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Objective: This study investigates the biomechanical effects of long-term Tai Chi
practice on the knee meniscus through biomechanical experimentation and finite
element simulation, focusing on practitioners performing Knee Brushing and
Twisting Step. The findings aim to establish scientific guidelines for optimizing
exercise protocols in middle-aged and elderly populations.

Methods: Twenty male middle-aged and elderly practitioners were recruited,
divided into a Beginner Group (BG: n = 10), and an Experienced Group (EG: n =
10). Kinematic and kinetic data during Knee performance of Brushing and
Twisting Step were collected using synchronized three-dimensional infrared
motion capture and force platforms. A finite element model was developed
and validated based on knee CT and MRI imaging data from a representative
participant with average anthropometric measurements. The acquired kinematic
and kinetic data were applied as boundary conditions and loading inputs in finite
element analysis software to simulate the knee joint contact stress distribution
during movement execution.

Results: (1) The Experienced Group demonstrated significantly greater knee
flexion angles compared to the Beginner Group across all movement phases
(P < 0.01), while exhibiting significantly lower varus-valgus and internal-external
rotation angles (P < 0.01). (2) The Experienced Group exhibited phase-specific
peak contact stress distribution: predominantly on the lateral meniscus during
(left) double-support, (left) swing, (left) single-support, and terminal (right) swing
phases, shifting to the medial meniscus during (right) double-support, initial
(right) swing, and (right) single-support phases. In contrast, the Beginner
Group demonstrated consistent lateral meniscus stress concentration across
all phases except during the (right) swing phase.

Conclusion: Long-term practice of Tai Chi optimizes the distribution of stress
across the knee joints, effectively reducing localized stress concentrations and
the associated risks of meniscal injuries. For novice practitioners, it is crucial to
emphasize precision in movement and adherence to technical standards to
prevent knee injuries that may arise from improper biomechanical loading
patterns.
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1 Introduction

Knee joint health is critical for the daily activities and quality
of life of middle-aged and elderly individuals. However, with
advancing age, the risk of meniscal degeneration and injury rises
significantly, becoming a primary cause of knee joint diseases in
older adults (Jang et al., 2021). The meniscus, situated between
the femoral condyles and the tibial plateau (Pillai et al., 2018),is a
wedge-shaped fibrocartilage disc that serves to protect articular
cartilage, provide joint lubrication, and enhance joint stability
(Murakami et al., 2019). It reduces contact stress and increases
the contact area (Kettelkamp and Jacobs, 1972; Walker and
Erkiuan, 1975). Once damaged, it disrupts normal knee joint
kinematics, increases peak contact stress, and leads to early
degenerative changes in the knee joint, potentially resulting in
complications such as knee osteoarthritis (Papalia et al., 2013; Shi
et al., 2018; Sung et al., 2013).

Tai Chi, characterized by its integration of hardness and
softness, movement and stillness, and coordination of internal
and external elements, is a low-intensity aerobic exercise.
Research shows that trunk stability training enhances pelvic and
spinal control, providing a stable foundation for lower-limb
movement. Improved core stability facilitates more effective
coordination between the upper and lower body, resulting in
better activation of the leg muscles and more efficient force
transfer ($ahin et al., 2015). Similarly, practicing Tai Chi requires
coordination between the upper and lower limbs to transmit force
more effectively. These mechanisms may reduce abnormal joint
loads and promote healthier biomechanics in the knee joint, which is
important for older adults. Furthermore, long-term Tai Chi practice
enhances lower limb muscle strength, improves knee joint stability,
and increases functional mobility. It is particularly effective at
alleviating knee pain (Kelley et al., 2022). Due to its safety and
effectiveness, Tai Chi is recommended by domestic and
international rehabilitation guidelines as a suitable long-term
aerobic exercise therapy for middle-aged and elderly individuals
(Brosseau et al., 2017; Ye and Liu, 2023).

