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Terpenes are biomolecules of significant industrial relevance, with applications in
pharmaceuticals, cosmetics, and the food industry. Their biotechnological
production is emerging, with Corynebacterium glutamicum, a Gram-positive
bacterium traditionally employed for large-scale amino acid production, serving
as a promising host. While metabolic engineering strategies have been
extensively applied to enhance terpene titers in C. glutamicum, the role of
medium composition, particularly trace elements, remains underexplored. In
this study, the impact of trace element composition on trans-nerolidol
production by engineered C. glutamicum was investigated. A Design of
Experiments (DoE) approach identified MgSO4 as a critical factor, and the
refined trace element composition led to a 34% increase in trans-nerolidol
production. Further metabolic engineering efforts resulted in a final titer of
28.1 mg L-1. Subsequent fed-batch fermentation achieved a trans-nerolidol
titer of 0.41 g L-1, representing the highest reported sesquiterpene titer being
produced by C. glutamicum to date. Additionally, the refined trace element
composition was successfully applied to patchoulol- and (+)-valencene-
producing strains, leading to production increases of 15% and 72%,
respectively. These findings demonstrate that trace element refinement and
metabolic engineering act as complementary strategies for enhancing terpene
production in a microbial production host.
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1 Introduction

With more than 80,000 characterized molecules, terpenes are the largest and
structurally most diverse group of natural products (Christianson, 2017). Fulfilling a
myriad of functions in nature, terpenes are, for example, involved in photosynthesis
(Zulfiqar et al., 2021), regulation of biotic and abiotic stress (Wang et al., 2023),
defense and attraction (Gershenzon and Dudareva, 2007), as well as membrane fluidity
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(Zhou et al., 2015). Terpenes are also of significant industrial interest
as they find application in pharmaceuticals, cosmetics, food, and
biofuels (Caputi and Aprea, 2011;Wang et al., 2015; Fan et al., 2023).
Most of these compounds have to be extracted from plants, which
poses significant challenges due to low concentrations in plant
tissues, seasonal and geographical fluctuations, and the extensive
agricultural areas required. To avoid this, biotechnological
production offers a sustainable and efficient alternative to
produce terpenes (Moser and Pichler, 2019; Zhang and Hong,
2020). Among the different microbes available, the Gram-positive
industrial workhorseCorynebacterium glutamicum, extensively used
for the large-scale production of amino acids (Wendisch, 2020), is a
promising cell factory for natural compounds as its deriving
products are classified as GRAS (Cankar et al., 2023). In recent
years, C. glutamicum has been engineered for the production of
various terpenes including hemi-, mono-, sesqui-, di- and
triterpenes (Kang et al., 2014; Henke et al., 2018a; Henke et al.,
2018b; Sasaki et al., 2019; Lim et al., 2020; Luckie et al., 2024; Li et al.,
2025; Lee et al., 2025). To increase the product titer, mostly
metabolic engineering strategies were pursued. Competing
pathways like carotenogenesis (Henke et al., 2018b) or in the
central carbon metabolism (Li et al., 2025) were deleted. Lim
et al. (2020) identified and overexpressed key enzymes of the
methylerythritol 4-phosphate (MEP) pathway to enhance
precursor supply. In contrast to that, Luckie et al. (2024) and
Sasaki et al. (2019) introduced the heterologous mevalonate
(MVA) pathway to circumvent endogenous regulation of the
MEP pathway that might limit carbon flux. In addition, shake
flasks cultivation conditions have been optimized (Li et al., 2025).

Metabolic engineering efforts have to be combined with process
intensification: cultivation conditions and the cultivation medium
may impact the overall performance of the strain, as the medium can
influence cell growth and productivity (Galbraith et al., 2018). Since
there is no universal approach for media optimization, different
methods have been used. The one-factor-at-a-time (OFAT)
experiments might be the most commonly applied technique for
media optimization (Singh et al., 2017). Here, only one factor is
varied while the other variables are kept constant. This approach was
used to investigate the effect of several media additives for a poly (3-
hydroxybutyrate) producer (Nikel et al., 2008). Although the OFAT
technique is simple and convenient, the large number of
experiments are laborious, time consuming, and costly.
Furthermore, interactions between the variables cannot be
detected and the optimum might be missed completely (Singh
et al., 2017). By using statistical approaches like the design of
experiments (DoE), the limitations of the OFAT can be
overcome. This systematic approach allows to vary multiple
parameters simultaneously, thereby, identifying significant
variables, their interactions, and optimal conditions with minimal
experimental effort (Fisher, 1926). The two-level fractional factorial

Plackett-Burman design (PBD) aims to identify major effects while
neglecting interactions. Due to the low number of experiments, this
experimental design is often applied in early-stage development to
identify significant parameters (Singh et al., 2017). PDB has been
used for media optimization for enzyme productions like chitinase
and β-amylase (Rama et al., 1999; Vaidya et al., 2003). To uncover
interactions among the different variables and to determine
optimum conditions, response surface methodology (RSM)
becomes necessary. Therefore, experimental designs such as the
Box-Behnken or central composite design (CCD) are required. The
CCD consists of a (fractional) factorial core, star points that extend
the design beyond the factorial levels as well as center points
(Gündogdu et al., 2016; Singh et al., 2017). In terms of media
optimization, CCD and RSM have been successfully used to improve
the production of oxytetracycline and actinorhodin (Elibol, 2004;
Singh et al., 2012).

