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The escalating prevalence of multidrug resistance (MDR) represents not merely a
medical challenge, but a systemic shortcoming in our current antimicrobial
paradigms. Central to this crisis are biofilms, the structured microbial
communities that not only exhibit intrinsic resistance to antibiotics but also
facilitate the persistence of dormant cells and the horizontal transfer of
resistance genes. While emerging natural and synthetic antimicrobial agents
offer potential avenues for intervention, their effectiveness is often limited by
issues such as poor bioavailability, toxicity, and production scalability. To
overcome these limitations, the field must shift from incremental refinements
to transformative strategies. Promising approaches include electrochemical
biofilm disruption, phage-antibiotic synergistic therapies, nanoparticle-
mediated delivery systems, CRISPR-based genome editing, natural quorum
sensing inhibitors, and the application of next-generation probiotics. However,
scientific innovation alone is insufficient. A comprehensive response must also
encompass policy reform: implementing strict regulations on antibiotic usage in
agriculture, incentivizing the development and adoption of rapid diagnostic tools,
and adapting clinical trial designs to support the evaluation of combinatorial and
multimodal therapies. Addressing biofilm-associated MDR requires a radical,
multidisciplinary approach to effectively counter this growing global threat.
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1 Introduction

Multidrug resistance (MDR) has transcended the boundaries of a conventional public
health issue and now poses a profound existential threat to global healthcare systems and
economic stability. With an estimated economic burden projected to reach $100 trillion by
2050 (Haruna et al., 2024), the magnitude of this crisis demands immediate and coordinated
international action. Despite these alarming forecasts, current response strategies remain
insufficient, often rooted in incremental measures that fail to address the scale and urgency
of the problem. Healthcare systems continue to be overwhelmed byMDR pathogens such as

OPEN ACCESS

EDITED BY

Dong Yu Zhu,
Guangdong University of Technology, China

REVIEWED BY

Shengwei Sun,
Royal Institute of Technology, Sweden

*CORRESPONDENCE

Mohd Fakharul Zaman Raja Yahya,
fakharulzaman@uitm.edu.my

RECEIVED 08 May 2025
ACCEPTED 17 June 2025
PUBLISHED 25 June 2025

CITATION

Yahya MFZR, Jalil MTM, Jamil NM, Nor NHM,
Alhajj N, Siburian R and Majid NA (2025) Biofilms
and multidrug resistance: an emerging crisis
and the need for multidisciplinary interventions.
Front. Bioeng. Biotechnol. 13:1625356.
doi: 10.3389/fbioe.2025.1625356

COPYRIGHT

© 2025 Yahya, Jalil, Jamil, Nor, Alhajj, Siburian
and Majid. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Perspective
PUBLISHED 25 June 2025
DOI 10.3389/fbioe.2025.1625356

https://www.frontiersin.org/articles/10.3389/fbioe.2025.1625356/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1625356/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1625356/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2025.1625356&domain=pdf&date_stamp=2025-06-25
mailto:fakharulzaman@uitm.edu.my
mailto:fakharulzaman@uitm.edu.my
https://doi.org/10.3389/fbioe.2025.1625356
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2025.1625356


methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-
resistant Enterobacteriaceae (CRE), which impose significant financial
and clinical burdens (Nelson et al., 2021). Simultaneously, unregulated
antibiotic use in agriculture continues to accelerate the emergence of
resistant strains, undermining both human and animal health. To
counter this trajectory, transformative solutions are imperative. This
includes substantial government investment in pioneering
antimicrobial research, the deployment of AI-enabled surveillance
systems in healthcare settings to track resistance patterns in real
time, and the advancement of cross-sectoral, multidisciplinary
interventions. Critically, MDR must now be recognized as a national
and global security threat, given its potential to destabilize food systems,
compromise surgical safety, and render modern medical procedures
ineffective.

Biofilms, structured microbial communities encased in a self-
produced extracellular matrix, are a major contributor to
antimicrobial resistance (Safini et al., 2024). These complex
aggregates protect bacteria from antibiotics, immune responses,
and environmental stresses, making infections chronic and
difficult to treat. The rise of MDR pathogens, particularly in
hospital-acquired infections, underscores the urgent need for
innovative antibiofilm strategies. This article evaluates current
trends in combating biofilm-associated MDR, focusing on natural
and synthetic compounds, as well as multidisciplinary solutions.

