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Introduction: Bone diseases significantly impact global health by compromising
skeletal integrity and quality of life. In disease states linked to parathyroid
hormone (PTH) glandular secretion, disrupted PTH patterns typically promote
osteoclast proliferation, leading to increased bone resorption.
Methods: While mathematical modeling has proven valuable in analyzing bone
remodeling, current bone cell population models oversimplify PTH secretion by
assuming constant levels, limiting their ability to represent disorders
characterized by variations in PTH pulse characteristics. To address this, we
present a novel semi-coupled approach integrating a two-state PTH receptor
model with an established bone cell population model. Instead of conventional
Hill-type functions, we implement a cellular activity function derived from the
receptor model, incorporating pulsatile PTH patterns, cell dynamics, and
intracellular communication pathways.
Results: Our numerical simulations demonstrate the model’s capability to
reproduce various catabolic bone diseases, providing realistic changes in bone
volume fraction over a 1-year period. Notably, while direct implementation of
PTH disease progression in the bone cell population model fails to capture
diseases only characterized by altered pulse duration and baseline, such as
glucocorticoid-induced osteoporosis, our semi-coupled approach
successfully models these conditions.
Discussion: This physiologically more realistic approach to endocrine disease
modeling offers potential implications for optimizing therapeutic interventions
and understanding disease progression mechanisms.
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1 Introduction

As bone diseases continue to impact global health with serious
effects on quality of life, mathematical modeling offers insights into
the complex cellular and molecular mechanisms, which control
bone remodeling. The objective of the current work is to develop
a multi-scale computational model of bone remodeling which can
predict bone diseases related to dysfunctional parathyroid
gland activity.

The parathyroid gland is responsible for the production of
parathyroid hormone (PTH), one of the major hormones in
vertebrates besides calcitriol and calcitonin for regulation of
calcium homeostasis and bone health (Hernández-Castellano
et al., 2020). The pulsatile nature of PTH secretion is a
fundamental characteristic shared by many hormones, where
pulsatility is believed to modulate target organ responsiveness
and shows deviations in disease states as well as circadian and
seasonal fluctuations (Chiavistelli et al., 2015). The PTH secretion
pattern is characterized by tonic (i.e., constant) and pulsatile
components. In healthy subjects, the tonic part of PTH secretion
constitutes the majority (70%), whereas approximately 30% is
secreted in low-amplitude and high-frequency bursts occurring
every 10–20 min, superimposed on the tonic secretion
(Chiavistelli et al., 2015). While the exact mechanisms underlying
pulsatile hormone secretion are complex and not yet fully
understood, the biological importance of PTH pulsatility to bone
metabolism is supported by experimental evidence showing that
intermittent PTH drug administration produces anabolic effects,
whereas continuous administration results in catabolic outcomes
(Locklin et al., 2003; Capriani et al., 2012). To understand this
complex regulatory mechanism, it is necessary to examine PTH
effects at the cellular level.

PTH plays a central role in maintaining calcium homeostasis
through a feedback loop: parathyroid cells express calcium-sensing
receptors that detect changes in serum calcium levels, with low
calcium triggering increased PTH pulse amplitude and frequency,
while high calcium results in the opposite effect (Chiavistelli et al.,
2015). This creates a regulatory cycle where low serum calcium
stimulates PTH secretion, which enhances bone remodeling activity
and calcium release, leading to increased serum calcium levels. As
calcium levels rise, PTH secretion is reduced and the thyroid releases
calcitonin, which lowers the blood calcium level (Sun et al., 2020).
Beyond the parathyroid-bone axis, calcium homeostasis involves
complex interactions between multiple organ systems, including
bone, intra- and extracellular fluid compartments, gut (oral intake),
kidney, and the parathyroid gland (Peterson and Riggs, 2010; Sun
et al., 2020). Dynamic PTH secretion patterns are fundamental to
calcium homeostasis regulation and the pathogenesis of
bone diseases.

PTH targets the parathyroid hormone/parathyroid hormone-
related protein receptor (PTH/PTHrP type 1 receptor), also
commonly known as PTH1R (Cheloha et al., 2015). PTH1R is a
G-protein-coupled receptor that regulates skeletal development,
bone turnover and mineral homeostasis. PTH1R transduces
stimuli from PTH and PTH-related protein (PTHrP) into the
interior of target cells (i.e., cells of the osteoblastic lineage) to
promote several divergent signaling cascades (Cheloha et al.,
2015). Changes in the PTH secretion pattern have been

associated with various diseases including primary and secondary
osteoporosis, and hyperparathyroidism (Bilezikian et al., 2018;
Schaefer, 2000; Harms et al., 1994b; a; Bonadonna et al., 2005),
ultimately leading to an imbalanced bone remodeling activity and
distorted calcium homeostasis. Simulating bone diseases related to
PTH glandular secretion and the corresponding bone cellular
activities is the first step in exploring efficient drug treatments.

Osteoporosis (OP) is one of the most frequent musculoskeletal
diseases affecting people worldwide (Aibar-Almazán et al., 2022;
Salari et al., 2021). OP is characterized by low bone mass and altered
bone quality, which ultimately leads to bone fractures. This disease is
characterized by imbalanced bone remodeling–the fundamental
process that regulates bone homeostasis. In bone remodeling,
osteoclastic cells resorb the existing bone matrix, while
osteoblastic cells replace the bone matrix by initially forming
osteoid, which subsequently gets mineralized. In OP the balance
between bone resorption and formation is biased towards resorption
with diminished bone formation. Depending on the underlying
causes, several types can be distinguished including
postmenopausal and senile osteoporosis (Aibar-Almazán et al.,
2022). Over the last few decades, a large variety of drugs have
been developed, which help combat osteoporosis. The rapid increase
in bone biology knowledge has led to the development of
mechanobiological pharmacokinetic-pharmacodynamic (PK-PD)
models of osteoporosis treatments. As reviewed in Pivonka et al.
(2024), these in silicomodels allow predictions beyond bone mineral
density (BMD), i.e., bone microdamage and degree of
mineralization. Hence, in silico trials may serve as
complementary tools to experimental studies, potentially
contributing to our understanding of drug dosing and
combinational treatments, though extensive validation of bone
remodeling models across multiple scales remains essential before
any clinical application.

Two primary formulations exist for modeling bone cell
population dynamics (Cook et al., 2024). The first approach by
Komarova et al. (2003) uses power laws where exponent terms
represent the accumulated effects of signaling molecules governing
both self- and externally-regulated cellular pathways. This results in
a relatively small parameter space but creates inherent limitations in
interpretability and extensibility. This approach has been further
developed for spatio-temporal dynamics (Ryser et al., 2009; 2010).
The accumulation of signaling effects makes it difficult to isolate the
contributions of individual biomolecular factors on specific cell
types. The second approach by Lemaire et al. (2004) employs
mass kinetics formulations with explicit Michaelis-Menten and
Hill equations for enzyme and ligand binding kinetics. This
enables direct identification of how specific signaling factors
affect osteoblast and osteoclast concentrations, providing clear
biomolecular targets for drug treatments and disease modeling.
The explicit modeling of receptor-ligand interactions results in a
larger parameter space, but enables studying hormone signaling
patterns in healthy and disease states. Thus, we adopt the mass
kinetics framework in the present study due to its explicit
incorporation of PTH1R receptors expressed on osteoblastic cells
and PTH-PTH1R binding kinetics.

