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This study presents an AI-enhanced hybrid rehabilitation system that integrates a
dual-arm robotic platform with electromyography (EMG)-guided neuromuscular
electrical stimulation (NMES) to support upper-limb motor recovery in stroke
survivors. The system features a symmetrical robotic arm with real-time
anatomical adaptation for bilateral therapy and incorporates a Support Vector
Machine (SVM)-based model for continuous muscle fatigue detection using
time-frequency features extracted from EMG signals. A ROS2-based
architecture enables real-time signal processing, adaptive control, and remote
supervision by clinicians. The system dynamically adjusts stimulation parameters
based on fatigue classification results, allowing personalized and responsive
therapy. Preliminary clinical validation with three post-stroke patients
demonstrated a 44% increase in range of motion, 45% enhancement in active
torque, and 36% reduction in passive torque. The SVM model achieved a 95%
accuracy in fatigue detection, and initial patient results suggest the feasibility and
potential benefits of this intelligent, closed-loop rehabilitation approach.
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1 Introduction

Rehabilitation is critical for restoring motor function in individuals affected by
neurological disorders such as stroke, which often results in upper-limb impairments
and reduced independence in daily living. In recent years, robotic rehabilitation systems
have gained significant traction for their ability to deliver repetitive, high-intensity, and
task-specific therapy—factors known to promote neuroplasticity and functional recovery
(Kabir et al., 2022; Gopura et al., 2023). These systems offer distinct advantages over
conventional therapy, including precise kinematic feedback, repeatable movement
trajectories, and objective performance metrics (Carbone and Gonçalves, 2022; Han
et al., 2023).

Various robotic modalities have emerged, including active-assisted devices, active-
constrained robots, and adaptive exercise platforms, each tailored to patient-specific needs.
Despite these advances, robot-only systems often lack the neuromuscular engagement
necessary to restore voluntary motor control. To overcome this, hybrid rehabilitation
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strategies that combine robotic assistance with Functional Electrical
Stimulation (FES) have been explored, leveraging the benefits of
both modalities (Niu et al., 2022; Montoya et al., 2022).

Real-time control is a critical requirement in robotics,
particularly in medical and rehabilitation applications where
precision, safety, and responsiveness are paramount. The Robot
Operating System 2 (ROS2) has emerged as a robust middleware
framework designed to address real-time constraints and enhance
modularity in robotic systems (Open Robotics). Despite its
increasing adoption across various robotics domains, the
application of ROS2 in rehabilitation robotics remains relatively
limited, positioning our work among the pioneering efforts in this
field. Research has demonstrated ROS2’s potential in rehabilitation
applications, such as trajectory tracking for knee rehabilitation
robots (Arcos et al., 2022) and brain–computer interface (BCI)-
controlled robotic arms for assistive technology (Rivas et al., 2024).
However, the broader implementation of ROS2 in rehabilitation
exoskeletons and motor recovery systems is still emerging.

Recent advancements, including bioinspired hierarchical
electronic architectures for robotic locomotion assistance
(Delgado-Oleas et al., 2023) and the integration of digital twins
with exoskeletons for telerehabilitation (Falkowski and Gwardecki,
2024), highlight the growing interest in intelligent, adaptable
rehabilitation systems. Furthermore, IoT-enabled humanoid
robotics for motor rehabilitation (Moghbelan et al., 2024) and
multi-layered assessment approaches for hand spasticity using
exoskeletons (Yu et al., 2025) reinforce the necessity of real-time,
adaptive control frameworks. By leveraging ROS2’s enhanced
communication reliability, reduced latency, and dynamic
adaptability, our research contributes to expanding its
applicability in medical robotics, demonstrating its potential to
revolutionize patient-centered robotic interventions.

