early
AMD screening and laying the foundation for integrated
diagnostic–therapeutic systems (Ghosh et al., 2024). In parallel,
artificial intelligence is being increasingly applied to clinical
decision-making. Deep learning models have been shown to
improve AMD staging accuracy and treatment response
prediction by 23% (Crincoli et al., 2024). These models, when
integrated with biosensor-derived data, can guide personalized
drug administration and optimize individualized care strategies
for AMD patients. Despite these promising advances, challenges
remain. Issues such as long-term stability (e.g., acidic
microenvironments generated by PLGA degradation) and
immune compatibility (e.g., immunogenicity of PEGylated
liposomes) need to be resolved (Bonechi et al., 2023; Marquina
et al., 2023). Nevertheless, these innovations collectively mark a
paradigm shift in AMD management - from repetitive, reactive
interventions to personalized, sustained, and precision-based
therapeutic strategies.

7 Non-arteritic anterior ischemic optic
neuropathy

Non-arteritic anterior ischemic optic neuropathy (NAION) is
an acute optic neuropathy strongly associated with vascular
dysfunction. Its pathogenesis involves the synergistic interaction
of multiple cardiovascular and metabolic risk factors.

7.1 Pathological mechanisms of NAION
induced by cardiovascular risk factors

Systematic reviews and meta-analyses have identified
hypertension, diabetes, and hyperlipidemia as independent risk
factors for NAION. In particular, malignant hypertension can
directly induce optic disc edema, serving as a direct trigger for
NAION (Liu et al., 2021; Chatziralli et al., 2022; Miralles Pechuan
et al., 2024). Notably, hypertension poses a dual threat by increasing

the incidence of NAION and elevating the risk of concomitant
cerebral infarction (Li X. et al., 2023). Hyperlipidemia, especially
elevated triglycerides (SMD = +0.58, 95% CI: +0.12 to +1.04) and
lipoprotein(a) levels (OR = 2.88, 95% CI: 1.01–8.21)—worsens optic
nerve ischemia by promoting atherosclerotic changes (Chatziralli
et al., 2022). The association between diabetes mellitus and an
increased risk of NAION is well documented (Chen et al., 2013;
Sharma et al., 2017). While visual prognosis in diabetic patients may
not differ significantly from that in non-diabetics, coexisting
cardiovascular conditions such as ischemic heart disease may
further exacerbate optic nerve injury (Sharma et al., 2017).
Among individuals with metabolic syndrome, key contributors to
NAION include hyperglycemia, elevated triglycerides, and low high-
density lipoprotein (HDL) levels (Kohli et al., 2022). Recent
attention has focused on a potential link between glucagon-like
peptide-1 receptor agonist, especially semaglutide, and NAION.
This association presents a clinical paradox: while semaglutide
provides substantial benefits in glucose regulation and
cardiovascular protection, studies have reported a significantly
increased NAION risk in patients with obesity or diabetes
(hazard ratio [HR] = 4.28–7.64; cumulative incidence = 8.9%).
However, broader population studies show a more modest
association (HR = 1.32), highlighting the influence of population
heterogeneity (Shin et al., 2021; Grauslund et al., 2024; Cai et al.,
2025; Chou et al., 2025). Given these findings, clinicians should
weigh semaglutide’s benefits against its potential ocular risks,
particularly in high-risk patients, and prioritize optic disc
evaluation and regular ophthalmic follow-up (Malerbi and
Bertoluci, 2025). Furthermore, obstructive sleep apnea syndrome
significantly increases the risk of NAION (RR = 3.28, 95% CI:
2.08–5.17) and coronary heart disease (RR = 1.68, 95% CI:
1.24–2.27). Inherited thrombophilic conditions, such as Factor V
Leiden mutation, have also been associated with NAION (RR = 2.21,
95% CI: 1.19–4.09) (Liu et al., 2021).

7.2 Application of materials science
in NAION

Although the application of materials science in the treatment of
non-arteritic anterior ischemic optic neuropathy (NAION) remains
in the exploratory phase, early advances show promising potential.
Notably, curcumin-polydopamine nanocomposite hydrogels (Cur@
PDA@GelCA) have demonstrated significant neuroprotective
effects in optic nerve injury models. These materials act by
inhibiting reactive oxygen species (ROS)-mediated oxidative
stress, indicating potential utility for acute-phase intervention
in NAION.

In addition to their therapeutic efficacy, the hydrogel’s strong
tissue adhesion and excellent biocompatibility highlight its
suitability for localized drug delivery and targeted treatment (Liu
et al., 2024). These findings underscore the broader feasibility of
integrating materials science into NAION therapy.

Future research should aim to further elucidate the molecular
mechanisms underlying NAION and leverage multi-omics
technologies alongside biomaterials innovation to develop
personalized treatment strategies that can improve
patient outcomes.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Chen et al. 10.3389/fbioe.2025.1618232

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1618232


8 Outlook and summary

Materials science is increasingly recognized as a pivotal avenue
for addressing ocular diseases associated with cardiovascular risk
factors. Innovations such as biosensor-integrated smart contact
lenses, PLGA-based nanocarriers, and neuroprotective hydrogels
are driving therapeutic strategies toward greater precision, reduced
invasiveness, and prolonged efficacy (Table 1). However, several
critical challenges remain, such as the acidic microenvironment
generated by PLGA degradation, the long-term biocompatibility of
implants, and the limited efficiency of clinical translation.

Future research should advance along multiple fronts. In
material design, pH-buffering coatings and environment-
responsive modifications may help reduce local tissue irritation.
For preclinical validation, organoid models and microfluidic “eye-
on-a-chip” systems offer physiologically relevant platforms for
evaluating safety and efficacy. To improve immune compatibility,
approaches such as PEGylation and zwitterionic surface engineering
can minimize inflammation and extend in vivo functionality.

Facilitating clinical translation will require early and proactive
engagement with regulatory agencies to navigate approval pathways
for nanomedicines and combination therapeutic devices. Additionally,
stronger collaboration between academia and industry, paired with
standardized, scalable manufacturing processes, will be essential for
bridging the gap between laboratory innovation and clinical application.

In conclusion, the integration of advanced materials, biosensing
technologies, and intelligent drug delivery systems offers a
comprehensive and promising framework for the personalized
management of ocular diseases in patients with cardiovascular
comorbidities. A deeper alignment between engineering
innovation and clinical practice will be vital to achieving long-
lasting, widely applicable therapeutic outcomes.
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