Currently no bone disease progression models with links to PTH
glandular secretion patterns exist. Endocrine diseases are typically
defined by comparing serum levels of endocrine factors with the
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“normal (or reference) range”. This reference range is used to
discern hyper- and hypofunction of respective glands. Dynamic,
time-dependent diseases may evolve within the normal range and
are characterized by increased or decreased secretory dynamics
(Chiavistelli et al., 2015; Schmitt et al., 2005). PTH glandular
secretion governs osteoblastic cellular responses in bone and a
disturbed function of the parathyroid gland can lead to
development of progressive bone diseases. Consequently, the
existing knowledge of healthy and pathological PTH glandular
secretion patterns need to be incorporated into bone cell
population models to accurately describe disease progression.

Schappacher-Tilp et al. (2019) developed a comprehensive
mathematical model, which includes the major adaptive
mechanisms governing the production, secretion, and
degradation of PTH in patients with chronic kidney disease on
hemodialysis. This work aimed to investigate the efficacy of
parathyroid drugs. The model focused on simulating
hemodialysis patients with secondary hyperparathyroidism, but
has the potential to be extended and applied to other diseases
such as primary hyperparathyroidism or hypo- and
hypercalcemia. The ionized calcium concentration–which
regulates the parathyroid gland response via the calcium sensing
receptor–was provided as an input parameter for this model.
However, (ionized) calcium concentration depends directly on
bone turnover. Consequently, consideration of the bone
remodeling process is essential.

Most computational models of bone remodeling are formulated
as bone cell population models and include the action of PTH on
bone cells in a simplistic manner: constant concentrations of PTH in
the central- and/or bone fluid compartment in combination with
one-state receptor models (Lemaire et al., 2004; Pivonka et al., 2008;
Pivonka and Komarova, 2010; Scheiner et al., 2013; Trichilo et al.,
2019). These models simulate catabolic action of PTH on osteoclasts
by using a constant PTH concentration as input parameter to mimic
both healthy state and particular bone diseases. PTH binds to its
receptor PTH1R, expressed on osteoblasts (Datta and Abou-Samra,
2009); the receptor-ligand binding reaction is described by a one-
state receptor model. The binding of PTH to its receptor is much
faster than a cellular response such as differentiation, proliferation
and/or production of ligands of osteoblasts, with binding occurring
within minutes (Okazaki et al., 2008) compared to cellular processes
that take tens of hours to days (Roberts et al., 1982). Hence, a steady-
state assumption is used for solving these binding reactions resulting
in a Hill-type equation for the activator/repressor functions,
consistent with previous mathematical modeling approaches
(Lemaire et al., 2004; Pivonka et al., 2008; Scheiner et al., 2013).
The activator/repressor functions are based on receptor occupancy
as a function of PTH concentration and total number of receptors
expressed on osteoblasts (Datta and Abou-Samra, 2009). In the bone
cell population models of Lemaire et al. (2004) and Pivonka et al.
(2008), Pivonka and Komarova (2010), the PTH activator and
repressor functions influence an intracellular communication
pathway, which results in increased osteoclast activity and
consequently catabolic bone resorption. While this type of
approach is practical and simple to apply for creating catabolic
bone remodeling states, it fails to address the link between
pathological PTH release patterns and the different observed
bone diseases.

Potter et al. (2005) proposed the first computational model to
analyze PTH1R kinetics, focusing on the response to constant vs
pulsatile dosing patterns of PTH. They introduced a measure of
sensitization with values between 1 (highly sensitized) and 0
(desensitized). The study investigated clinically prescribed PTH
drug dosing patterns and found a sensitization measure of
around 0.9. However, they found a value of 0.89 for healthy
glandular PTH secretion patterns. This proximity indicates that
the proposed measure of sensitization is not meaningful to use as an
activator function for osteoblast response as it is not able to
distinguish between anabolic and catabolic actions of PTH.

Recently, Pivonka and co-workers applied the two-state receptor
model to PTH1R to analyze the effects of PTH glandular and
external dosing patterns on bone cell activity (Martonová et al.,
2023). The work focused on clinically observed catabolic bone
diseases related to perturbations of PTH glandular secretion.
Following the approach proposed by Li and Goldbeter (1989), a
cellular osteoblast activity function was developed, which can
distinguish various aspects of the stimulation signal including
peak dose, time of ligand exposure, and exposure period. Using
this formulation, the potential of pharmacological manipulation of
the diseased glandular secretion to restore healthy bone, cellular
responsiveness via clinical approved external PTH injections was
investigated. While it was mentioned that the so derived cellular
activity function could be linked with a cell population model of
bone remodeling, no description on how this could be accomplished
was provided.

In this paper we develop a multi-scale bone cell population model
based on a two-state receptormodel of PTH1R accounting for dynamic
PTH secretion patterns. This model is based on our previous work on a
(osteoblastic) cellular responsiveness function, which can distinguish
different PTH dosing patterns in health and disease (Martonová et al.,
2023). We propose a calibration strategy that compares cellular activity
values from the two-state receptor model with receptor occupancy
values from the one-state model. We solve this problem in a semi-
coupled way based on fulfillment of separation of time-scale condition:
the two-state receptor model of PTH1R has a characteristic timescale
ranging from tens of seconds to tens or hundreds of minutes, while the
bone cell population model operates on timescales of hours to tens of
days. After model calibration, we validate the model for several
glandular disease states and analyze the effect of pulse characteristics
on the bone cell response.

2 Methods

The bone cell population model (BCPM) describes the temporal
behavior of osteoblasts and osteoclasts in various states including
their regulation by receptor-ligand interactions. In this section, we
present the bone cell population model proposed by Lemaire et al.
(2004), and further developed and refined by Pivonka and co-
workers (Pivonka et al., 2008; Pivonka and Komarova, 2010;
Scheiner et al., 2013; Trichilo et al., 2019). These models provide
a robust foundation for our study as they have demonstrated good
qualitative agreement with experimental observations from the
literature. The Lemaire model successfully reproduces known
behaviors of the bone remodeling system, including tight
coupling between osteoblasts and osteoclasts, the catabolic effect
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of continuously elevated PTH and RANKL, the reverse, anabolic
effect of increased OPG, and metabolic bone diseases such as
estrogen deficiency and glucocorticoid excess. Subsequent
developments by Pivonka and co-workers have incorporated
bone volume fraction evolution and identified physiologically
sensible parameter combinations, while Scheiner’s extension
coupled bone cell dynamics with mechanical feedback,
reproducing key features of mechanoregulation including
postmenopausal osteoporosis progression and mechanical disuse
responses. Trichilo et al. further validated the model framework by
applying it to ovariectomized rats and comparing bone volume
fraction predictions with experimental data. Given our aim to study
the effect of the pulsatile glandular secretion pattern of PTH on the
bone cell response, here we emphasize the mechanisms through
which PTH is integrated and operates in the model by Lemaire et al.
A detailed description of the underlying dynamics can be found in
the original publication (Lemaire et al., 2004).

The BCPM frameworkmodels bone cell populations as averaged
concentrations representing the aggregate behavior of bone
multicellular units (BMUs) at various stages of the remodeling
cycle. While individual BMUs and the respective cells undergo
periodic activation, resorption, and formation phases (Kenkre
and Bassett, 2018), the model captures the smeared effect of
many simultaneously active remodeling sites (Lemaire et al.,
2004). In steady state, this approach yields constant average cell
concentrations that reflect homeostatic balance rather than the
oscillatory dynamics of individual BMUs.

All parameters used in the model including respective
description and reference can be found in Supplementary Table
S2. Figure 1 shows a schematic illustration of the semi-coupled bone
cell population model with the two-state receptor model including
intracellular communication pathways and respective parameters.