Tai Chi encompasses a wide variety of footwork, with the
advancing step being the most fundamental and frequently
utilized movement. This step is a key element in the process of
learning and mastering Tai Chi (Liu et al., 2024). Different footwork
techniques exert varying biomechanical effects, and improper
footwork can lead to abnormal stress on the knee joint, resulting
in injury (Hua et al., 2024; Li et al., 2023). The Brush Knee and Twist
Step is a typical forward step that necessitates coordination between
the body’s center of gravity and the upper and lower limbs,
significantly impacting biomechanics of the knee joint (Liu et al.,
2024). Incorrect movement can cause abnormal stress distribution
on the knee joint, increasing the risk of injury. Although existing
research addresses the general health benefits of Tai Chi, there is a
notable lack of systematic analysis regarding the specific
biomechanical impact of particular footwork, such as the
Brushing and Twisting Step, on the knee joint meniscus. This
study analyzes the Brush Knee and Twist Step movement,
exploring the contact stress characteristics of the knee joint
meniscus during the motion, thereby providing a reference for
developing more scientifically based exercise plans, reducing the
risk of injury, and enhancing exercise safety.
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FIGURE 1
Knee joint finite element model.

2 Participants
2.1 Participant recruitment

The experimental protocols and procedures in this study were
approved by the Ethics Committee of Fujian University of Traditional
Chinese Medicine (approval number: 2023KS-81-1). Twenty healthy
middle-aged and elderly male participants were recruited and stratified
into two groups based on training duration: the Beginner Group
(<1 year, n = 10) and Experienced Group (=5 years, n = 10). The
inclusion criteria were as follows: 1) Healthy male individuals aged
45-65 years; 2) Absence of functional impairments or structural
abnormalities in the knee or lower extremities; 3) Voluntary
participation with signed informed consent. The exclusion criteria
included: 1) A history of severe knee disorders; 2) Previous knee
surgery; 3) A body mass index BMI>30 kg/m?* 4) Systemic diseases
affecting knee function (e.g., peripheral neuropathy, osteoporosis). The
results of the basic examination are shown in Table 1.

3 Methods
3.1 Kinematic measurement

Three-dimensional movement data during Tai Chi Knee
Brushing and Twisting Step performance were collected using
synchronized infrared motion capture (Oqus700+, Qualisys,
Sweden) and force platforms (9260AA, Kistler, Switzerland).
Ground reaction forces during Knee Brushing and Twisting Step
execution were analyzed using Visual 3D biomechanical modeling
software (Professional V6, C-Motion, United States).

3.2 Medical imaging measurement

Knee joint morphology in the supine extended-knee
position was acquired using a LightSpeed 64-slice spiral CT
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TABLE 1 Statistical comparison of baseline characteristics between groups.

Parameter

Beginner group

(Mean + SD)

10.3389/fbioe.2025.1620228

Experienced group

Age (year) 58.40 + 3.53 58.80 + 3.85 0.242 0.812
Height (cm) 165.68 + 3.98 166.63 + 4.82 ‘ 0.481 0.637
Weight (kg) 60.86 + 2.97 61.73 + 1.66 0.809 0.432
BMI(kg/m?) 2229 £ 1.25 22.09 + 1.49 ‘ -0.325 0.374

Note: *P < 0.05 indicates significant difference; **P < 0.01 indicates highly significant difference.

TABLE 2 Material parameters.

Material Elastic modulus (MPa)  Poisson'’s ratio
Cortical Bone 17,000 0.3
Cancellous Bone 160 0.3
Meniscus 120 0.45
Articular Cartilage 10 0.45

scanner (GE Healthcare, United States) with scan coverage
extending from the mid-to-distal femur to the proximal
tibiofibular complex. The imaging parameters included a slice
thickness of 0.625 mm and a resolution of 512 x 512 pixels.
Three-dimensional MRI datasets of the same knee joint were
obtained using a 3.0T MRI (GE Healthcare,
United States) with imaging parameters consisting of a slice

scanner

thickness of 0.7 mm, an interslice gap of 0.5 mm, and a
resolution of 512 x 512 pixels.

3.3 Finite element modeling

Bone and cartilage structures were segmented from CT and MRI
data using threshold-based techniques in Mimics (Materialise,
Leuven, Belgium) and reconstructed into watertight solid 3D
models. Surface patches were generated and converted into
smooth solid models. A 2 mm inward offset operation created
cancellous bone components, followed by Boolean operations to
obtain cortical bone structures. Articular cartilage was integrated
with osseous components to form the complete anatomical
model (Figure 1).