2 The role of biofilms in multidrug
resistance

Biofilms play a uniquely pivotal role in multidrug resistance
(MDR), functioning as highly evolved microbial survival systems
that integrate physical, physiological, and genetic defenses into a
robust and adaptive architecture (Figure 1). Unlike singular
resistance mechanisms such as efflux pumps or enzymatic drug

inactivation, biofilms form a complex extracellular matrix composed
of polysaccharides, proteins, nucleic acids, and lipids (Yaacob et al.,
2021; Kamaruzzaman et al., 2022; Johari et al., 2023; Hamdan et al.,
2024; Syaida et al., 2025). This matrix is not merely a passive barrier;
it constitutes a dynamic microenvironment capable of modulating
external stresses and shielding resident pathogens from
antimicrobial agents. One of the most overlooked aspects of
biofilm resilience is its metabolic heterogeneity, which facilitates
the formation of dormant persister cells, phenotypically tolerant
subpopulations that remain unaffected by antibiotics targeting
metabolically active cells (Sadiq et al., 2017). Additionally,
gradients of oxygen, nutrients, and pH within the biofilm
(Sønderholm et al., 2017) create micro-niches that further
compromise antimicrobial efficacy. Compounding this issue, the
dense structural organization of biofilms accelerates horizontal gene
transfer (HGT) (Li et al., 2018), transforming these communities
into hotspots for the dissemination of resistance genes. Importantly,
biofilm-associated resistance is not solely a function of genetic
mutation but rather a complex tolerance phenotype that merges
structural fortification with physiological plasticity. This enables
pathogens to persist on medical devices and within chronic
infections, even when in vitro tests suggest susceptibility. Such
multifaceted defense mechanisms constitute a form of microbial
warfare that challenges conventional treatment paradigms. As such,
effective therapeutic strategies must include targeted approaches
aimed at disrupting the biofilm matrix, reactivating dormant cells,
and inhibiting HGT to counteract this formidable clinical threat.

3 Natural compounds: harnessing
nature’s arsenal

Natural products represent some of the most promising
and underexploited agents in the fight against persistent

FIGURE 1
Biofilm structure on biotic or abiotic surface.
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biofilm-associated infections. Far from being mere alternative
therapies, these compounds exhibit intricate multitarget
mechanisms that can outmaneuver conventional antibiotics.
Phytochemicals such as curcumin, quercetin, and berberine
have demonstrated potent quorum sensing (QS) inhibitory
activity, disrupting bacterial communication networks and
suppressing the biosynthesis of the extracellular matrix
(Banerjee et al., 2024). Similarly, essential oils including
cinnamaldehyde and eugenol exhibit dual functionality,
penetrating biofilm structures while compromising the
integrity of multidrug-resistant (MDR) bacterial membranes
(Purkait et al., 2020). Particularly noteworthy are enzymatic
agents such as Dispersin B and DNase I, which selectively
degrade structural components of the biofilm matrix,
effectively dismantling its protective barrier (Waryah et al.,
2017). Additionally, bacteriophages, nature’s highly evolved
antimicrobial agents, have demonstrated the ability to
penetrate and lyse bacterial cells within biofilms and exhibit
synergistic effects when used in combination with antibiotics
(Grygiel et al., 2024). Despite their therapeutic potential, the
clinical application of natural products remains limited, largely
due to challenges including variability in raw materials, poor
bioavailability, and a regulatory environment that heavily
favors synthetic compounds. Overcoming these barriers will
require a paradigm shift: the adoption of standardized
extraction protocols augmented by artificial intelligence, the
development of nanocarriers for targeted delivery, and the
design of robust clinical trials capable of evaluating
combinatorial natural product-based therapies. To
effectively address the global burden of biofilm-mediated
infections, it is imperative that natural products be
repositioned not as adjunctive or alternative options, but as
primary, scientifically validated therapeutic tools within our
antimicrobial arsenal.

4 Synthetic compounds and
nanomaterials

Synthetic strategies to combat biofilms offer a high degree of
precision and innovation, addressing many of the inherent
limitations of conventional antibiotics. Among the most
promising approaches are synthetic quorum sensing (QS)
inhibitors, such as acyl homoserine lactone (AHL) analogs, which
disrupt bacterial communication pathways without inducing the
selective pressures that often drive antimicrobial resistance (Majik
et al., 2020). These interventions represent a significant paradigm
shift in biofilm control, targeting microbial coordination rather than
viability. Engineered antimicrobial peptides (AMPs) and their
synthetic analogs, peptoids, are emerging as potent anti-biofilm
agents due to their ability to penetrate dense biofilm matrices and
eliminate persister cells through dual mechanisms involving
membrane disruption and intracellular targeting (Stojowska-
Swędrzyńska et al., 2023). Equally promising are nanomaterials
such as silver, zinc oxide, and graphene-based nanoparticles,
which exert multi-faceted antimicrobial activity through the
generation of reactive oxygen species (ROS) and direct physical
damage to bacterial membranes (Yakup et al., 2024; Yusri et al.,