2.1 Mathematical model for bone
cell dynamics

The bone cell population model by Lemaire et al. (2004) consists
of a system of three ordinary differential equations. It describes the
time-dependent behavior of osteoblastic precursor cells (OBp),
active osteoblasts (OBa) and active osteoclasts (OCa) in molar
concentrations as

dOBp

dt
� DOBu · πTGF−β − DOBp

πTGF−β
· OBp,

dOBa

dt
� DOBp

πTGF−β
· OBp − AOBa · OBa,

dOCa

dt
� DOCp · πRANKL − AOCa · πTGF−β · OCa.

(1)

The differentiation rates of uncommitted osteoblasts, osteoblast
precursors and osteoclast precursors are denoted by DOBu, DOBp

and DOCp, respectively; AOBa and AOCa are the apoptosis rates of
active osteoblasts and osteoclasts. In line with the source publication
(Lemaire et al., 2004), the model assumes that osteoblastic precursor
cells (OBp) do not undergo apoptosis but only differentiate into
active osteoblasts, reflecting the biological understanding that once
mesenchymal stem cells commit to the osteoblastic lineage, they
progress through all differentiation stages (Zhu et al., 2024).

The effects induced by TGF − β are assumed to depend on the
concentration of active osteoclasts as

πTGF−β � OCa + f0KTGF−β
OCa +KTGF−β

, (2)

with proportionality constant f0 and dissociation binding constant
KTGF−β for TGF − β and the respective receptor (Lemaire et al,
2004). TGF − β is stored in the bone matrix and released during

FIGURE 1
A schematic illustration of the novel bone cell population model including the two-state receptor model for PTH/PTH1R and intracellular
communication pathways (TGF-β, RANK-RANKL-OPG). The model includes uncommitted osteoblasts (OBu), osteoblast and osteoclast precursors
(OBp ,OCp), and active osteoblasts and osteoclasts (OBa,OCa). The concentrations of OBu and OCp are considered constant and thus included in the
respective differentiation rates. The differentiation and apoptosis rate of the corresponding cells are denoted byDOBu ,DOBp ,DOCp and AOBa ,AOCa . The
ligand PTH can bind to its receptor PTH1R in two states: active and inactive, indicated as solid and striped, respectively, in the drawing.
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resorption by active osteoclasts. It promotesOBu-differentiation and
OCa-apoptosis, but acts as a repressor on OBp-differentiation. The
detailed derivation of πTGF−β (Equation 2) can be found in the
original publication (Lemaire et al., 2004).

The function πRANKL describes the binding effect of the free
ligand RANKL to the corresponding receptor activator nuclear
factor κB (RANK) as

πRANKL � CRANK−RANKL

CRANK
, (3)

whereas the molar concentration of RANK-RANKL complexes and
RANK are denoted by CRANK−RANKL and CRANK, respectively. The
receptor-ligand binding triggers osteoclast precursor differentiation.
Active osteoblasts secrete osteoprotegerin (OPG), which inhibits this
process by binding to RANKL, thereby preventing RANKL-RANK
interaction and subsequent osteoclast activation. Further details on
πRANKL (Equation 3) are given in the Supplementary Material of
this article.

Parathyroid hormone (PTH) influences the RANK-RANKL-
OPG pathway catabolically. It binds to its receptor on osteoblasts,
increasing RANKL and decreasing OPG concentration.
Consequently, more osteoclast precursors are differentiated into
active osteoclasts, thus increasing bone resorption. Thus, the
ratio of occupied RANK - and consequently πRANKL – depends
on the PTH effect, which is quantified by πPTH.

The Michaelis-Menten function πPTH describes the fraction of
occupied PTH receptors and is derived from a one-state receptor
model. The free ligand PTH binds to its receptor PTH1R forming a
complex, whereas also the reverse reaction is possible, as shown in
Figure 2. The kinetic parameters k1 and k−1 quantify binding and
unbinding tendencies.

The receptor-ligand binding reaches equilibrium long before the
bone cells react, which leads to the assumption of a steady state. The
function πPTH is defined as

πPTH � CPTH

CPTH + k−1
k1

. (4)

The molar PTH concentration,

CPTH � Cbasal
PTH + Cinj

PTH

kPTH
, (5)

depends on the basal synthesis rate (Cbasal
PTH), rate of external PTH

injection (Cinj
PTH) and degradation rate (kPTH). Lemaire et al. (2004)

assumed that basal PTH concentration remains constant in both
healthy and disease states. When PTH levels are elevated—whether

due to disease or injected PTH—this is modeled as a sustained,
constant increase from the basal level over a predefined time
interval, rather than fluctuating daily. Bone diseases related to the
parathyroid gland are characterized by alterations of the pulsatile
characteristics, e.g., baseline secretion, pulse height, duration of each
pulse and time between successive pulses. This work aims to develop
the first bone cell population model that incorporates these
characteristics.

2.2 Two-state receptor model for pulsatile
PTH secretion

PTH1R exhibits multiple conformational states that can be
generally classified into active (sensitized) and inactive
(desensitized) states, each characterized by distinct signaling
responses upon ligand binding (Gardella, 2020; Bisello et al.,
2002). The receptor can undergo conformational changes
between these states independent of ligand binding, either
through covalent modification or simple conformational
rearrangement (Wang et al., 2009; Li et al., 2024). The response
of osteoblasts to PTH-PTH1R binding depends on the respective
conformation state of the receptor, with one state characterized by a
shorter response and the other by a prolonged signaling response
after receptor-ligand binding.

Martonová et al. (2023) presented a model that accounts for this
phenomenon of PTH1R, based on a general formulation of a two-
state receptor model by Li and Goldbeter (1989), further detailed in
Lauffenburger and Linderman (1993). We describe the essential
parts of the model below [a detailed description can be found in
Martonová et al. (2023)].

Based on the ability of PTH1R to change conformation
independent of ligand binding, the model assumes that both
receptor conformational states can transform into each other
regardless of their binding status (Martonová et al., 2023). The
ligand PTH binds to both active (sensitized) and inactive
(desensitized) receptors Ra, Ri to form complexes in the
corresponding states Ca, Ci, with reversible unbinding reactions
also possible. Both unbound receptors and ligand-receptor

FIGURE 2
The one-state receptor model describes free ligand PTH binding
to its receptor PTH1R on osteoblasts. This binding reaction forms a
PTH/PTH1R complex, whereas also the reverse/unbinding reaction is
possible. The values of the corresponding kinetic parameters k±1
are given in Supplementary Table S2.

FIGURE 3
The two-state receptor model describes binding of free ligand
PTH to its receptor PTH1R in two states: active/sensitized (ra) and
inactive/desensitized (ri). The binding reaction forms complexes in
the corresponding states (ca, ci). The concentrations are
normalized w.r.t. the total receptor concentration. Binding, unbinding
and change of conformation state are governed by the kinetic
constants k±i with i ∈ 1,2, 3,4 given in Supplementary Table S1. Note
that the kinetic parameter k±1 quantify binding and unbinding
tendencies different from those in Figure 2.
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complexes can migrate between conformational states, allowing for
dynamic transitions between all possible receptor states. All of the
described reactions are governed by kinetic constants k±j with
j ∈ {1, 2, 3, 4} (Equation 7), as shown in Figure 3.