3.4 Material parameter assignment

Mesh generation was conducted using HyperMesh (Altair
Engineering, United States), resulting in an average of
225,100 elements and 58,900 nodes per model. Chondral and
meniscal tissues were discretized with nearly incompressible
hybrid elements (C3D4H), while osseous structures were
meshed using standard tetrahedral elements (C3D4). Material
properties were assigned based on established biomechanical
literature (Table 2) (Bae et al., 2012; Dhaher et al., 2010; Segal
et al., 2009).
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FIGURE 2
Stress validation of meniscus in model verification.

3.5 Boundary constraints and
loading protocol

Interaction properties and loading conditions were defined within
the Abaqus computational environment. TIE constraints were defined
between cortical and cancellous bones, between cortical bone and
cartilage, and between cortical bone and the meniscus. Frictionless
contact was established between femoral cartilage and meniscus. The
superior surface of the femur was kinematically coupled to a reference
node, as concentrated loads must be applied to discrete nodal points
through coupling operations. All translational and rotational degrees of
freedom were fixed at the distal tibiofibular cross-sections, while axial
compressive loading was applied along the anatomical axis of the femur
through the proximal reference node. A vertical compressive load of
1000 N was applied to the proximal femur, resulting in medial and
lateral meniscal stresses of 2.57 MPa and 2.37 MPa respectively, with
model validity confirmed by previous biomechanical studies (Figure 2)
(Bendjaballah et al., 1995; Keaveny and Hayes, 1993; Pena et al., 2006).

3.6 Finite element analysis

The boundary conditions and loading configurations for the
finite element analysis were derived from kinematic and kinetic
measurement analyses. The Knee Brushing and Twisting Step
movement cycle was partitioned into six phases based on force
platform recordings, bilateral movement symmetry, and established
biomechanical criteria (Chang et al., 2021; Xu et al, 2003): left
double-support phase, left swing phase, left single-support phase,
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FIGURE 3

Movement Phases of Tai Chi. (A) (Left) Double-leg support phase (B) (Left) Swing phase (C) (Left) Single-leg support phase (D) (Right) Double-leg

support phase (E) (Right) Swing phase (F) (Right) Single-leg support phase.
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FIGURE 4
X-axis (flexion/extension) kinematic angles of the knee joint.
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right double-support phase, right swing phase, and right single-
support phase (Figure 3).

A local coordinate system was established at the knee joint with
the X-axis aligned with the femoral transepicondylar line, the Z-axis
along the femoral longitudinal axis, and the Y-axis orthogonal to
both. Joint angles obtained from Visual 3D analyses were utilized to
manually refine the model’s angular configurations. During
dynamic loading, the superior surface of the femur was
kinematically coupled to a reference node, through which a

Frontiers in Bioengineering and Biotechnology

04

downward axial force corresponding to the force platform
recordings was applied along the anatomical axis.

3.7 Statistical analysis
To eliminate the influence of body weight on ground reaction forces,

the ratio of ground reaction forces to body weight was used to represent
dynamic data. Based on the bilateral symmetry and similarity of leg
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TABLE 3 Phase-specific knee joint biomechanical analysis.