The standard cultivation medium for C. glutamicum is the
CGXII minimal medium (Keilhauer et al., 1993). Initially
established for amino acid production, the components have
been adapted to different production scenarios (Jeon et al., 2013;
Hoffmann and Altenbuchner, 2014; Buchholz et al., 2014; Ko et al.,
2018). To date, there is no medium dedicated for the production of
terpenes by C. glutamicum. Variations in glucose concentration and
C:N ratio have been investigated for isopentenol production, but
exhibited effects comparable to standard CGXII conditions (Sasaki
et al., 2019). Consequently, other media components might be worth
to be investigated. Given that trace elements, despite their low
concentrations, have been shown to enhance the production of
L-lysine and carotenoids in C. glutamicum (Weuster-Botz et al.,
1997; Meyer et al., 2025), as well as surfactin in Bacillus subtilis (Wei
et al., 2007), xylitol inDebaryomyces hansenii (Bustos Vázquez et al.,
2017), proteins in Pichia pastoris (Isidro et al., 2016; Tavasoli et al.,
2017), and lipids and citric acid in Yarrowia lipolytica (Kumar et al.,
2021), their potential to improve terpene biosynthesis should be
further explored.

Therefore, the focus of this study was a DoE-based approach to
optimize the trace element composition of CGXII medium for the
production of terpenes with C. glutamicum. To study the effects of
the trace elements on terpene production, trans-nerolidol was
chosen as a model terpene. This sesquiterpene is used in
decorative cosmetics like perfumes and shampoos as well as non-
cosmetic products such as household cleansers and has been
approved by the U.S. Food and Drug Administration as food
flavoring agent (Chan et al., 2016). Furthermore, nerolidol
exhibits antioxidant (Zhao et al., 2020), antitumor (Ambrož
et al., 2015), and antidiabetic (Jiang and Zhang, 2022) activities,
making it interesting for the pharmaceutical industry. Metabolic
engineering was combined with media optimization to improve the
overall production titer. In addition, the transferability of the refined
trace elements was tested with patchoulol and (+)-valencene.

2 Materials and methods

2.1 Bacterial strains and growth conditions

Strains and plasmids used in this study are listed in Table 1.
Escherichia coli was used as cloning host and was cultivated in

Abbreviations: CCD, central composite design; CDW, cell dry weight;
DMAPP, dimethylallyl pyrophosphate; DoE, design of experiment; FPP,
farnesyl pyrophosphate; GGPP, geranylgeranyl pyrophosphate; IPP,
isopentenyl pyrophosphate; IPTG, isopropyl-β-D-1-thiogalactopyranoside;
MEP, methylerythritol 4-phosphate; MVA, mevalonate; OFAT, one-factor-
at-a-time; PDB, Plackett-Burman design; rDOS, relative dissolved oxygen
saturation; RSM, response surface methodology.
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lysogeny broth (LB (Bertani, 1951)) at 37°C and 180 rpm.
C. glutamicum was used for production experiments. Precultures
were cultivated in 100 mL baffled shake flasks containing LB
supplemented with 10 g L-1 glucose at 30°C and 120 rpm. The
pre-cultivated cells were used to inoculate the main culture to an
initial optical density (wavelength: 600 nm, OD600) of 1 determined
by using the V-1200 spectrophotometer (VWR, Radnor, PA,
United States). All trans-nerolidol producing experiments,
including response surface methodology (see Section 2.3), were
performed in 48-well FlowerPlates (Beckman Coulter, Brea, CA,
United States) with a filling volume of 1 mL per well at 1,100 rpm
and 30°C in the BioLector XT microcultivation system (Beckman
Coulter, Brea, CA, United States) for 24 h. For the transfer of the
refined trace elements to patchoulol and (+)-valencene, 100 mL
baffled shake flasks with a filling volume of 10 mL and additional
10% (v v−1) dodecane as organic overlay were used instead of the
BioLector. Cultivation lasted 48 h at 30°C and 120 rpm. 40 g L-1

glucose was added to the CGXII medium as carbon and energy
source (Keilhauer et al., 1993) for all main cultures. If appropriate,
the medium was supplemented with kanamycin (25 μg mL-1),
tetracycline (5 μg mL-1), chloramphenicol (7.5 μg mL-1 for
C. glutamicum or 30 μg mL-1 for E. coli). 1 mM isopropyl-β-D-1-
thiogalactopyranoside (IPTG) was added at the start of the main
cultivation to induce gene expression.