The receptor and complex concentrations can be summarized in
a concentration vector as C(t) � [Ra(t), Ca(t), Ci(t), Ri(t)]. The
respective time-dependent dynamics are given by a system of
differential equations as

dC
dt

� K L t( )( )C t( )T. (6)

The coefficient matrixK describes the kinetics of the receptor-ligand
binding depending on the PTH ligand concentration L as

K L( ) �
−k1 − k3L k−3 0 k−1

k3L −k2 − k−3 k−2 0
0 k2 −k−2 − k−4 k4L
k1 0 k−4 −k−1 − k4L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (7)

The kinetic constants are given in Supplementary Table S1.
The ligand concentration L (Equation 8) depends on time t,

which makes it possible to include the pulsatile PTH pattern. The
periodic ligand concentration is approximated as a piece-wise
constant function, following the original approach (Martonová
et al., 2023) based on the two-state receptor model formulation
(Segel et al., 1986; Li and Goldbeter, 1989). This square-wave
approximation has been validated against more realistic
exponential decay profiles, demonstrating that square-wave
stimulation provides a satisfactory approximation to periodic
signals with exponential decay (Li and Goldbeter, 1989). This
piece-wise constant formulation is commonly employed in bone
remodeling models for representing both endogenous hormone
pulses (Martonová et al., 2023) and administered drug injection
patterns (Trichilo et al., 2019; Lavaill et al., 2020). The periodic
ligand concentration is defined as

L t( ) � L t + T( ) � γoff + γon jT≤ t≤ jT + τon
γoff jT + τon < t< j + 1( )T,{ (8)

for j ∈ 0, 1, . . . , n − 1, where n is the maximum number of periods T
during one simulation. The pulse shape is determined by various
characteristics: tonic concentration γoff; pulse height/pulsatile
concentration γon; duration of on-phase τon; and off-phase τoff.
It holds that T � τoff + τon.

The dimensionality of system Equation 6 can be reduced to three
by normalizing the receptor and complex concentrations relative to
total receptor concentration. When expressing the concentrations of
active receptors (ra), active complexes (ca), inactive complexes (ci),
and inactive receptors (ri) as normalized values relative to the total
receptor concentration, these quantities must satisfy the
conservation relation ra + ca + ci + ri � 1. This conservation
assumption is justified as receptor binding/unbinding dynamics
reach steady-state much faster than cellular response timescales
(Roberts et al., 1982; Okazaki et al., 2008), and the total receptor
number is assumed to be much larger than fluctuations due to
receptor production and degradation during the time periods
relevant for cellular activity.

The model considers time-dependent ligand concentrations,
which we define as pulsatile free PTH based on the glandular

secretion pattern. The corresponding cellular activity is given by
a linear combination of receptors and complexes in both states as

α t( ) � a1ra + a2ca + a3ci + a4ri. (9)
The activity constants aj with j ∈ {1, 2, 3, 4} determine the weight of
the respective concentrations for the cellular activity. The respective
values were chosen in line with the original publication Martonová
et al. (2023). The activity function (Equation 9) reflects the pulsatile
ligand characteristics.

We derive two activity constants based on α(t): the integrated
activity αT and the cellular responsiveness αR. Both capture various
characteristics of ligand input and activity output (see Figure 4). The
integrated activity αT corresponds to the area under the curve of one
activity pulse above baseline α0 within one time period T after
cellular adaptation. The value of αT is computed by integrating
α(t) − α0 over the interval [jT, (j + 1)T] for j sufficiently large for
the pulses to have reached steady-state. The composite trapezoidal
rule is used for numerical integration.

The cellular responsiveness αR depends on αT but incorporates
several characteristics of the ongoing stimuli: pulse shape; duration
of pulse and off-phase; adaptation of cells to ongoing stimuli. It is
defined as

αR � αT
αTstep

αT
T
. (10)

The first factor of Equation 10 relates the integrated activity (αT) to
the integrated activity of a step increase of the samemagnitude as the
original pulse (αTstep). The second factor relates αT to the duration of
one pulse and its off-phase (period T). Figure 4 represents an
exemplary pulsatile PTH release pattern, the corresponding
activity function α, the derived integrated activity, αT, and
remaining determinants of αR such as αTstep and T.

Given that the receptor-ligand binding reaches equilibrium in a
very short time (faster than cellular response in the bone cell
population model), we propose the use of the activity constant
αT and αR to quantify the effect of PTH on osteoblasts. The
constants possess the following key features: reflection of the
effect of receptor-ligand binding considering two conformation
states; consideration of pulsatile, time-dependent behavior of
ligand and cellular activity; constant quantification of cellular
activity. Thus, we can replace πPTH in the bone cell population
model with either αT or αR, to implicitly include pulsatile, time-
dependent ligand concentration and the two conformation states
of PTH1R.

2.3 Bone cell population model and two-
state receptor: semi-coupling

We present a semi-coupled approach to integrate the two-state
receptor model (Section 2.2) with the bone cell population model
(Section 2.1). With this integration, the new bone cell population
model includes information incorporated in the cellular activity:
characteristics of pulsatile PTH; cellular adaptation to ongoing
stimuli; effects of a two-state receptor. The approach involves
replacing the Hill-type function πPTH with either the integrated
activity αT or the cellular responsiveness αR. Receptor-ligand
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binding equilibrates considerably faster than bone cell dynamics,
which justifies treating Hill-type functions as steady-state constants
rather than dynamic functions, as explained in details in the source
publication Lemaire et al. (2004). This steady-state assumption was
already implicit in the model; therefore, explicitly replacing these
functions with constants is both mathematically and conceptually
appropriate. Due to differences in magnitude between αT, αR, and
πPTH, a scaling approach is necessary. We propose two distinct
methods for this scaling.

The first method involves determining scaling parameters ~kR
and ~kT based solely on healthy state values,

~kR � πhealthy
PTH

αhealthyR

, and ~kT � πhealthy
PTH

αhealthyT

, (11)

with

πhealthy
PTH � Cbasal

PTH

Cbasal
PTH + k−1

k1

, (12)

whereas Equation 12 refers to the original Hill-type function for
healthy state. The corresponding parameter values are given in

Supplementary Table S2. The constants αhealthyT and αhealthyR are
computed from Equation 10 and preceding formulation based on
the healthy pulse characteristics (Table 1). These parameters are
subsequently applied across all disease states. The kinetic parameter
k±1 quantify binding and unbinding tendencies of the one-state
receptor model (Figure 2).

The second method is based on a comprehensive optimization
approach across all states, determining parameters kR and kT
through minimization,

min
kR

∑7
i�1

kR · αiR − πi
PTH( )2 and min

kT
∑7
i�1

kT · αiT − πi
PTH( )2. (13)

Here, index i represents all seven physiological states detailed in
Table 1. This optimization was implemented using Python’s SciPy
library, using the default Broyden-Fletcher-Goldfarb-Shanno
(BFGS) quasi-Newton method.

To establish comparable disease states between the pulsatile two-
state receptor model (Section 2.2) and the constant-secretion
reference model (Section 2.1), we introduce a scaling parameter
for each disease given in Table 1,

FIGURE 4
Exemplary PTH pulsatile pattern and resulting activity function α(t). The integrated activity αT is marked by the shaded area above baseline activity α0
(dashed line). The integrated activity αTstep is computed w.r.t. a step increase in PTH (blue). These factors, in conjunction with the period T , constitute the
essential parameters required for the calculation of cellular responsiveness αR .

TABLE 1 Parameters for healthy and disease states for PTH concentration.