FES delivers electrical impulses to targeted muscles, inducing
contractions that mimic voluntary movement. This approach has
demonstrated efficacy in promoting motor relearning and upper-
limb strength (Niu et al., 2019; Sousa et al., 2022; Tefertiller et al.,
2022). However, traditional FES protocols are typically open-loop
and static, often leading to overstimulation, patient discomfort, and
premature muscle fatigue—particularly in patients with intact
sensory pathways (Peckham and Knutson, 2005; Doucet et al.,
2012). Moreover, most systems lack the ability to adapt
stimulation parameters in real time based on muscle condition
(Sharififar et al., 2018).

Machine learning (ML) has increasingly been applied to
enhance adaptive neuromuscular electrical stimulation (NMES)
for rehabilitation, offering personalized and precise control over
functional electrical stimulation (FES). Recent advances in deep
learning and ML-based FES controllers have demonstrated
significant improvements in system adaptability, robustness,
and patient-specific tuning. Researchers in Arcolezi et al. (2021)
introduced an ML-driven approach to optimize the tuning of a
robust integral of the sign of the error (RISE) controller for lower-
limb rehabilitation, leveraging system identification techniques to
improve NMES effectiveness. Similarly, research by Sierotowicz
and Castellini (2023) explored robot-inspired human impedance
control via functional electrical stimulation, applying ML-based
techniques to adapt stimulation patterns dynamically based on
user responses. These works underscore the growing role of

intelligent controllers in rehabilitation, allowing for real-time
adjustments and improved neuromuscular recovery. By
integrating deep learning models into NMES control, future
advancements can further enhance the precision and
adaptability of rehabilitation protocols, ensuring optimal
stimulation levels tailored to individual patients’ needs.

To address these limitations, we propose a closed-loop, AI-
enhanced hybrid rehabilitation system that integrates robotic
assistance with real-time, EMG-driven neuromuscular electrical
stimulation, as illustrated in Figure 1. Central to our approach is
a Support Vector Machine (SVM)-based model that continuously
estimates muscle fatigue from EMG signals, enabling adaptive,
patient-specific stimulation protocols. A symmetrical, dual-arm
robotic platform was developed to support bilateral upper-limb
therapy (Bouteraa et al., 2023; Bouteraa et al., 2020), featuring
automatic limb-length adjustments to accommodate anatomical
variations. The system is implemented using a ROS2-based
control architecture, enabling real-time processing, modular
extensibility, and remote therapist supervision.

This closed-loop configuration facilitates adaptive therapy
sessions that dynamically respond to patient needs, ensuring both
safety and effectiveness.

The main contributions of this work are as follows:

• Development of a dual-arm rehabilitation robot with real-time
anatomical adaptation and bilateral therapy support.

• Integration of an EMG-driven adaptive stimulation protocol,
using SVM-based fatigue classification for personalized
intervention.

• Implementation of a ROS2-based control framework for real-
time monitoring, configuration, and data acquisition.

• Preliminary Evaluationwith post-stroke patients,
demonstrating measurable improvements in range of
motion, neuromuscular activation, and torque output.

The remainder of this paper is structured as follows: Section 2
describes the system architecture and methodology. Section 3
presents experimental results and clinical analysis. Section 4
concludes with key findings and discusses future directions.

2 Materials and methods

2.1 Participants

Three male post-stroke patients (aged 48–66 years) with upper-
limb motor impairments participated in this study. All patients were
enrolled at the inpatient rehabilitation department of King
Abdulaziz University Hospital in Jeddah, Saudi Arabia. The
inclusion criteria included: (1) a history of ischemic or
hemorrhagic stroke resulting in hemiparesis, (2) the ability to
provide informed consent, and (3) absence of severe cognitive or
sensory deficits.

The detailed clinical characteristics of the participants are
summarized below:

• Patient 1: 52 years old, 14 months post-stroke, right-sided
hemiparesis due to left middle cerebral artery (MCA) infarct,
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Fugl-Meyer Assessment Upper Extremity (FMA-
UE) score = 28.

• Patient 2: 66 years old, 10 months post-stroke, left-sided
hemiparesis due to right basal ganglia hemorrhage,
FMA-UE = 35.

• Patient 3: 48 years old, 6 months post-stroke, right-sided
hemiparesis due to left parietal infarct, FMA-UE = 22.