Kinematic angle () Beginner group Experienced group
(mean + SD) (mean + SD)
(L) Double-leg Support X-axis 39.77 + 14.27 4511 + 22.84 —6.205 <0.001**
(L) Swing Phase
(L) Single-leg Support Y -axis 139 + 4.14 —4.56 + 2.90 31.126 <0.001**
(R) Double-leg Support
(R) Swing Phase Z-axis ~13.51 + 2.14 ~5.07 + 0.68 ~42.641 <0.001*
(R) Single-leg Support X-axis 34.68 + 5.05 43.94 + 10.7 ~15.670 <0.001%
Y-axis 1.65 + 2.65 ~0.91 + 3.46 19.076 <0.001*
Z-axis ~19.20 + 497 ~13.27 + 4.88 -93.651 <0.001%
X-axis 51.24 + 10.38 56.00 + 25.50 ~3.086 0.030*
Y-axis 425 + 149 2.03 + 342 9.823 <0.001**
Z-axis ~9.94 + 2.03 ~12.43 + 1.64 18.651 <0.001*
X-axis 3875 + 18.57 53.45 + 21.78 ~24.436 <0.001*
Y-axis 0.22 +2.96 071+ 15 4818 <0.001*
Z-axis -332 + 494 ~1.16 + 5.51 -26.322 <0.001**
X-axis 36.96 + 14.52 4059 + 20.74 ~5.667 <0.001%*
Y-axis 291 +323 ~0.39 + 4.10 35.287 <0.001*
Z-axis ~7.00 + 5.97 -531 + 4.83 -9.235 <0.001*
X-axis 45.76 + 6.72 60.70 + 7.22 ~117.932 <0.001*
Y-axis 457 + 1.52 1.06 + 2.45 15.410 <0.001*
Z-axis ~7.14 + 1.60 -4.58 + 1.27 ~18.134 <0.001*

Note: *P < 0.05 indicates significant difference; **P < 0.01 indicates highly significant difference.
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FIGURE 5 FIGURE 6
Y-axis (abduction/adduction) kinematic angles of the knee joint. Z-axis (internal/external rotation) kinematic angles of the
knee joint.

movements in Tai Chi, the biomechanical characteristics of the right leg Chicago, IL, United States). The Shapiro-Wilk test was used to assess
were used to represent overall movement. The maximum and minimum ~ normality, and the results indicated that all parameter data were
angles of each joint were calculated to determine its range of motion. ~ generally normally distributed. Assuming normality, an independent
Statistical analysis was performed using SPSS 17.0 software (SPSS Inc, ~ samples t-test was used to analyze the participants’ baseline
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FIGURE 7
Ground reaction force (GRF) patterns across Tai Chi step-

forward movement phases.

characteristics. After ensuring overall normality and maintaining data
independence through data matching, paired t-tests were used to
statistically analyze the kinematic data of the hip, knee, and ankle
joints in this study. This analysis evaluated the impact of different
exercise levels on kinematic performance. All tests were two-tailed, and a
p-value less than 0.05 was considered statistically significant. A p-value
less than 0.01 indicated a highly significant difference.

4 Results
4.1 Kinematic results

As illustrated in Table 3 and Figures 4-6, the Experienced
Group exhibited significantly greater knee flexion angles

TABLE 4 Loading data across.

10.3389/fbioe.2025.1620228

throughout all movement phases compared to the Beginner
Group (P < 0.01). For example, during the left swing phase,
the Experienced Group displayed a knee flexion of 54.69° + 4.05°,
in contrast to 40.93° + 5.44" in the Beginner Group. Additionally,
the Experienced Group showed significantly smaller internal/
external  rotation which  indicates

angles, improved

movement stability.

4.2 Dynamic results

Both groups exhibited ground reaction forces (GRF)
characterized by an initial ascending-descending trend. The
experienced group demonstrated higher peak magnitudes and
more uniform force distribution patterns compared to the novice
group, as illustrated in Figure 7. For instance, during the (left)
double-support phase, the experienced group exhibited a GRF
peak of 1.07 times body weight (BW), whereas the novice group
demonstrated a peak of 1.02 BW. During the (right) single-
support phase, the experienced group displayed smoother GRF
indicative  of neuromuscular  control

profiles, superior

capabilities.

4.3 Loading phase selection and contact
stress outcomes

4.3.1 Temporal load application criteria

Computational evaluations were conducted at characteristic
time nodes that correspond to local peaks or significant
kinematic and kinetic transitions during various phases of
Knee Brushing and Twisting Step, This analysis revealed a 9%
variation for beginners and an 8% variation for experienced
practitioners in the selected phases, with detailed data
presented in Table 4.