State γoff [nM] γon [nM] τon [min] τoff [min] T [min]

Healthy 3.32·10−3 2.76·10−3 6.4 4.2 10.6

HPT 1.38·10−2 9.77·10−3 7.6 3.5 11.1

OP 3.32·10−3 1.70·10−3 5.2 24.6 29.8

PMO 2.99·10−3 2.48·10−3 6.4 4.2 10.6

HyperC 8.30·10−4 3.31·10−4 9.41 6.18 15.59

HypoC 8.53·10−3 3.62·10−2 3.27 2.14 5.41

GIO 1.59·10−3 4.83·10−3 6.08 3.99 10.07

The pulse shape is determined by the off-phase, γoff , and the height of the pulse, γon. The sum of the duration of off-phase, τoff , and on-phase, τon, is the period T. The values are taken from

Martonová et al. (2023), where disease states were computed using relative changes from healthy people based on experimental data. The considered disease states are Hyperparathyroidism

(HPT), Osteoporosis (OP), Postmenopausal Osteoporosis (PMO), Hypercalcemia (HyperC), Hypocalcemia (HypoC), Glucocorticoid-induced Osteoporosis (GIO).
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adiseasePTH � max Cbasal
PTH,disease( )

max Cbasal
PTH,healthy( ) �

γDisease
off + γDisease

on

γHealthy
off + γHealthy

on

. (14)

This parameter, illustrated in Figure 5, modifies the PTH
concentration equation (Equation 5) for disease modeling in the
reference model,

CPTH � adiseasePTH Cbasal
PTH

kPTH
, (15)

whereas Cbasal
PTH refers to the basal concentration of the original model

formulation. Following these scaling approaches, πPTH (Equation 4) is
replaced with either ~kRαR, kRαR, ~kTαT or kTαT to analyze the effect of
the different constants and scaling approaches. The activity constants
are computed independently (Section 2.2), reflecting the faster
equilibration of PTH-PTH1R binding compared to bone cell
response dynamics. Consequently, the RANK occupancy ratio in the
bone cell population model becomes dependent on these scaled
activities for both healthy and disease states.

To further validate and compare the model approaches, we
analyze the temporal evolution of bone volume fraction, fbm,
describing the bone volume per total volume. Following Scheiner
et al. (2013), we define the change in bone volume fraction with
time as

dfbm

dt
� kform · OBa t( ) − kres · OCa t( ) (16)

where kform and kres represent the formation and resorption rates
(bone volume formed and resorbed per unit cell concentration per
unit time), respectively. This equation captures how bone volume
fraction changes over time as a result of the competing processes of
bone formation by active osteoblasts OBa and bone resorption by
active osteoclasts OCa. Integration of this equation yields the
temporal bone volume fraction profiles. In homeostasis, an equal
fraction of bone volume is formed and resorbed. Thus, knowing the
bone formation rate at a particular bone site (femoral neck, lumbar
vertebra, radius) in homeostasis, the resorption rate can be
computed as

kres � kformOB
ss
a

OCss
a

, (17)

based on the steady-state concentration of osteoblasts OBss
a and

osteoclasts OCss
a .

2.4 Analysis of pulse characteristics

With the new model formulation, we can analyze the effect of
different pulse characteristics on bone cell dynamics. The objective is
to compare the magnitude of the activity constants of disease states
to the healthy state with varying duration of pulse on- and off-phase,
τon and τoff, respectively. The period T remains fixed to the
physiological value according to Table 1 and it must hold that
T � τon + τoff. To maintain physiological relevance, τoff ≥ 0 and
τon ≥ 0 must be fulfilled. For this analysis, the phases τon and τoff
may take every value possible that fulfills the above requirements.
Thus, the on- and off-phases are determined according to

τon ∈ 0, T[ ], τoff � T − τon, (18)

whereas the same results can be obtained if τon and τoff are switched
in the above formulation as both cover the entire range of 0 to T.

3 Results

In this section, we describe the results of the calibration
strategy given in Section 2.3, followed by the cellular activity
and bone cell dynamics of the final, semi-coupled model. Finally,
we demonstrate the effect of selected pulse characteristics on
bone cell dynamics.

3.1 Calibration of Hill-type function and
activity constants

We follow the approach given in Section 2.3 to include pulsatile
PTH and PTH1R in two conformation states in the bone cell
population model. We solve both Equation 11 and the
minimization problem in Equation 13 to consider the different
orders of magnitude of the Hill-type function πPTH, integrated
activity αT and cellular responsiveness αR.

FIGURE 5
Exemplary computation of the calibration parameter adiseasePTH for healthy and disease states defined by Equation (14).
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Both approaches to achieve comparable order of
magnitude between αT, αR and πPTH result in similar values
for the scaling parameters (Table 2). The aligned activity
constants ~kTαT, ~kRαR equal the formerly used function πPTH
for the healthy state and show only a small deviation for
postmenopausal osteoporosis and hypercalcemia (Figure 6).
Hyperparathyroidism, hypocalcemia and glucocorticoid-
induced osteoporosis show larger deviations.

Despite relying on a single identified parameter across all
states, both activity constants αT and αR show consistent trends
with the Hill-type function πPTH (Figure 6). This consistency is
also reflected in the small absolute error (ASE) for both
minimization problems, which can be found in a range of 10−3

to 10−4 for both αT and αR (Table 2). The root mean square error
(RMSE) relative to the range of Hill-type functions for the given
states shows that the typical error is about 9% of the full span of
πPTH for cellular responsiveness and 8% for integrated activity.
The closest match is found for hypercalcemia, whereas αT and αR
show the largest deviation from πPTH for glucocorticoid-induced
osteoporosis.

3.2 Cellular activity and bone cell dynamics

The cellular activity function α(t) is computed for a PTH
pattern in healthy and disease state according to Table 1.
Figure 7 shows that for hyperparathyroidism (HPT), the tonic
secretion increases more than double the maximum of healthy
PTH concentration. Not only does HPT change the amount of
PTH secretion, but also the duration of PTH secretion. Compared
with a healthy state, the characteristic pulse lasts longer and the off-
phase is shorter, ultimately resulting in a longer period T (on- and
off-phase). In glucocorticoid-induced osteoporosis (GIO), where
PTH shows a lower basal secretion, its pulses reach almost the
same maximum concentration as in healthy controls. This creates a
larger relative amplitude of the pulses in GIO, despite similar
absolute peak values.

The activity function α(t) reflects every change of the pulsatile
PTH pattern. As shown in Figure 7, the cellular activity of HPT also
has a longer period T and on-phase τon of the pulse compared to the
healthy state. The pulse height is elevated, whereas the activity pulse
below as well as above baseline activity α0 is longer than the healthy

TABLE 2 Results of scaling of αR and αT to achieve same order of magnitude as formerly used πPTH .

Scaling parameter Parameter value [-] ASE [-] RMSE [-] Relative RMSE [-]

~kR 2.07·10−2 — — —

~kT 5.29·10−4 — — —

kR 3.03·10−2 1.15·10−3 1.28·10−2 9.22·10−2

kT 7.17·10−4 8.72·10−4 1.12·10−2 8.04·10−2

We identified the parameters ~kR, ~kT for the healthy state and kR, kT for all seven states (healthy and six disease states) using a minimization approach. The absolute squared error (ASE) refers to

the result of the minimization problem (Equation 13). After identification of the scaling parameters using minimization, we calculate root mean square error (RMSE) and RMSE relative to the

range of πPTH .

FIGURE 6
Results of scaling approaches for cellular responsiveness, αR, integrated activity, αT , and formerly used Hill-type function, πPTH , for healthy and
disease states: hyperparathyroidism (HPT), osteoporosis (OP), postmenopausal osteoporosis (PMO), hypercalcemia (HyperC), hypocalcemia (HypoC),
glucocorticoid-induced osteoporosis (GIO). The calibration constants kR , kT are identified considering all disease states (Equation 13), the scaling
constants ~kR , ~kT only consider the healthy state (Equation 11).
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activity. For GIO, the activity pulse is longer compared to the healthy
pattern, resulting in a higher fraction above baseline activity.