All participants presented with moderate upper-limb motor
impairment and were undergoing post-acute rehabilitation.
Ethical approval was obtained from the Institutional Review
Board of King Abdulaziz University (IRB Ref: 34/22), and written
informed consent was collected from all participants prior to
enrollment.

All participants were in the chronic phase of stroke recovery
(≥6 months post-onset), having completed their acute and early
subacute rehabilitation phases prior to study enrollment. Clinical
records and rehabilitation logs indicated minimal to no functional
gains during the 4–8 weeks preceding the intervention, suggesting
that natural recovery had largely plateaued. As such, the
improvements observed during the study are unlikely to reflect
spontaneous recovery alone and more likely stem from the hybrid
robotic-stimulation intervention.

2.2 Rehabilitation robot design

The rehabilitation platform consists of a symmetrical dual-arm
robotic system designed to deliver bilateral upper-limb therapy.
Each arm includes a series of passive, low-friction joints connected
via adjustable linkages to accommodate individual anatomical
variations. The system is equipped with an automatic limb-length
adaptation mechanism that ensures symmetrical alignment between
the affected and unaffected arms.

The unaffected limb serves as a reference, guiding the motion of
the impaired limb through synchronized bilateral movement. This
configuration supports task-specific training, encourages motor
relearning, and reduces the cognitive demand on the patient. The
robot’s mechanical structure minimizes resistance and enables safe
physical human-robot interaction.

Figure 2 illustrates the complete setup of the dual-arm robot.

FIGURE 1
System overview illustrating the interaction between the robotic platform, EMG acquisition module, SVM-based fatigue estimation model, and
stimulation control unit.

FIGURE 2
Mechanical design of the symmetrical dual-arm rehabilitation
robot for bilateral training.
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2.3 NMES integration

To enhance neuromuscular activation and support voluntary
motor relearning, the robotic platform was integrated with a
neuromuscular electrical stimulation (NMES) unit (Bouteraa
et al., 2020). The NMES device delivers electrical pulses to
specific muscles of the affected arm via surface electrodes. This
configuration enables targeted stimulation of key muscle groups
involved in the desired movements. The stimulation
parameters—including pulse width, amplitude, and
frequency—were dynamically adjusted in real time based on
EMG-derived fatigue levels. When signs of fatigue were detected
by the classification system, the stimulation intensity was modulated
to reduce muscle overload and discomfort, ensuring continued
engagement during therapy.

EMG signals were acquired from the affected limb using bipolar
surface electrodes placed over the muscle belly and referenced to a
neutral location. These signals were used not only for fatigue
estimation, but also to guide the adaptive stimulation mechanism
and monitor patient effort throughout the rehabilitation sessions.

This closed-loop integration ensures safe and personalized
therapy by adapting stimulation in response to the patient’s real-
time physiological state.

2.4 Control architecture

The control architecture of the hybrid rehabilitation system is
built on the Robot Operating System 2 (ROS2) middleware (Open
Robotics), enabling modular design, low-latency communication,
and real-time signal processing. The software framework consists of

three primary layers: data acquisition, signal processing and
decision-making, and actuation.

In the first layer, raw EMG signals are continuously acquired
through a USB interface and filtered to remove motion artifacts and
ambient noise. These signals are then passed to the second layer,
where time-domain and frequency-domain features are extracted. A
pre-trained Support Vector Machine (SVM) classifier uses these
features to estimate the level of muscle fatigue in real time.

Based on the output of the fatigue classifier, the third layer
adjusts the parameters of the NMES device and commands the
robotic actuators accordingly. ROS2 nodes handle synchronization
between the data streams, publish EMG features, subscribe to
classification outputs, and trigger stimulation adjustments. The
system allows remote monitoring and configuration by clinicians
via a user interface layer, promoting clinical usability and flexibility.

Figure 3 provides an overview of the ROS2-based control loop,
showing the integration of biosignal acquisition, processing, and
adaptive actuation.