2024). In addition, smart surface coatings on medical devices and
implants, designed to resist bacterial adhesion and actively prevent
biofilm formation, represent a proactive avenue for reducing device-
associated infections (Li et al., 2020). These materials integrate
antimicrobial functionality with biocompatibility, offering
significant potential in clinical settings. Nonetheless, the
widespread application of synthetic strategies must be
accompanied by rigorous evaluation of biocompatibility and
long-term toxicity, particularly in the context of nanomaterial
exposure. Investment in adaptive molecular design and evolution
is critical to preempt emerging resistance. Equally important is the
development of forward-looking regulatory frameworks that
balance the need for innovation with patient safety. If developed
and deployed responsibly, synthetic solutions have the potential to
revolutionize our approach to biofilm-related infections, providing
robust, targeted, and scalable tools in the ongoing battle against
antimicrobial resistance.

5 Multidisciplinary and AI-driven
approaches: the future of
antibiofilm therapy

The complex, multicellular nature of biofilms demands
integrated therapeutic strategies, as single-mode interventions
often fail due to bacterial adaptability and biofilm resilience.
Phage-antibiotic synergy (PAS) exemplifies a promising
combinatorial approach, wherein bacteriophages lyse biofilm
structures and sensitize embedded bacteria (Chaudhry et al.,
2017), allowing antibiotics to penetrate and act more effectively,
though phage resistance and narrow host specificity remain
challenges. Electrochemical disruption, leveraging bioelectric
effects to destabilize the extracellular polymeric matrix, offers a
non-chemical means to weaken biofilms (Czerwińska-Główka and
Krukiewicz, 2020), but its clinical translation requires optimization
for tissue-specific applications. Probiotics and microbiome
engineering present a biologically nuanced strategy, where
commensal bacteria competitively exclude pathogens and secrete
secondary metabolites (Torres Salazar et al., 2021), however, strain
selection and ecological stability in diverse host environments are
critical hurdles. Meanwhile, clustered regularly interspaced
palindromic repeats (CRISPR)-based antimicrobials could
revolutionize precision therapy by selectively targeting resistance
genes or virulence factors in biofilm communities (De la Fuente-
Núñez and Lu, 2017), yet delivery mechanisms and off-target effects
pose significant barriers to implementation. Collectively, these
multimodal approaches highlight the necessity of tailored,
context-dependent solutions that address biofilm heterogeneity
while mitigating resistance risks.

A synergistic integration of diverse antibiofilm strategies holds
the potential to significantly enhance therapeutic efficacy by
leveraging complementary mechanisms of action (Figure 2). For
instance, initial electrochemical disruption could compromise the
structural integrity of the biofilm matrix, thereby enhancing the
penetration and activity of downstream agents such as phage-
antibiotic synergy (PAS) systems and graphene-based
nanoparticles. These agents can effectively lyse embedded
bacteria and sensitize residual populations to both conventional
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antibiotics and natural quorum sensing inhibitors. Concurrently,
CRISPR-based antimicrobials could be employed to selectively
target and eliminate resistant or hypervirulent strains, thereby
minimizing the risk of regrowth and recurrence. In parallel, the
strategic introduction of probiotics may serve to competitively
exclude pathogenic species and establish a microenvironment
that is antagonistic to biofilm reformation. Metabolites produced
by these beneficial microbes could further reinforce the disruption of
the biofilm and sustain long-term suppression of pathogenic
colonization. This multi-layered, sequential approach enables
intervention at various stages of the biofilm lifecycle—structural,
genetic, and ecological—offering a comprehensive and adaptable
strategy. By exploiting the unique strengths of each modality while
offsetting their individual limitations, such a multidisciplinary
framework may not only improve clinical outcomes but also
reduce the likelihood of resistance development over time.

The proposed combinatorial approach demonstrates strong
scientific potential for enhancing antibiofilm efficacy by
employing sequential and complementary mechanisms to disrupt,
eradicate, and prevent the regrowth of biofilm communities.
However, several critical challenges must be addressed to ensure
their safe and effective implementation. First, electrochemical
parameters require precise calibration to avoid collateral damage
to host tissues and resident microbiota. Second, compatibility
between bacteriophages and CRISPR-based antimicrobials must