In both healthy and diseased conditions, cellular adaptation to
the stimulus occurs during the first two periods, with all subsequent
pulses looking identical. As the integrated activity αT and cellular
responsiveness αR are computed based on the activity function α(t),
they also reflect any alterations of pulse characteristics. For example,
both αT and αR increased noticeably for HPT, reflecting both
prolonged period and activity pulse (see Table 3). One pulse
remains longer above baseline and has a higher maximum value
compared to the healthy state, leading to an increase in αT and αR.
For GIO, both αT and αR are almost doubled, reflecting the higher
maximum activity.

After scaling to achieve same order of magnitude, πPTH can be
replaced with either kT · αT, ~kT · αT, kR · αR or ~kR · αR for healthy
and disease state. The healthy state corresponds to a steady state of
the model described by Equation 1. While transition from a healthy
state to a pathological state in terms of PTH glandular secretion
pattern might take some time (i.e., months to years), in numerical
simulations the switch from healthy to disease is set instantaneously
at a defined time point, as shown in Figure 8 for the case of HPT and
in Figure 9 for GIO.

The results of the semi-coupled bone cell population model for
HPT as disease state are shown in Figure 8. The cellular
concentrations for OBp, OBa and OCa have consistent dynamics
across both the cellular responsiveness (~kR · αR, kR · αR) and
integrated activity (~kT · αT, kT · αT) compared to the previously
used Hill-type function (πPTH). All five approaches demonstrate

similar characteristic patterns, the main difference is the magnitude
of the cellular concentrations in steady-state and disease case for
calibration considering all states (kR, kT). The steady-state is
equivalent for ~kR · αR, ~kT · αT and πPTH in line with the
identification of the scaling parameters based on only the
healthy state.

Regarding the relative distance of OBp to OBa and OCa,
respectively, the concentration of OBp is closer to OBa during
the steady-state (before and after disease state) using the original
model formulation compared to the second calibration approach
(kR, kT). The OBp curve starts and levels off closer to OCa

concentration when using the activity constants. The homeostasis
values of all three cell types are different for the model using either
πPTH, kTαT or kRαR to quantify the PTH effect. After the immediate
switch to a disease state, the increase in concentration varies across
all cell types, models and scaling approaches. The original
formulation shows the highest peak of all cell concentrations,
whereas the cellular responsiveness, ~kRαR, results in the
lowest increase.

The results of the semi-coupled bone cell population model for
GIO as disease state are shown in Figure 9.

The bone cell concentrations show different dynamics for the
original model formulation and the novel semi-coupled approach.
The original model formulation results in cell concentrations in a
range of 1·10−4 and reduced dynamics. The onset of the disease state
is barely visible in the time interval between 20 and 80 days. In
contrast to the formerly used πPTH, the change from homeostasis to
GIO is clearly reproduced in the novel approach. The maximum

FIGURE 7
Glandular PTH secretion pattern and corresponding activity function α(t) for healthy state (solid line), hyperparathyroidism (HPT, dash-dotted line)
and glucocorticoid-induced osteoporosis (GIO, dashed line). The basal activity is included as dotted line.

TABLE 3 Values of integrated activity, αT , and cellular responsiveness, αR, for healthy state and all included disease states: hyperparathyroidism (HPT),
osteoporosis (OP), postmenopausal osteoporosis (PMO), hypercalcemia (HyperC), hypocalcemia (HypoC), glucocorticoid-induced osteoporosis (GIO).

Activity constant Healthy HPT OP PMO HyperC HypoC GIO

αT 36.6479 98.3844 35.1993 33.2851 6.7742 184.7505 62.0019

αR 0.9376 2.1014 0.4973 0.8550 0.1741 4.4375 1.6052
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concentration of OBp and OCa is found close to 2·10−3 when using
either cellular responsiveness kR · αR or integrated activity kT · αT.
The second scaling approach (~kR · αR, ~kT · αT) results in lower cell
concentrations after onset of the disease state compared to the
alternative approach.

This is reflected in the change of bone volume fraction during
disease state (Figure 10). The initial bone volume fraction is chosen
as 0.3 for trabecular bone (Ding et al., 1999); the temporal evolution
is described by Equations 16, 17. For the sake of conciseness and due
to the comparable outcomes of both approaches, we present only the

FIGURE 8
Bone cell dynamics resulting from the novel approach of the bone cell population model by semi-coupling with a two-state receptor model. The
concentrations of osteoblast precursors,OBp, active osteoblasts,OBa , and active osteoclasts,OCa, are shown for healthy state and hyperparathyroidism
(HPT). The instantaneous disease state is defined for a chosen time interval, t ∈ [20,80]. Each cell concentration is plotted for different approaches:
scaling parameter identified only for healthy state (~kR · αR, ~kT · αT ); scaling parameter identified for all states (kR · αR, kT · αT ); reference model (πPTH).

FIGURE 9
Bone cell dynamics resulting from the novel approach of the bone cell population model by semi-coupling with a two-state receptor model. The
concentrations of osteoblast precursors, OBp, active osteoblasts, OBa , and active osteoclasts, OCa, are shown for healthy state and glucocorticoid-
induced osteoporosis (GIO). The instantaneous disease state is defined for a chosen time interval, t ∈ [20,80]. Each cell concentration is plotted for
different approaches: scaling parameter identified only for healthy state (~kR · αR, ~kT · αT ); scaling parameter identified for all states (kR · αR , kT · αT );
reference model (πPTH). The reference model - without taking pulsating information into account - hardly reflects the effect of GIO.
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results of the calibration method accounting for all disease states and
the formerly used πPTH as reference. For GIO, the novel model
approach using both cellular responsiveness αR and integrated
activity αT results in a loss of bone volume between 0.6% and
0.7% after 60 days of disease simulation. The loss of bone volume in
the original model formulation is not significant for this disease state
- in line with the reduced bone cell response (Figure 9). The highest
catabolic effect during simulation of GIO is observed for kR · αR.

The catabolic effect of hyperparathyroidism (HPT) and
hypocalcemia (HypoC) are reflected in all model approaches and
highest for the original formulation (Figure 10). Osteoporosis (OP),
hypercalcemia (HyperC) and postmenopausal osteoporosis (PMO)
show minor positive or no deviations from homeostasis across all
approaches.

3.3 Pulse characteristics and homeostasis

Following themethodology presented in Section 2.4, we vary on-
and off-phase of the pulse whereas all other characteristics remain
fixed to physiologically healthy values. On- and off-phase are
restricted to sum to the period T (Equation 18).

Figure 11 shows the resulting values of integrated activity αT and
cellular responsiveness αR w.r.t. the ratio of on- and off-phase. The curve
is symmetrical around the point where τon equals τoff, represented by
the logarithmic ratio log( τon

τoff
) � 0. The maximum of both αT and αR at

this point corresponds to the highest catabolic response with healthy
tonic and pulsatile PTH. Both activity constants are close to zero when
τon is much larger than τoff or the other way around.

For both αT and αR, the healthy value (cyan circle) appears near
the maximum of both curves, occurring at a slightly positive

log(τon/τoff) ratio (see Figure 11). Hypocalcemia (purple star)
exhibits the highest response in both metrics, which stand
distinctly above other pathological conditions. Most disease states
cluster around similar τon/τoff ratios, indicating a common
temporal pattern in PTH and receptor dynamics across different
pathological conditions. However, osteoporosis (orange triangle)
presents a notable exception to this trend. Not only does it occur at a
different τon/τoff ratio compared to other conditions, but it also
shows the largest difference when comparing αR and αT responses.