2.5 EMG signal processing

The EMG signals were acquired from specific muscles of the
affected arm using bipolar surface electrodes. Signals were sampled
at 1 kHz and transmitted via a USB interface to the ROS2 processing
unit. Pre-processing steps included a fourth-order Butterworth
band-pass filter (20–450 Hz) to remove motion artifacts and
power line interference, followed by full-wave rectification and
smoothing using a moving average window of 200 ms. These
operations reduced noise and prepared the signals for feature
extraction.

FIGURE 3
Overview of the ROS2-based control architecture integrating EMG processing, fatigue detection, and stimulation control.
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A set of time-domain and frequency-domain features were
extracted from overlapping signal windows with a step size of
100 ms. The selected features included:

• Root Mean Square (RMS) – estimates signal energy;
• Mean Absolute Value (MAV) – reflects muscle contraction level;
• Zero Crossing (ZC) – relates to frequency and signal variability;
• Mean Frequency (MF) – indicates muscle fatigue;
• Mean Power (MP) – provides insight into muscle
activation intensity.

These features were chosen based on their sensitivity to muscle
fatigue and classification performance (Sun et al., 2022; Phinyomark

et al., 2012). The extracted feature vectors served as input to the
SVM model described in Section 2.6.

Although our signal preprocessing pipeline involved
rectification and smoothing—steps which may attenuate high-
frequency components—we verified that the features retained
strong discriminative power. To illustrate this, we applied
Principal Component Analysis (PCA) to the feature space and
projected the data onto the first two principal components. As
shown in Figure 9, the Fatigue and Non-Fatigue classes formed
distinguishable clusters, supporting the validity of our preprocessing
approach. This confirms that, despite the non-standard filtering
method, the extracted features remain informative for
classification tasks.

FIGURE 4
Operating flowchart showing real-time fatigue detection and adaptive stimulation control. The terms “Fatigue Detected” and “Severe Fatigue”
correspond to the Moderate and High Fatigue states, respectively, as determined by SVM decision thresholds.
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2.6 SVM classification and fatigue estimation

To detect muscle fatigue in real time, a supervised Support
Vector Machine (SVM) model was developed using features
extracted from EMG signals as described in Section 2.5. The
classification problem was formulated as a binary task:
distinguishing between Fatigue and Non-Fatigue states based on
changes in muscle signal characteristics.

Ground truth labels for fatigue states were generated using a
dual-criterion method based on both mechanical output and EMG
signal characteristics. First, a segment was marked as “Fatigue” if
there was a decline of more than 20% in active torque relative to the
session baseline, indicating reduced muscular performance. Second,
the corresponding EMG segment had to show a decrease of at least
10% in mean frequency (MF), reflecting muscle fatigue-related
spectral shifts. Only when both conditions were simultaneously
met was the data labeled as “Fatigue.” Segments that did not
satisfy both thresholds were labeled as “Non-Fatigue.” Although
subjective patient feedback and clinician input were not
incorporated in this pilot phase, we recognize their potential for
enhancing labeling accuracy in future studies.

The selected features (RMS, MAV, ZC, MF, and MP) were
normalized and used to train the SVM model using a radial basis
function (RBF) kernel.

To train and evaluate the SVM classifier, we pooled labeled EMG
data from all three participants and applied stratified 5-fold cross-
validation. This ensured balanced representation of fatigue and non-
fatigue samples in each fold. The model achieved an average
classification accuracy of 95%. However, we recognize that
pooling data across subjects may result in overly optimistic
performance due to intra-subject data leakage. This limitation is
particularly relevant when the goal is to generalize to new, unseen
patients. In future work, we plan to implement leave-one-subject-
out (LOSO) cross-validation to better assess subject-independent
generalization and refine model robustness accordingly.