2.2 Molecular biological techniques

Primers for DNA amplification and sequencing
(Supplementary Table S1) were purchased from Sigma-Aldrich
(St. Louis, MO, United States). Plasmid DNA isolation (QIAwave
Plasmid Miniprep, Qiagen, Venlo, Netherlands) and PCR clean-up
(NucleoSpin® Gel and PCR Clean-up, Macherey-Nagel, Düren,
Germany) were performed according to the manufacturer’s
instructions. Nerolidol synthase (NS) gene from Tripterygium
wilfordii (GenBank: KU588405) (Su et al., 2017) was codon
optimized (Codon Optimization Tool, 2025) and synthesized by
Twist Bioscience (San Francisco, CA, United States). Gene
fragments were amplified using the Allin™ HiFi DNA
polymerase (highQu GmbH, Kraichtal, Germany) and cloned
into BamHI-digested (Thermo Fisher Scientific, Waltham, MA,
United States) plasmids using Gibson Assembly (Gibson et al.,
2009). CaCl2 chemocompetent E. coli DH5α were transformed
with the Gibson Assembly reaction mix by heat shock at 42°C
(Sambrook and Russell, 2001). Cloned DNA fragments were
verified by DNA sequencing. Trans-Nerolidol producing C.
glutamicum strains were created by transforming
electrocompetent cells via electroporation and subsequent heat
shock at 46°C with the respective plasmids (Eggeling and
Bott, 2005).

TABLE 1 Strains and plasmids used in this work.

Strain/plasmid Relevant characteristics Reference

Strains

E. coli DH5α F− thi-1 endA1 hsdR17 (r− m−) supE44 ΔlacU169 (Φ80lacZΔM15)
recA1 gyr96 relA1

Hanahan (1983)

C. glutamicum WT Wild type, ATCC 13032 Kinoshita et al. (1957)

ΔcrtOPΔcrtB2I’I2ΔidsA ΔcrtOP (cg0717-cg0723), ΔcrtB2I’I2 (cg2688-cg2672) ΔidsA (cg23843)
deletion mutant of ATCC 13032

Henke et al. (2018)

NERO1 ATCC 13032 (pECXC99E-ispAEc-NSTw) This work

NERO2 ΔcrtOPΔcrtB2I’I2ΔidsA (pECXC99E-ispAEc-NSTw) This work

NERO3 ΔcrtOPΔcrtB2I’I2ΔidsA (pECXT-Psyn-ispAEc-NSTw) This work

NERO4 ΔcrtOPΔcrtB2I’I2ΔidsA (pECXT-Psyn-ispAEc-NSTw) (pVWEx1) This work

NERO5 ΔcrtOPΔcrtB2I’I2ΔidsA (pECXT-Psyn-ispAEc-NSTw) (pVWEx1-dxs-idi) This work

PAT3 ΔcrtOPΔcrtB2I’I2ΔidsA (pECXT-ispA-PcPS) (pVWEx1-dxs-idi) Henke et al. (2018)

VLC6 ΔcrtE ΔidsA (pEKEx3-ispA-oCNVS) (pVWEx1-dxs-idi) Binder et al. (2016)

Plasmids

pECXC99E CmR, E. coli/C. glutamicum shuttle vector, Ptrc, lacI
q, pGA1 oriVCg Kirchner and Tauch (2003)

pECXT-Psyn TetR, pECXT99A derivative for constitutive expression from synthetic Psyn
promoter

Henke et al. (2021)

pECXC99E-ispAEc-NSTw pECXC99E derivative for the inducible overexpression of ispA from E. coli and
NS from T. wilfordii

This work

pECXT-Psyn-ispAEc-NSTw pECXT-Psyn derivative for the overexpression of ispA from E. coli andNS from
T. wilfordii

This work

pVWEx1-dxsCg-idiCg pVWEx1 derivative for the inducible overexpression of dxs and idi from
C. glutamicum

Binder et al. (2016)
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2.3 Design of experiment and response
surface methodology

Cultivation was performed as described in Section 2.1. Due to
the total amount of 1 mL per well, the trace elements were prepared
separately as 100x stock solutions to facilitate pipetting. Design
and analysis of the experiment was performed by using R 4.4.1 (R
Studio Team 2024) and the rsm package version 2.10.5 (Lenth,
2009). Within the experiment, the effect of the trace elements
MgSO4, CaCl2, FeSO4, MnSO4, and ZnSO4 on the trans-nerolidol
titer was investigated. The central composite design consisted of a
25 full factorial design as cube portion, ten face-centered star points
and six center points. The concentration of each trace element at
the center point was regarded as 100%. 50% and 150% of the center
point concentration were chosen for the cube portion of the model.
For the star points, only one out of the five trace elements was set to
either 0% and 200%, respectively, while the others remained at
100%. The overall workflow was: first CCD with standard CGXII
trace elements as center points, followed by a steepest ascent
experiment. The best trace elements composition of the steepest
ascent experiment was used as the center point for the second
CCD. All combinations and volumes can be found in the
Supplementary Material. The other media components
remained constant as described in Section 2.1.