Figure 12 shows the results of the bone cell population model for
healthy state and HPT when replacing πPTH not only with the
calibrated cellular responsiveness, but with the maximum cellular
responsiveness αmax

R resulting from the pulse characteristics τmax
on

and τmax
off for healthy state (see Figure 11). This results in elevated

baseline concentrations across all cell populations (OBp, OBa, and
OCa), while showing a proportionally lower catabolic jump in
hyperparathyroidism. We selected the cellular responsiveness αR
instead of αT because its response curve is steeper around the
maximum. This provides better discrimination of the effect of
different pulse characteristics, as evidenced by the distinct
positioning of, for example, osteoporosis (see Figure 11). The
temporal dynamics remain consistent between both configurations.

4 Discussion

This study presents a novel approach to simulating bone disease
progression related to the human parathyroid gland. We analyzed
alterations of parathyroid hormone release patterns within the
framework of bone cell population models (BCPMs) – a central
step toward more physiologically realistic modeling of disease

FIGURE 10
Bone volume fraction resulting from the novel approach of the bone cell population model by semi-coupling with a two-state receptor model. The
scaling parameter is identified for all states (kR · αR , kT · αT ) and compared to the reference model (πPTH). The instantaneous disease state is defined for a
chosen time interval, t ∈ [20,80]. The bone volume fraction evolution is shown for hyperparathyroidism (HPT), osteoporosis (OP), postmenopausal
osteoporosis (PMO), hypercalcemia (HyperC), hypocalcemia (HypoC), glucocorticoid-induced osteoporosis (GIO). The initial trabecular bone
volume fraction is chosen as 0.3.
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progression and accurate pharmacokinetics-pharmacodynamic
(PK-PD) models (Pivonka et al., 2024). While traditional BCPMs
treat hormone concentrations as constants, we demonstrated that
dynamic hormonal patterns contain valuable information about
disease states that is lost when complex temporal dynamics are
simplified to averaged reference constants. Indeed, it is not clear how
changes in dynamic hormonal release patterns could be
implemented in the mechanistic BCPM framework. To address
this question, we proposed a semi-coupled approach of a two-
state PTH-PTH1R receptor model with the original bone cell
population model of Lemaire et al. (2004) incorporating the bone
volume fraction balance equation (Pivonka et al., 2008). Despite
increased complexity, the cell concentration dynamics remain
qualitatively similar to the original model formulation,
demonstrating the robustness across different model variants
(Figures 8, 9). Extension to more complex BCPMs (Pivonka

et al., 2008; Pivonka and Komarova, 2010; Scheiner et al., 2013;
Trichilo et al., 2019) is straightforward.

The model successfully reproduces key bone cell responses
including increased osteoclast activity during disease states and
time-delayed osteoblast response to catabolic osteoclast action.
We showed that catabolic responses, traditionally obtained by
increasing the PTH activator function (πPTH), can now be
achieved by replacing πPTH with the calibrated cellular
responsiveness αR or integrated activity αT from the two-state
PTH-PTH1R model. While the latter quantities were previously
given theoretical bone-related interpretations in the two-state
receptor model (Martonová et al., 2023), our study represents
their first implementation within an actual bone cell population
modeling framework.

Our analysis of single pulse characteristics (Section 2.4)
shows that maximum cell response occurs at equal duration of

FIGURE 11
Values of αT and αR for the healthy state depending on/off ratio. Physiological healthy and disease states (hyperparathyroidism (HPT), osteoporosis
(OP), postmenopausal osteoporosis (PMO), hypercalcemia (HyperC), hypocalcemia (HypoC), glucocorticoid-induced osteoporosis (GIO)) are also
included in the plot for comparison. Left: On/off-ratio variations with αT. Right: On/off-ratio variations with αR.

FIGURE 12
Bone cell population model with maximum cellular responsiveness αR for healthy state and HPT as disease state (left). The results using non-
optimized cellular responsiveness αR for healthy state are shown as comparison (right). The concentrations of active osteoblasts, OBa , and osteoblast
precursors, OBp, are shown.
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on- and off-phase. This demonstrates the inherent trade-offs
between pulse height and width: very long PTH pulses result in
extended but low activity due to receptor desensitization, while short
pulses produce intense but brief responses. The highest catabolic
response–quantified by maximal integrated activity αT and cellular
responsiveness αR – occurs when on- and off-phases are of equal
duration, balancing pulse height and width while allowing for
receptor resensitization between pulses.

We compared our novel approaches with the original BCPM
formulation to evaluate the importance of including pulsatile PTH
dynamics. We implemented disease states in the original model using a
“scaling parameter” that reflects how diseases would be modeled as
constant PTH elevations rather than capturing the full pulsatile
patterns. The parameter is the ratio of maximum PTH
concentration in disease and healthy state (Equation 14), and we
multiplied it with the baseline PTH concentration of the BCPM
(Equation 15). This approach does not require a complex two-state
receptor model and could be used directly linked with existing BCPMs.
While the novel approaches yield comparable results overall, the
original model’s inability to incorporate pulsatile characteristics
becomes evident in the case of glucocorticoid-induced osteoporosis,
where the pulsatile pattern is characterized by increased relative
amplitude without significant changes in maximum concentration
(Figure 7). The original model, which neglects these pulsatile
dynamics, fails to capture the catabolic cell responses and
subsequent bone loss (Figures 9, 10). This addresses fundamental
challenges in mathematical modeling of endocrine systems, where
dynamic hormone secretion patterns are often oversimplified as
constant values. The importance of capturing hormonal pulsatility is
particularly evident in PTH signaling, where pulsatile versus continuous
administration produces opposing effects on bone metabolism
(Veldhuis, 2008). Our semi-coupled model incorporates both
pulsatile characteristics and cellular desensitization through the two-
state receptor model, addressing key research gaps identified in
endocrine system modeling (Brucker-Davis et al., 2001; Zavala et al.,
2019; Zavala, 2022).

The new model qualitatively predicts expected catabolic
responses for the majority of PTH-driven bone diseases
(hyperparathyroidism, hypocalcemia, glucocorticoid-induced
osteoporosis), specifically, both the increased osteoclast activity
and the resulting bone volume loss that characterize these
conditions. It does not predict the bone loss encountered in
osteoporosis and postmenopausal osteoporosis, where the model
maintains homeostasis. The reason for this might be that these
diseases are not exclusively linked to alterations in PTH release
patterns, but also involve more significant pathophysiological
changes such as estrogen depletion in PMO which directly
regulates RANKL production by osteoblasts and osteocytes and/
or TGF-β activity in old-age OP (Hawkins et al., 2021; Lu and Tian,
2023; Ruiz-Lozano et al., 2024). This is supported by the respective
PTH characteristics (Table 1) that do not deviate significantly from
the healthy pattern, confirming our model behaves as expected:
predicting bone loss when PTH deviations are large enough
compared to the healthy pattern while remaining stable when
PTH patterns remain relatively normal despite the presence of
other pathological mechanisms driving bone loss.