2.7 Adaptive FES control algorithm

The electrical stimulation parameters were dynamically adapted
based on the fatigue classification results from the SVM model.
Specifically, the SVM classified muscle fatigue into three categories:
Low Fatigue, Moderate Fatigue, and High Fatigue. Each fatigue level
was associated with a predefined stimulation amplitude range:

• Low Fatigue: 25–30 mA
• Moderate Fatigue: 18–24 mA
• High Fatigue: 12–17 mA

When a new fatigue level was detected, the control system
smoothly transitioned to the corresponding stimulation range
using linear ramping over a 3–5 s window to avoid abrupt
intensity changes. To prevent oscillatory behavior due to
classification fluctuations, a hysteresis threshold of 10% in
fatigue feature metrics was implemented. Additionally,
transitions were rate-limited to no more than one profile
change per 15 s. This ensured system stability, reduced patient
discomfort, and maintained effective muscle engagement
throughout the session.

As shown in Figure 4, the system continuously monitored EMG
signals during exercise. When the SVM classifier detected a change in
fatigue level, the controller adjusted the stimulation amplitude
accordingly and updated the ROS2 topic communicating with the
NMES unit. Transitions between the three stimulation profiles—Low
Fatigue, Moderate Fatigue, and High Fatigue—were based on the
decision function output of the SVM classifier. Specifically, we used
crisp thresholds on the SVM’s signed distance from the separating
hyperplane.

• Low Fatigue: decision value > +0.6
• Moderate Fatigue: −0.6 ≤ decision value ≤ +0.6
• High Fatigue: decision value < −0.6

FIGURE 5
Experimental protocol: hybrid system setup with patient during a supervised therapy session.
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These thresholds were empirically selected to ensure consistent
performance during pilot sessions. To prevent frequent state switching
due to borderline values, a hysteresis mechanism was implemented:
transitions between adjacent fatigue states required sustained decision
values beyond the boundary threshold for at least two consecutive
windows (200 ms each). This approach provided stable, interpretable
control and enabled smooth modulation of stimulation intensity.

This adaptive approach allowed the stimulation to remain
personalized and responsive to the patient’s physiological state
throughout the rehabilitation sessions, reducing the risk of
discomfort and maximizing functional engagement.

2.8 Experimental protocol

Each participant underwent a 6-week hybrid rehabilitation
program composed of 30 therapy sessions (five sessions per week).
Each session lasted approximately 45 min and included a warm-up
phase, repeated training cycles, and short rest intervals. The therapy
focused on task-specific, symmetrical bilateral movements facilitated by
the robotic system and guided by the stimulation controller.

At the beginning of each session, baseline EMG activity was recorded
during a relaxation period to calibrate the classifier. During active training,
the systemmonitoredmuscle activity and fatigue in real time, adjusting the
NMES intensity accordingly. Participants were seated in an upright
position, and armalignmentwith the robotwas verifiedbefore each session.

A trained therapist supervised the sessions and intervened when
necessary to assist or adjust stimulation parameters. All patient responses,
signal trends, and system logs were recorded for offline analysis.

Figure 5 shows the experimental setup used during the
therapy sessions.

The Rehabilitation Progress Factor (RPF) is a simplified,
intuitive metric designed to summarize each patient’s motor
improvement in terms of joint flexibility. It is defined as the ratio
between the final achieved range of motion (RoM) and a clinically
desired or target RoM, normalized to a 0–10 scale (Equation 1):

RPF � RoMpost

RoMtarget
( ) × 10 (1)

The target RoM was set to 90°, based on clinical guidelines for
functional upper-limb mobility. For example, a patient who

FIGURE 6
Generated report: patient 1.
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achieved 82° of RoM at the end of the intervention would receive
an RPF score of approximately 9.1. This score provides an
intuitive summary of joint mobility progress, aiding clinicians
in evaluating the effectiveness of therapy and guiding further
interventions.

RPF values were reported in Figures 6–8 alongside torque and
motion metrics to offer a high-level view of recovery.

3 Results

The proposed hybrid rehabilitation system was evaluated on
three post-stroke patients over 30 therapy sessions conducted across
a 6-week period. Quantitative assessments were carried out before
and after the intervention, focusing on three clinical metrics: range
of motion (RoM), active torque, and passive torque at the targeted
joint. As shown in Figures 6–8, the system enabled substantial
improvements across all three patients. On average:

• Range of motion increased by 44%, reflecting enhanced joint
flexibility.