2.4 Terpene extraction and quantification

For the extraction of trans-nerolidol, 1 mL of hexane was
added to 330 µL of cultivation broth and incubated at 50°C and
1,000 rpm for 30 min (ThermoMixer C, Eppendorf, Hamburg,
Germany). The extraction mixture was centrifuged, the organic
phase was removed, dried with sodium sulphate and transferred to
GC-MS analysis. For patchoulol and (+)-valencene, the dodecane
overlay was separated from the aqueous phase by centrifugation
and was directly used for analysis. All terpenes were quantified
using a TRACE GC Ultra gas chromatograph and a ISQ single
quadrupole mass spectrometer equipped with an AS
3000 autosampler and a TraceGOLD™ TG-5 MS column
(30 m × 0.25 mm x 0.25 µm) (Thermo Fisher Scientific,
Waltham, MA, United States). 1 μL was injected in splitless
mode. Helium was used as carrier gas at a constant flow of
1 mL min-1. Temperatures were set as the following: injector
(250°C), interface (250°C), and ion source (220°C). The oven
profile was set as the following: 80°C for 1 min, increased to
120°C at a rate of 10°C min-1, followed by 3°C min-1–160°C, and a
further increase at 10°C min-1–270°C, which was held for 2 min. Mass
spectra were recorded after a solvent cutoff at 14 min using a scanning
range of 50–750 m/z at 20 scans s-1. Chromatograms were evaluated
using Xcalibur 2.1.0 (Thermo Fisher Scientific, Waltham, MA,
United States). Extracted-ion chromatograms at m/z = 93 were used
for quantification of trans-nerolidol, m/z = 138 and m/z = 220 for
patchoulol, and m/z = 161 for (+)-valencene. Analytical standards for
trans-nerolidol, patchoulol, and (+)-valencene were purchased from
Extrasynthese (Lyon, France), Biosynth (Staad, Switzerland), and
Sigma-Aldrich (St. Louis, MO, United States), respectively.

2.5 Bioreactor fed-batch fermentation

Fed-batch fermentation using strain NERO5 was performed in a
bioreactor with a total volume of 3.7 L (KLF, Bioengineering AG,
Wald, Switzerland). The aspect ratio of the reactor was 2.6:1.0. Three
six-bladed Rushton turbines were placed along the stirrer axis at 6,
12, and 18 cm from the bottom of the reactor with a stirrer to reactor
diameter ratio of 0.39. 1 L of the high cell density medium based on
Knoll et al. (2007) was used with some alterations: all trace elements
were replaced by the refined trace elements in a 20x excess compared
to the regular cultivation in CGXII (see Supplementary Table S2).
Antibiotics and IPTG were added accordingly and the medium was
inoculated to an OD600 of 1. 500 mL of a 600 g L-1 glucose solution
was used as feed medium. A headspace overpressure of 0.5 bar was
applied. The temperature was kept at 30°C during fermentation. The
pH of 7 was automatically maintained by the addition of 10% (v v−1)
H3PO4 and 25% (v v−1) NH3. An initial airflow of 0.25 NL min-1 was
provided from the bottom through a ring sparger, which was
manually increased during the fermentation to 0.75 NL min-1

when oxygen supply became limiting. The stirrer speed increased
automatically in a stepwise manner from 400 rpm to 1,500 rpm,
every time the relative dissolved oxygen saturation (rDOS) fell below
30%. The feed pump was primed when the rDOS fell below 60% for
the first time. Subsequently, the feed pump was activated every time
the rDOS exceeded 50% and stopped as soon as the rDOS fell below
50% thereby preventing overfeeding. To control foam formation,
0.6 mL L-1 of antifoam 204 was already added to the batch medium.
If required, an antifoam probe controlled the supply of antifoam
204 during the process. Samples were automatically taken over the
course of the fermentation and stored at 4°C until further use.