be carefully evaluated to prevent unintended off-target gene
editing in commensal organisms. Third, the delivery efficiency of
phages, antibiotics, natural quorum sensing inhibitors, and
graphene-based nanoparticles is contingent upon the degree of
biofilm porosity following disruption, an aspect complicated by
the inherent structural heterogeneity of biofilms, which can result
in uneven drug distribution and residual resistance niches. Finally,
the selection of probiotic strains must be strategically guided to
prevent antagonistic interactions with phages or antibiotics, thereby
maintaining ecological balance and therapeutic synergy. Deploying
antibiofilm strategies across diverse environments requires tailored
optimization, as factors like temperature, pH, UV exposure, and
salinity can significantly influence efficacy. For instance, enzymatic
biofilm disruptors may denature at extreme temperatures, while
nanoparticle stability can vary with ionic strength in saline
conditions (Chopada et al., 2025; Jiang et al., 2025). When
optimized, this multidisciplinary strategy offers significant
advantages over monotherapies by simultaneously dismantling
biofilm architecture, eliminating bacterial populations,
suppressing resistance mechanisms, and promoting microbiome
stability. Rigorous preclinical evaluation is essential to validate
the efficacy and safety of this approach across diverse infection
models. Notably, Morrisette et al. (2020) suggest that such
combination therapies may enable reduced antibiotic dosages,
thereby minimizing selective pressure for resistance. Similarly,

FIGURE 2
A synergistic combination of antibiofilm strategies - (1) Electrochemical disruption of the matrix facilitates (2) deeper penetration of phages,
antibiotics, graphene-based nanoparticles, and natural quorum sensing inhibitors, while (3) CRISPR ensures precise eradication of resistant strains (3), and
(4) probiotics provide long-term ecological suppression. This order (1–4) ensures maximal biofilm breakdown, targeted antimicrobial action, and
sustainable prevention. This multimodal approach can be effectively adapted for clinical applications, such as treating chronic wounds through
electroconductive scaffolds while surgical site infections can be managed via conductive implant coatings to prevent biofilm recurrence.
Electrochemical scaffolds and conductive implant coatings offer a programmable, multimodal approach to combat biofilms by first disrupting the biofilm
matrix through localized ROS generation, followed by controlled release of antibiotics, quorum sensing inhibitors, phage-nanoparticle conjugates,
CRISPR-based tools, and finally integrating probiotics.
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prior studies advocate multi-targeted or combinatorial regimens as
more effective strategies for overcoming the resilience of biofilm-
associated infections (Koo et al., 2017; Ranall et al., 2012). Emerging
technologies such as stimuli-responsive drug delivery systems,
metal-organic frameworks, and hydrogel-based carriers further
enhance the prospects of this integrated approach by improving
localized delivery, bioavailability, and controlled release (Sikder
et al., 2021). Taken together, these innovative strategies mark a
pivotal evolution in antimicrobial design and deployment, offering a
compelling path forward in addressing the escalating global crisis of
antibiotic-resistant infections.

Artificial intelligence (AI) is revolutionizing the development
and optimization of multimodal antibiofilm strategies by enabling
data-driven decision-making at multiple levels. According to
Fagbemi et al. (2025), AI tools can significantly enhance the
development of antibiofilm strategies by analyzing vast datasets
to predict effective drug combinations, optimize treatment
sequences, and identify novel biofilm-disrupting targets. AI-
powered systems can optimize antibiotic use by recommending
effective treatments based on patient data and local resistance
patterns, while also accelerating drug discovery (Branda and
Scarpa, 2024). AI-driven approaches such as deep learning can
analyze genomic, proteomic, and metabolomic data to pinpoint
key biofilm-related genes or vulnerable metabolic pathways for
targeted interventions (Yetgin, 2025). Additionally, AI-driven
approaches enable rapid screening of parameters to discover
optimal nanoparticles configurations for specific therapeutic
needs (Kapoor et al., 2024). However, challenges include the
need for high-quality, standardized datasets, model
interpretability, and real-world validation to ensure clinical
applicability. Integrating AI with experimental and clinical data
will be crucial for accelerating the translation of predictive insights
into effective antibiofilm therapies.

6 Conclusion

To effectively confront biofilm-mediated multidrug resistance
(MDR), it is imperative that we move beyond our continued reliance
on conventional antibiotics. A paradigm shift in therapeutic strategy
is urgently required. While natural compounds offer considerable
promise due to their ecological safety and broad-spectrum
mechanisms of action, the precision and tunability of synthetic
and nanotechnology-based antimicrobials represent a
transformative advancement. The future of antibiofilm therapy
will likely depend on the strategic integration of these modalities
with advanced delivery platforms to enhance efficacy and overcome
physiological barriers. However, significant challenges remain.
Regulatory complexities, high development costs, and limited
scalability continue to impede the clinical translation of these
innovations. Despite robust scientific progress, the deployment of
next-generation antibiofilm therapies remains constrained by
systemic inertia. To bridge the gap between laboratory
breakthroughs and real-world applications, we must align
scientific innovation with streamlined regulatory frameworks,
sustainable funding mechanisms, and policy-level commitment.
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