Validating model predictions against clinical data presents
inherent challenges, as bone loss measurements typically compare

disease states to controls rather than tracking progression from
onset. For bone volume predictions (Figure 10), our model shows
conservative estimates across conditions: For glucocorticoid-
induced osteoporosis, we predict 0.7% trabecular bone loss in the
first 60 days compared to clinical observations of approximately 5%
loss (Boling, 2004). In primary hyperparathyroidism, our predicted
loss of 0.8% after 60 days could reasonably accumulate to the
observed 4%–5% difference between PHPT and control subjects
(Christiansen et al., 1992), considering more rapid initial bone loss.
The model’s highest catabolic response occurs in hypocalcemia,
consistent with experimental data showing substantial bone loss
(19% in rat models after 6 months (Jakubas-Przewłocka and
Przewłocki, 2005), though our predicted magnitude is lower.
These discrepancies likely reflect fundamental differences in
disease simulation approaches (pulsatile human PTH patterns
versus induced disease states), experimental duration, species
transferability, and the instantaneous disease onset in our model
versus progressive development in biological systems. While these
comparisons suggest the need for parameter optimization based on
expected bone loss, the heterogeneity and limited availability of
consistent clinical data currently constrains such validation efforts, a
challenge that has motivated various cross-methodological data-
driven calibration approaches in bone modeling (Araujo et al., 2014;
Baratchart et al., 2022).

Similar challenges apply to validating bone cell concentration
predictions (Figures 8, 9), as osteoblasts and osteoclasts are rarely
tracked over time in clinical settings. Comparison with murine
studies helps establish reasonable numerical expectations despite
inherent species differences. For hyperparathyroidism induced in
mice, Siddiqui et al. (2017) demonstrated a 2.3-fold increase in
osteoclast number per bone surface, while our model predictions
range from 2.25 to 3.9-fold increases in OCa concentration across
different approaches, showing good agreement with experimental data.
This alignment is further supported by the 3.3-fold increase in
TRAP5b–an enzyme produced by osteoclasts–observed in the same
study. Our predicted decrease in bone volume fraction (0.2%–0.37%) is
conservative compared to the experimental 9% reduction in the cortex,
despite reasonable osteoclast predictions and only moderate
underestimation of osteoblast activity (1.7–2.4-fold vs 3.67-fold
experimental increase). Notably, no significant trabecular BV/TV
loss was observed experimentally, which is consistent with our
conservative bone volume estimates. For glucocorticoid-induced
osteoporosis, Hofbauer et al. (2009) reported a 1.55-fold increase in
osteoclast number per bone surface, closely matching our novel model
formulations (1.62–1.67-fold increase of OCa-concentration), while the
original approach showed insufficient response (1.06-fold increase). For
osteoblast dynamics, our model simulates an initial decrease in active
osteoblast concentration, which aligns qualitatively with the reduced
serum osteocalcin levels reported for GIO-induced mice (Hofbauer
et al., 2009). The initial decrease after disease onset is followed by a
compensatory increase in response to elevated osteoclast activity. While
this cellular response pattern is phenomenologically correct, we
acknowledge that GIO involves complex mechanisms beyond PTH
pulsatility alterations that our model does not capture, as our primary
objective was demonstrating the importance of pulsatile hormone
dynamics rather than comprehensive GIO modeling. Despite this
cellular-level agreement, our model again predicted minimal bone
volume changes over 80 days compared to substantial experimental
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bone area loss over 4 weeks (Hofbauer et al., 2009). Hofbauer et al.
reported that trabecular BMD remained unchanged in GIO-induced
mice, with most pronounced decreases in cortical and subcortical
compartments. Likely due to limited sample sizes, BMD effects did
not reach statistical significance. The agreement of our cellular
predictions (osteoclasts and osteoblasts) with experimental data,
coupled with underestimation of corresponding bone loss, suggests
that recalibrating bone formation and resorption rate constants with
appropriate human data could improve structural predictions. While
these rates are currently assumed constant following established BCPM
practice (Lemaire et al., 2004; Pivonka et al., 2008; Scheiner et al., 2013),
experimental studies have demonstrated variability in individual
osteoclast resorptive activity (Kanehisa and Heersche, 1988), and
mathematical modeling of injury repair has provided in vivo
evidence for time-variable cellular activity rates (Lo et al., 2021).
Careful consideration is needed since our model tracks average
cellular concentrations and thus inherently represents averaged
resorption and formation rates over cell populations. Nevertheless,
the order-of-magnitude agreement in cellular responses across both
conditions provide confidence in the model’s mechanistic foundation.

We acknowledge several key limitations of our current approach.
First, PTH levels are prescribed externally rather than evolving from
endogenous physiological feedback mechanisms in both the original
and our novel BCPM. PTH is either maintained at constant levels
(original model) or follows prescribed pulsatile patterns (novel
approach), without incorporating the calcium-PTH feedback loop
that naturally regulates PTH secretion in vivo (Chiavistelli et al.,
2015). This approach is appropriate for our primary objective of
studying how specific hormone patterns affect bone cell dynamics
and remodeling activity under controlled conditions. However, an
autonomous model–incorporating calcium homeostasis and PTH
regulation through calcium-sensing receptors–would facilitate
analysis of the underlying causes of dysregulated hormone patterns
themselves. An autonomous model would eliminate the current
assumption of instantaneous disease state onset and allow gradual
disease progression through feedback dysregulation.

Second, we model disease states as immediate transitions from a
healthy PTH pattern (Figures 8, 9). This type of approach was original
suggested by Lemaire et al. (2004) and subsequently improved by
Pivonka et al. (2008) to account for temporal changing disease patterns.
Our current approach could be extended towards gradual changing
PTH patterns over given time intervals. Additionally, changes in bone
volume fraction are constant after steady-states of cell concentration are
reached. This implies constant bone loss independent of disease
duration, which is not physiological. Mechanostat model
incorporation could address this limitation (Scheiner et al., 2013;
Martínez-Reina and Pivonka, 2019).

Third, our square-wave pulses for the PTH secretion pattern
based on the original formulations (Li and Goldbeter, 1989;
Martonová et al., 2023) represent an idealized version of
hormone release patterns. A more physiologically realistic
approach would model PTH degradation as an exponential
decrease after the onset of each pulse, rather than an immediate
switch to zero concentration, while maintaining total secreted PTH.

Finally, while we focused on PTH1R signaling in osteoblasts,
recent studies have found that PTH1R is also expressed on
osteocytes, where PTH directly induces upregulation of RANKL
gene production. The resulting increased RANKL/OPG ratio leads

to higher osteoclast recruitment and activation. This is consistent
with the conservative bone loss predicted by the model.
Additionally, PTH binding to PTH1R expressed on osteocytes
downregulates sclerostin production, a formation inhibitor, which
thus enhances bone formation (Ben-awadh et al., 2014; Marino and
Bellido, 2024). These osteocyte-mediated effects represent
additional pathways through which PTH influences bone
remodeling beyond the osteoblast responses captured in our
current model.

These limitations suggest several research directions. The
framework could be extended to more sophisticated bone cell
population models distinguishing between modeling and
remodeling processes (Trichilo et al., 2019). The activity function
α(t) could potentially distinguish between catabolic and anabolic
pathways directly, making explicit, separate pathways unnecessary.
Future developments could explore gradual concentration changes
between healthy and disease states or directly use the time-
dependent cellular activity function α(t) instead of constant PTH
effect quantification.

Beyond PTH dynamics, our approach offers a template for other
biological contexts where both temporal patterns and receptor
adaptation require consideration. The methodology applies to
mechanical loading patterns during habitual movement or
exercise, where cells respond to pulsatile mechanical stimuli and
adapt to sustained loads. This framework could also be adapted to
other signaling pathways such as RANKL-RANK-OPG binding.
This demonstrates the broader applicability in modeling various
biological regulatory systems beyond simple Hill functions and
constant stimuli. The interaction of bone remodeling, calcium
homeostasis, and PTH secretion represents an interesting
approach for future model development that could bridge the
gap between prescribed hormone patterns and the physiological
mechanisms that generate them.

5 Nomenclature

5.1 Resource identification initiative

All simulations were performed using Python Programming
Language (RRID:SCR_008394).
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