3 Results

3.1 Establishment of trans-nerolidol
production in C. glutamicum

The genome of C. glutamicum codes for two geranylgeranyl
pyrophosphate (GGPP) synthases (crtE and idsA), but neither of
them synthesizes significant amounts of the sesquiterpene precursor
farnesyl pyrophosphate (FPP) from the end products of the MEP
pathway isopentenyl pyrophosphate (IPP) and dimethylallyl
pyrophosphate (DMAPP) (Frohwitter et al., 2014). Trans-
Nerolidol production in C. glutamicum wild type was enabled by
overexpressing FPP synthase ispA from E. coli together with a
codon-optimized nerolidol synthase from T. wilfordii from the
plasmid pECXC99E (NERO1, see Figures 1, 2). To prevent
further conversion of FPP to GGPP and subsequently to
carotenoids, a metabolically engineered wild type derivative
lacking both carotenoid operons as well as the GGPP synthase
idsA (Henke et al., 2018b) was transformed with the plasmid
pECXC99E-ispAEc-NSTw (NERO2). This strain did not synthesize
carotenoids, thus increasing the trans-nerolidol titer 5.9-fold from
1.9 ± 0.1 to 11.2 ± 0.8 mg L-1. The engineered C. glutamicum strain
NERO2 was subsequently used to study the effects of the trace
element composition.
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3.2 Design of experiments for refinement of
trace element composition

Although some media formulations for C. glutamicum contain
additional trace elements like Na2MoO4 and H3BO3 (Weuster-Botz
et al., 1997), the classical CGXII medium contains the seven trace
elements MgSO4, CaCl2, FeSO4, MnSO4, ZnSO4, CuSO4, and NiCl2
(Keilhauer et al., 1993). To reduce the number of experiments, it was
decided to neglect the two trace elements with the lowest
concentration, being CuSO4 and NiCl2. This is in accordance
with the fact that out of the seven trace elements in CGXII,
copper and nickel ions are the metal ions used least as cofactors
in enzymes (Waldron et al., 2009). Therefore, it was hypothesized
that variation of the copper and nickel ion concentrations might
influence terpene biosynthesis the least. A CCD approach, with the
standard CGXII trace elements concentrations (see Supplementary
Table S3) as center points, was performed in the BioLector
microcultivation system using strain NERO2 (see Section 2.3).

The analysis of the trans-nerolidol titer showed no significant
two-factor interactions between the trace elements (data not

shown). This is why the data was subsequently evaluated
considering only first order and quadratic effects. Significant
first-order effects of MgSO4 as well as quadratic effects of
MgSO4 and FeSO4 were observed (see Supplementary Table S4).
Although the model possessed no significant lack of fit, the
quadratic effects might be just artificial as the star points
containing no MgSO4 or FeSO4 did not grow and therefore did
not produce any trans-nerolidol (see boxplots in Supplementary
Figure S1 and Supplementary Table S3). This is why only first
order effects were considered, showing strong positive effects of
MgSO4 (Table 2).

By applying only a first order model, no stationary point with a
predicted optimum could be obtained. Furthermore, it was expected
to gain more insight into the interactions between the different trace
elements and their effects on trans-nerolidol production. A
reasonable next step therefore is to follow the direction along
where the response increases the fastest to end up at trace
element concentrations that result in higher titers than the
starting condition. This position would be the new center point
used for a second round of CCD (Roberts et al., 2020). The so-called

FIGURE 1
Biosynthetic pathway for trans-nerolidol production in Corynebacterium glutamicum. Dashed arrows represent multiple enzymatic steps, gene
deletions aremarkedwith red crosses, Mg2+ dependency of key enzymes is indicated in blue. Gene overexpression is indicated by green plus symbols; the
number of symbols refers to expression strength. Abbreviations: GAP, glyceraldehyde 3-phosphate; DXP, 1-deoxy-D-xylulose 5-phosphate; IPP,
isopentenyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate; FPP, farnesyl pyrophosphate; GGPP, geranylgeranyl pyrophosphate; DXS, DXP
synthase; MEP, 2-C-methyl-D-erythritol 4-phosphate; Idi, IPP isomerase; IspAEc, FPP synthase from Escherichia coli; NSTw, Nerolidol synthase from
Tripterygium wilfordii; IdsA, GGPP synthase; CrtE, GGPP synthase.
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path of steepest ascent was calculated by the results of the first order
model out of the CCD, yielding a set of trace element compositions
and predicted titers (see Supplementary Table S5). The results of the
steepest ascent analysis are shown in Figure 3. Although fluctuating,
a trend of increasing production along the path of steepest
ascent was observed. At a distance of 4.5, the highest titer
(17.1 ± 0.7 mg L-1) was observed, being significantly higher than
the control. This trace element composition was subsequently used
as a new center point for another CCD, allowing to investigate
concentration ranges that might be closer to an optimum (see
Supplementary Table S6). After having performed the second
CCD experiment, neither two-factor interactions, quadratic
effects or first order models could be fitted significantly (data
not shown).

3.3 Verification of trace element
composition

The second round of CCD did not result in a significant result.
However, some of the tested trace element combinations within this
new range of concentration showed a clearly increased titer compared

FIGURE 2
trans-Nerolidol production by C. glutamicum NERO1 and
NERO2. Means, standard deviations as error bars, and single points of
triplicate cultivations are given. Statistical significance was calculated
with a Students’ t-test p < 0.05 (*), p < 0.01 (**), p < 0.005 (***).