Time point

(L) Double-leg Support BG 9% 59.07° 8.7° -10.29° 1.01
EG 8% 57.48° 7.74° —-8.35° 0.85

(L)Swing Phase BG 52% 40.93° 5.44° -1.33° 0.7
EG 52% 54.69° 4.05° —6.42° 0.68

(R)Double-leg Support BG 97% 62.39° 3.68° -0.44° 0.74
EG 8% 57.48° 7.74° —-8.35° 0.85

(R)Swing Phase BG 89% 43.18° 8.48° -12.51° 0.75
EG 52% 54.69° 4.05° —6.42° 0.68

(R)Single-leg Support BG 99% 61.59° 5.69° -7.16° 1.05
EG 99% 78.51° -3.93° -3.15° 1.09
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4.3.2 Contact Stress Results

TABLE 5 Contact stress results.

Group Time Contact stress and
point location
(L) Double-leg BG 9% 4.6 MPa,ALM
Support
EG 8% 4.2 MPa,ALM
(L)Swing Phase BG 52% 4.6 MPa,ALM
EG 52% 4.5 MPa,ALM
(R)Double-leg BG 97% 4.7 MPa,MP-LM
Support
EG 8% 4.5 MPa,ALM
(R)Swing Phase BG 89% 4.4 MPa,ALM
EG 52% 4.5 MPa,AMM
(R)Single-leg BG 99% 4.5 MPa,ALM
Support
EG 99% 4.6 MPa,PMM

5 Discussion

Tai Chi is a low-impact, slow, and continuous exercise that
exerts less contact stress on the body compared to walking and
running (Li et al., 2019). Research indicates that an appropriate
biomechanical environment and moderate pressure stimulation are
essential for maintaining joint cartilage health, while prolonged
overload can lead to cartilage degeneration (Griffin and Guilak,
2005; Louboutin et al., 2009; Morimoto et al., 2009; Sah et al., 1989;
Waldman et al., 2004). Therefore, engaging in rational exercise and
avoiding excessive load are vital for the prevention and treatment of
joint diseases.

This study integrates kinematic and dynamic experiments with
finite element simulations to investigate the biomechanical effects of
the Brush Knee and Twist Step on the knee joint meniscus in
middle-aged and elderly individuals. The results revealed that the
Experienced Group exhibited superior knee flexion angles, ground
reaction force distribution, and meniscal contact stress distribution
compared to the Beginner Group, resulting in more stable
movements and a more evenly distributed contact stress.

Beginner Group

F
Experienced Group‘ .

FIGURE 8

CaC
€3¢

d
S

10.3389/fbioe.2025.1620228

Additionally, the stress

concentration on the lateral meniscus during most phases, which

Beginner Group demonstrated
may increase the risk of injury (Table 5). This phenomenon can be
attributed to a lack of coordinated movement between the hip, knee,
and ankle joints during Tai Chi practice. Such miscoordination
alters femoral-tibial contact positions, lead to uneven stress
distribution, and increases the burden on the knee joint, resulting
in excessive wear or injury to the joint surfaces.

Related studies have shown that a lower knee posture during Tai
Chi correlates with an increased load on the joint (Wen et al., 2018).
However, the magnitude of stress on articular cartilage is associated
with both the overall load on the joint and the distribution of this
load across the cartilage contact area (Ahmed et al., 1983). In this
study, although the Experienced Group maintained a lower posture,
their peak contact stress values did not differ significantly from those
of the Beginner Group. Additionally, the stress distribution patterns
in the Experienced Group were significantly superior, indicating
more efficient load management.

On the other hand, increased internal and external rotation
angles of the knee joint significantly elevate cartilage stress (Liao
2015), potentially leading to heightened strain on the
surrounding ligaments (Lee et al, 2001). Furthermore, excessive

et al,

internal or external tilt can result in increased stress. Biomechanical
studies suggest that when the tilt angle is between 6° internal and
10°external (Zhang et al., 2024), the stress variations on the medial
and lateral sides of the knee joint are not significant. In this study,
both the Beginner and Experienced Groups exhibited internal or
external tilt angles within the range of —6°-10°, indicating that the
internal or external tilt of the knee joint did not result in notable
stress variations.