• Active torque increased by 45%, indicating improved
voluntary muscular activation.

• Passive torque decreased by 36%, showing reduced joint
resistance and stiffness.

To further validate system performance at an individualized
level, automated reports were generated by the system’s
ROS2 interface, summarizing patient-specific progress over time.
These are presented in Figures 6–8, respectively.

The summarized outcomes were:

• Patient 1: Final RoM of 82°, RPF = 9.1/10, active torque
increased from 0.91 Nm to 1.42 Nm, passive torque
reduced from 0.39 Nm to 0.23 Nm.

• Patient 2: Final RoM of 63°, RPF = 7.0/10, active torque
reached 0.97 Nm, passive torque reduced to 0.30 Nm.

• Patient 3: Final RoM of 55°, RPF = 6.1/10, active torque
increased to 0.77 Nm, passive torque lowered to 0.29 Nm.

These individualized reports suggest the system’s potential to
support measurable functional improvements while adapting

FIGURE 7
Generated report: patient 2.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Ben Abdallah et al. 10.3389/fbioe.2025.1619247

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1619247


stimulation to real-time physiological states. Although the
improvements in range of motion, active torque, and passive
torque were consistent across all patients, the small sample size
(n = 3) limited statistical power. Wilcoxon signed-rank tests were
performed and yielded p-values of 0.25 across all three metrics.
While these values did not reach conventional significance
thresholds, the observed trends suggest meaningful clinical
improvement and motivate larger-scale studies for future validation.

Figure 9 presents the PCA scatter plot of the EMG features. As
shown, there is a clear separation between the Fatigue and Non-
Fatigue classes in the space of the first two principal components,
validating the discriminative quality of the features despite the
preprocessing steps.

4 Discussion

The results of this pilot study suggest that the integration of a
symmetrical dual-arm robotic platform with adaptive, EMG-driven
neuromuscular stimulation can effectively enhance upper-limb
rehabilitation outcomes in post-stroke patients. Specifically, we

observed measurable improvements in range of motion, increased
active torque, and decreased passive resistance across all
participants. These gains can be attributed to three key factors:
(1) the use of bilateral symmetry training, which leverages mirrored
motion to promote inter-limb coordination and neuroplasticity; (2)
the implementation of a fatigue-aware stimulation strategy, which
maintains engagement while preventing overstimulation; and (3)
the adoption of a real-time, ROS2-based control system, which
ensures responsive adaptation and continuous clinician oversight.
Together, these components create a synergistic framework that
enhances therapy personalization and efficacy. Improvements in
range of motion, active torque, and passive torque highlight both
neuromuscular reactivation and reduction of joint stiffness. The
range of motion (ROM) in the joints of the three participants
increased by approximately 44% from their initial states,
demonstrating the effectiveness of the rehabilitation robot in
enhancing joint mobility. These results are broadly consistent
with recent trends reported in the literature (Rouse et al., 2020;
Mashayekhi and Moghaddam, 2022), where comparable systems
have achieved 30%–40% improvements in RoM over similar
rehabilitation durations. While our observed ~44% improvement

FIGURE 8
Generated report: patient 3.
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is encouraging, caution is warranted in making direct comparisons
due to differences in sample size, patient characteristics, and
evaluation protocols.

Similarly, joint torque assessments revealed a 45% increase in
active torque and a 36% reduction in passive torque, highlighting the
system’s ability to improve neuromuscular function. These
outcomes represent a significant advancement compared to our
previous work using exoskeletons alone (Bouteraa et al., 2023) and
traditional electrical stimulation techniques that did not consider
muscle fatigue (Bouteraa et al., 2020). Related studies have combined
exoskeletons with functional electrical stimulation (Inoue et al.,
2022; Abdallah and Bouteraa, 2024), achieving moderate
improvements in motor function. However, the integration of
real-time muscle fatigue classification in our proposed protocol
enables more adaptive and personalized interventions, leading to
superior rehabilitation outcomes.