TABLE 2 Effects of the trace elements on trans-nerolidol titer considering
first order effects. The effect of each factor, the F-values and their
probabilities are given.

Factor t-value Prob > t

Intercept 25.25 <0.001

FeSO4 0.6923 0.4926

MnSO4 0.8497 0.4003

ZnSO4 −0.314 0.7551

CaCl2 −0.8093 0.4229

MgSO4 7.27 <0.001

F-value Prob > F

First Order 10.97 <0.001

Lack of fit 4.57 0.05

FIGURE 3
Steepest ascent experiment based on the first CCD. Means,
standard deviations as error bars, and single points of triplicate
cultivations are given. Statistical significance was calculated with a
Students’ t-test p < 0.05 (*), p < 0.01 (**), p < 0.005 (***).

FIGURE 4
Comparison of different trace element compositions using strain
NERO2. From left to right: standard CGXII trace elements, best
composition of steepest ascent experiment, standard CGXII trace
elements with 4x MgSO4 concentration, best composition of
second CCD experiment (=refined). Means, standard deviations as
error bars, and single points of triplicate cultivations are given.
Statistical significance was calculated with a Students’ t-test p < 0.05
(*), p < 0.01 (**), p < 0.005 (***).
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to the control. To validate these observations, the best composition from
the secondCCD (see Supplementary Table S6, run 45) was compared to
the standard trace elements and to the best combination of the steepest
ascent experiment, which was used as the center point of the second
CCD. As MgSO4 showed a strong positive effect in the first CCD
(Table 2), the influence of a 4x increased MgSO4 concentration was
investigated as well. The tested trace element compositions are listed in
Supplementary Table S2 and the results are shown in Figure 4. All three
trace element compositions resulted in significantly increased titers. The
highest titer of 14.3 ± 0.4 mg L-1, corresponding to an improvement of
34%, was achieved using the trace element composition found within
the second CCD. No statistical significance was found when comparing
the high MgSO4 composition with the one from the second CCD.
However, as the overall amount of trace elements changed the least
when compared to the other compositions (see Supplementary Table
S2), the combination obtained within the second CCDwas now chosen
to be the refined trace element combination.

3.4 Improved gene overexpression of
terminal biosynthesis enzymes and of MEP
pathway genes

Trace element refinement improved trans-nerolidol production
of the base strain NERO2. To answer the question, if the refined
trace elements would also support higher trans-nerolidol
production, strain NERO2 was further metabolically engineered
(Figure 1) before standard and refined media were compared.

To improve the terminal biosynthesis, the synthetic operon of
FPP synthase and trans-nerolidol synthase genes was cloned into the
pECXT-Psyn vector containing the strong constitutive Psyn promoter
(Henke et al., 2021) yielding strain NERO3. Using the standard trace
elements, the stronger expression increased the titer significantly to
14.5 ± 0.3 mg L-1 (compare strains NERO2 and NERO3 in Figure 5).

The addition of the empty vector pVWEx1 to NERO3 (NERO4;
empty vector control) slightly decreased the titer. To improve the
entry reaction into the MEP pathway as well as the interconversion
of IPP and DMAPP, dxs and idi were overexpressed as a synthetic
operon (NERO5) resulting in a titer of 25.1 ± 0.7 mg L-1, which was
2.4 times higher compared to strain NERO2 (Figure 5). Next, it was
tested, if the refined traces would have a positive impact on trans-
nerolidol production by strain NERO5. Indeed, the refined trace
elements further significantly improved trans-nerolidol production
to the titer to 28.1 ± 1.0 mg L-1 (+12%).

3.5 Bioreactor fed-batch fermentation

Since the combination of trace element refinement and metabolic
engineering was successful in amicrocultivation system, it was evaluated
whether the trans-nerolidol production using C. glutamicum strain
NERO5 can be stably transferred to a 1.5 L fed-batch process,
corresponding to a 1,500-fold volume increase. The high cell density
medium based on Knoll et al. (2007) was used for fermentation.
However, the trace element composition of this medium corresponds
neither to the standard CGXII nor to the refined trace elements. Hence,
the refined trace element composition was used instead, while all other
media components remained unchanged. To account for the higher cell
density, the concentration of refined trace elements was increased
proportionally 20-fold relative to standard CGXII cultivations in
BioLector or shake flasks (see Supplementary Table S2). The
glucose feed was consumed after 74 h resulting in a biomass titer of
57.5 gCDW L-1. The trans-nerolidol titer reached 0.41 g L-1,
corresponding to a volumetric productivity of 5.6 mg L-1 h-1 (Figure 6).

3.6 Transfer of refined trace elements to the
production of other sesquiterpenes

To test if the refined medium can be transferred as a general
strategy for the production of other sesquiterpenes, it was used to

FIGURE 5
Comparison of different trans-nerolidol producing strains with
standard and refined trace elements. Means, standard deviations as
error bars, and single points of triplicate cultivations are given.
Statistical significance was calculated with a Students’ t-test p <
0.05 (*), p < 0.01 (**), p < 0.005 (***).