Moreover, Tai Chi footwork emphasizes the concept of
changing between full and empty, where certain parts of the
body must remain relaxed (empty) while others generate force or
bear weight (full). During lower limb movements, one leg (the
full leg) supports most of the weight and force, while the other leg
(the empty leg) remains relatively relaxed, prepared to move or
generate force. By shifting the body’s center of gravity, Tai Chi
achieves coordination between internal and external movements,
resulting in a light and stable effect. Yang Chengfu (Yang, 2005)
in his ‘Treatise on Tai Chi Practice’ emphasized that ‘Tai Chi
practice begins with the distinction between full and empty; only
when this distinction is made can one rotate lightly and

(e’
¢

CPRESS
+4.702e+00

J

+0.000e+00

CI:
cd°

Contact Stress Results. Note: In the Beginner Group, (left) double-support phase at 9% (A), (left) swing phase at 52% (B), (right) double-support phase
at 97% (C), (right) swing phase at 89% (D), and (right) single-support phase at 99% (E). For the Experienced Group, (left) double-support phase at 8% (F),
(left) swing phase at 52% (G), (right) double-support phase at 93% (H), (right) swing phase at 88% (l), and (right) single-support phase at 99% (J).
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effortlessly. If this distinction is overlooked, steps become heavy
and unstable.” During the swing phases of the left and right legs,
the Experienced Group exhibited a relatively greater knee flexion
angle and bore a greater load, which may increase contact stress
and affect the menisci and cartilage. However, through outward
swinging and shifting the center of gravity to the opposite side,
stress concentration was effectively distributed, thereby reducing
the load on a single knee joint. During different stages of the
knee-hugging and stepping exercise, the contact stress on the
knee joint at peak moments showed a more uniform distribution
for the long-term practice group, while the contact stress for the
novice group was concentrated in the lateral meniscus (Figure 8).
This further illustrates the role of combining emptiness and
fullness in Tai Chi practice. The integration of ‘“full and
empty’ prevents the knee joint from enduring excessive
continuous pressure and helps mitigate cartilage wear.
However, if the ankle joint’s power control and direction are
not precise during the center of gravity transfer, it may affect the
knee joint’s motion angle, leading to unnecessary stress
concentration and increasing the risk of injury. The results
show that the beginner group had higher internal or external
rotation angles than the Experienced Group, indicating that the
beginner group relied more on joint motion than on muscle
control to maintain stability. The Experienced Group, despite
having greater knee flexion, exhibited more even contact stress
distribution, suggesting better knee joint muscle strength and
control ability, allowing them to perform lower postures more
safely. This is a key factor in enhancing leg strength and stability
in Tai Chi practice.

Therefore, when practicing the advancing movement, it is
crucial to focus on the technique of ‘changing between full and
empty.” This ensures the correct distribution of the body’s center of
gravity, which protects the knee joint and maximize the benefits of
Tai Chi practice. During the process of transferring the center of
gravity, it is also essential to emphasize the coordination of the lower
limb joints should. Utilizing muscle control to stabilize the joints is
important to avoid over-reliance on knee joint motion.

This study indicates that long-term Tai Chi practice enhances
the balance of meniscal stress distribution in the knee joint,
reducing the risk of injury. It provides theoretical support for the
scientific practice of Tai Chi among middle-aged and elderly
individuals. By understanding and applying Tai Chi principles
such as clear differentiation between full and empty, flexible
transition, and coordinated movement, practitioners can achieve
better coordination of the lower limb joints, leading to a more
even distribution of stress across the knee joint. Through
continuous practice, this coordination gradually becomes a
natural state of the body, fostering beneficial movement
pattern that enable practitioners to utilize muscle control for
stabilizing the joints. This reduces unnecessary joint motion and
minimizes knee wear and
joint health.

However, this study has certain limitations. First, the sample size

injury, ultimately promoting

was restricted to male participants aged 45-65 years. Future research
should expand the sample size to include female participants and
other age groups. Second, this study focused solely on the dynamic
characteristics of the Brush Knee and Twist Step movement. Future
studies could investigate the biomechanical impact of other Tai Chi
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movements on the knee joint. Furthermore, the finite element model
was constructed based on individual imaging data, and despite
validation, its complexity limited the simulation of certain real-
life biomechanical environments. Future research could incorporate
more advanced dynamic imaging technologies to enhance the
model’s accuracy and practical application.
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