While recent research has investigated muscle fatigue estimation
during rehabilitation training (Mashayekhi and Moghaddam, 2022;
Zasadzka et al., 2022; Maffiuletti et al., 2018), integrating fatigue
information directly into the primary control system remains a
considerable challenge. In most existing systems, patient safety is
managed manually by pausing rehabilitation sessions or modifying
stimulation settings when signs of fatigue are observed.

This study addresses that limitation by implementing a robust
Support Vector Machine (SVM) classifier capable of detecting
muscle fatigue with a mean accuracy of 95%, outperforming
previous approaches (Zasadzka et al., 2022) where fatigue
detection accuracy was limited to 90% using linear models.

Unlike traditional open-loop stimulation systems that apply
fixed parameters throughout therapy, our approach adapts
stimulation in real time based on muscle fatigue levels estimated
via EMG signals and SVM classification. This closed-loop

mechanism allows the system to optimize therapeutic intensity
without exceeding fatigue thresholds—improving comfort and
engagement. Similar adaptive strategies have been explored in
exoskeleton control (Montoya et al., 2022), but few have
combined fatigue adaptation with bilateral robotic training and
ROS2 integration.

The system’s ability to generate patient-specific
reports—including real-time tracking of torque and mobility
parameters—offers a significant advantage for clinical monitoring
and decision-making. The inclusion of the RPF adds a high-level
indicator of recovery progress, useful for both therapists and
automated systems.

Bilateral mirrored motion, achieved through the symmetrical
robot design, provides consistent proprioceptive feedback and
leverages inter-limb coordination to stimulate neuroplasticity.
Coupled with adaptive FES, this synergy supports the re-
establishment of functional motor pathways (Niu et al., 2022).

Despite promising outcomes, the study is limited by a small
sample size. Future work will include a larger clinical cohort,
integration of cognitive intent (via EEG), and long-term outcome
tracking. Nevertheless, the results demonstrate the viability and
therapeutic potential of a real-time, AI-enhanced hybrid
rehabilitation system grounded in physiological data. Another
limitation of this pilot study is the absence of standardized
clinical outcome assessments, such as the Action Research Arm
Test (ARAT) or post-intervention Fugl-Meyer scores. Although
objective biomechanical measures (e.g., RoM, torque) provided
valuable insights into neuromuscular improvements, the
inclusion of validated clinical scales would enhance the clinical
relevance and comparability of results. Future studies will
integrate such tools to provide a more comprehensive evaluation
of functional recovery.

FIGURE 9
PCA-based scatter plot of extracted EMG features. The projection onto the first two principal components reveals a clear separation between the
Fatigue and Non-Fatigue classes, supporting the effectiveness of the preprocessing and feature extraction pipeline.
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5 Conclusion

This study presented a novel AI-driven hybrid rehabilitation
system that integrates symmetrical dual-arm robotic assistance with
adaptive neuromuscular electrical stimulation, guided by real-time
EMG analysis and machine learning. The proposed framework
leverages a Support Vector Machine classifier to detect muscle
fatigue and dynamically adjust stimulation intensity, ensuring
patient specific, fatigue-aware therapy.

Preliminary testing on three post-stroke patients demonstrated
measurable improvements in range of motion, active torque, and
reduction in joint stiffness. In addition to group-level gains,
individualized reports highlighted the system’s ability to adaptively track
and optimize progress in real time. The ROS2-based control architecture
enabled seamless integration of sensing, processing, actuation, and
reporting—facilitating modularity, clinical usability, and remote
supervision. These promising findings motivate further investigation
with larger clinical trials to robustly evaluate efficacy and generalizability.

By addressing key limitations of conventional FES and robot-only
systems, this work contributes a scalable, closed-loop solution for next-
generation neurorehabilitation. Future efforts will focus on expanding
clinical trials, incorporating EEG-based cognitive intent detection, and
further enhancing the system’s autonomy and personalization.
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