FIGURE 6
Fed-batch fermentation of NERO5. Cell dry weight
concentration (CDW) and trans-nerolidol titer are given.
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cultivate previously established strains overproducing patchoulol
(Henke et al., 2018b) and (+)-valencene (Binder et al., 2016).
The refined trace elements increased the (+)-valencene titer from
6.0 ± 0.3 mg L-1 using standard CGXII trace elements to 10.3 ±
1.7 mg L-1, corresponding to a 72% improvement. Also, the
patchoulol titer was increased, i.e., from 10.4 ± 0.4 mg L-1 to
11.9 ± 0.2 mg L-1, corresponding to a 15% improvement
(Figure 7). Thus, the medium with refined trace elements
developed for trans-nerolidol production also significantly
improved production of two other sesquiterpenes.

4 Discussion

In this study, trans-nerolidol production in C. glutamicum was
enabled, thereby expanding the repertoire of C15 terpenes beyond
the previously reported compounds patchoulol (Henke et al., 2018b)
(+)-valencene (Binder et al., 2016), and α-farnesene (Lim et al.,
2020). To improve its production a combined approach of metabolic
engineering and media refinement was chosen which increased the
product titer about 15 fold from 1.9 ± 0.1 to 28.1 ± 1.0 mg L-1.
Significant improvements by applying the refined trace elements
were also demonstrated for the production of patchoulol
and (+)-valencene.

Instead of employing an OFAT approach to investigate the
effects of the trace element composition on trans-nerolidol
production, a DoE methodology was implemented, reducing the
number of experiments required while simultaneously enabling the
investigation of interactions. In an initial round of experiments,
MgSO4 was identified as a significant positive factor influencing
trans-nerolidol production. A subsequent steepest ascent
experiment was followed by a second round of CCD, which did
not yield statistically significant results. This outcome might be
associated with broad concentration ranges in the experimental

design. While magnesium, iron, and zinc are essential for the growth
of C. glutamicum, the remaining trace elements exhibit less
pronounced effects (Nakayama et al., 1964; Yang et al., 2021;
Meyer et al., 2025). To improve future studies, experimental
conditions should be chosen to avoid complete growth inhibition.
Nevertheless, the positive effect of MgSO4 was confirmed by using a
high MgSO4 medium.

In general, terpene synthases require divalent cations,
typically Mg2+, as cofactors (Rudolf and Chang, 2020). Some
terpene synthases are also known to use alternative metal
cofactors such as manganese or iron (Steele et al., 1998). The
metal cofactor mediates the abstraction of the diphosphate,
thereby creating a reactive carbocation, and additionally
neutralizes the diphosphate over the course of the reaction
(Vattekkatte et al., 2018). In the absence of an divalent metal
ion, terpene synthases are not active (Degenhardt and
Gershenzon, 2000). However, it is crucial for the activity of the
terpene synthase, that the correct metal cofactor is bound, which
has been shown for magnesium and manganese particularly
(Steele et al., 1998; Whitehead et al., 2023). Strong Mg2+

dependency was shown for the trans-nerolidol synthase used in
this study (Su et al., 2017). Since unbound metals compete for a
binding site, a phenomenon known as mismetalation can occur,
leading to reduced enzyme activity (Foster et al., 2022). It was
shown for the trans-nerolidol synthases from maize and kiwifruit
that Mg2+ supported the highest activity, whereas Mn2+ or Zn2+

diminished activity (Degenhardt and Gershenzon, 2000; Schnee
et al., 2002; Green et al., 2012). Hence, it can be hypothesized that
a refined trace element composition, with increased Mg2+, but
reduced Mn2+, Fe2+, and Zn2+, mitigated unfavorable
mismetalation, thereby enhancing enzymatic activity and
increasing terpene titers. This favorable ratio was successfully
achieved either by supplying a high surplus of Mg2+ (high MgSO4

medium) or by moderately increasing Mg2+ while reducing Mn2+,
Fe2+, and Zn2+ concentrations (refined medium). An OFAT
approach might have resulted in a similar result as obtained
for the high MgSO4 medium. However, the specific
combination of an elevated magnesium ion concentration
along the reduction of other components was only identifiable
through a DoE-based approach, highlighting the advantage of this
methodology over conventional optimization strategies.

Although the terpene synthases expressed in the patchoulol-
and (+)-valencene-producing strains have been shown to utilize
Mg2+ as a cofactor (Munck and Croteau, 1990; Sharon-Asa et al.,
2003), the refined trace element composition resulted in varying
degrees of improvement, potentially related to differences in
cofactor affinity and preferences among the enzymes. Besides
terpene synthases, other enzymes involved in terpene
biosynthesis may also benefit from increased Mg2+ availability,
supporting the broader applicability of the refined trace element
formulation for the production of diverse terpene compounds.
Dxs, which catalyzes the rate-limiting step of the MEP pathway
and, thus, supply of the precursor substrates IPP and DMAPP,
requires Mg2+ (Xiang et al., 2007). Enhanced Mg2+ availability
may therefore contribute to an overall increase in MEP pathway
flux. In addition, FPP synthase ispA from E. coli, which was
heterologously overexpressed in this study as well as in the
patchoulol- and (+)-valencene-producing strains, was also

FIGURE 7
Comparison of standard CGXII with refined trace elements for
the production of (+)-valencene and patchoulol. Means, standard
deviations as error bars, and single points of triplicate cultivations are
given. Statistical significance was calculated with a Students’
t-test p < 0.05 (*), p < 0.01 (**), p < 0.005 (***).
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shown to utilize Mg2+ as a cofactor (Hosfield et al., 2004).
Recently, the importance of zinc ions for α-bisabolene
production in Rhodosporidium toruloides was shown, which
was associated with its role as a cofactor for the isopentenyl
diphosphate isomerase and in lipid synthesis (Adamczyk et al.,
2025). However, magnesium was not investigated in this study
(Adamczyk et al., 2025).

In terms of metabolic engineering, three steps were applied in
this study to enhance trans-nerolidol biosynthesis. First, a strain
lacking the carotenogenesis was selected to prevent conversion of
FPP to GGPP and onwards to carotenoids. In the second step, two
expression levels of the terminal biosynthetic enzymes were
evaluated, since terpene synthase activity is often the rate-
limiting step under high-flux conditions (Whitehead et al.,
2023). In addition to the enhanced enzymatic activity facilitated
by the optimized trace element composition, the stronger
expression showed a positive effect on trans-nerolidol titer.
Instead of solely increasing the expression strength, the
application of a translational fusion of FFP synthase and NS
was successfully shown to enhance nerolidol production in
yeast (Cheah et al., 2023). Additionally, the choice of the
synthase is important as trans-nerolidol synthases exhibit
considerable variability in activity (Tan et al., 2023), which can
be further improved by enzyme engineering (Liu et al., 2022).
Furthermore, the overexpression of dxs and idi, encoding the key
enzymes of the MEP pathway, almost doubled the product titer.
Previous studies have demonstrated further MEP pathway
optimization, such as the overexpression of ispD and ispF or
dxr along with dxs and idi (Lim et al., 2020). However, no
universal approach has yet been identified, as the most effective
target genes vary depending on the specific terpene product
making additional fine-tuning necessary (Lim et al., 2020).
Although not as prominent as the 34% increase for the basic
strain NERO2, the refined trace elements still achieved a significant
12% improvement when applied for the engineered strain NERO5,
underlining the importance of combined strain and media
optimization.

Strain NERO5, in combination with the refined trace element
composition, was subsequently implemented in a fed-batch
fermentation process, yielding 0.41 g L-1 trans-nerolidol. As so
far 60 mg L-1 of patchoulol were produced in a fed-batch
fermentation by C. glutamicum (Henke et al., 2018b), the
process shown here reached the highest titer of a
sesquiterpene produced by C. glutamicum reported to date. In
contrast, 16 g L-1, 4.2 g L-1, and 11.1 g L-1 of trans-nerolidol have
been produced by E. coli, Saccharomyces cerevisiae, and Y.
lipolytica, respectively. (Liu et al., 2022; Cheah et al., 2023;
Tan et al., 2023). Given that the refined trace element
composition appears to influence multiple steps within the
terpene biosynthetic pathway and its applicability to the
production of other sesquiterpenes, existing terpene-producing
strains may benefit from medium adaptation.

Instead of using a chemically defined glucose-based medium as
used in this study, alternative substrates could be employed.
C. glutamicum was shown to grow on a variety of complex
substrates derived from agro-industrial side streams, including

residues from wheat processing and aquaculture as well as
hydrolysates from rice straw, oat spelts, orange peel and
hazelnut husk (Buschke et al., 2011; Burgardt et al., 2021;
Sasikumar et al., 2021; Pakalın et al., 2023; Schmitt et al., 2023;
Junker et al., 2024). Notably, some of these complex substrates
were capable of replacing the trace elements and micronutrients
typically provided by CGXII medium. However, the composition
of trace elements in these substrates may not be optimal for terpene
biosynthesis. While the addition of beneficial trace elements
(i.e., Mg2+) is possible, the removal of undesired trace elements
such as Mn2+ or chelating compounds from the substrate might be
challenging. Additionally, the presence of endogenous terpenes,
such as limonene in orange peels (Wikandari et al., 2015) may
interfere with downstream processing by complicating the
purification of a target terpene product such as trans-nerolidol.
Although these hydrolysates represent a sustainable and cost-
effective alternative to conventional carbon sources, substrate
selection remains critical.
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