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Articular cartilage is difficult to regenerate. It often leads to osteoarthritis after
injury, which seriously affects the quality of life of patients. Presently, the clinical
treatments of articular cartilage injury have certain limitations. With the
development of tissue engineering, cartilage repair becomes possible.
Different types of bionic scaffolds have shown great application potential in
cartilage repair. We reviewed the characteristics of ideal bionic scaffolds,
including biocompatibility, biodegradability, mechanical and structural
properties, bioactivity and functionality. We also summarized the latest
research progress of different bionic scaffolds in recent years, hoping to
provide a reference for the design of bionic scaffolds with stable performance
and definite efficacy, and help them to be gradually applied in clinical practice.
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1 Introduction

Osteoarthritis (OA) is a prevalent degenerative disorder influenced by various factors
such as aging, overweight, genetic susceptibility, and trauma, with the primary pathological
feature being the progressive damage to articular cartilage (Jiang, 2022; Zou et al., 2023).
Unlike other tissues, articular cartilage has a unique structure with limited blood vessel,
nerve, or lymphatic vessel (Thomas and Mercuri, 2023). Articular cartilage is abundant in
extracellular matrix (ECM), which results in low self-repair capacity due to insufficient cells
and growth factors (Wu et al., 2020; Wang M. et al., 2022; Guo et al., 2023). Moreover,
current clinical treatments, such as microfracture surgery and cartilage transplantation, can
alleviate symptoms in the short term but struggle to achieve functional tissue regeneration,
leading to the formation of fibrocartilage and facing limitations such as insufficient donors
and immune rejection, resulting in poor clinical applicability (Wang et al., 2024a). Thus,
there is a growing demand for regenerative strategies to promote cartilage regeneration or
replacement.

The rapid evolution of tissue engineering techniques has presented cartilage repair
strategies centered on scaffold materials as a promising approach to overcome the long -
standing bottlenecks in cartilage regeneration. Notably, several scaffold systems have
successfully transitioned from preclinical research to clinical implementation (Klimak
et al., 2021).

Scaffolds serve as 3D platforms for cell adhesion, proliferation, and differentiation. They
replicate the physicochemical characteristics of the native ECM, modulating the
microenvironment for cartilage regeneration through precise control of mechanical
properties, degradation kinetics, and the spatiotemporal delivery of bioactive factors.
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Substantial advancements in osteoarthritic cartilage regeneration
can be attributed to the utilization of biomaterial-based scaffolds,
which exhibit exceptional capabilities in establishing a permissive
3D milieu that facilitates cell growth and differentiation, thereby
offering new therapeutic opportunities for patients afflicted with
osteoarthritis (Shalumon and Chen, 2015).

Researchers have harnessed the potential of bioactive molecules,
including growth factors or cytokines, into scaffolds to augment in
vivo regenerative processes. These bioactive entities function as
molecular messengers, orchestrating cellular responses that
culminate in chondrogenesis and subsequent tissue regeneration.

Concurrently, the provision of mechanical support by scaffolds
is imperative for the development of structurally stable and
functionally competent cartilage tissue. With the exponential
growth of nanotechnology, bio-scaffolds have emerged as highly
promising materials in the realm of osteoarthritic cartilage
regeneration. Their distinctive capacity to recapitulate the native
ECM, establish a conducive 3D environment, and enhance the
bioactivity of therapeutic molecules has resulted in their extensive
application in regenerative medicine.

Material innovations, ranging from natural polymers to
synthetic polymers, composite hydrogels to biomimetic gradient
scaffolds, have contributed to the enhancement of cartilage repair
outcomes. Nevertheless, the equilibrium between biocompatibility,
mechanical strength, and functional orientation persists as a pivotal
challenge in contemporary research. This review summarizes recent
progress in cartilage tissue engineering, comparing the physical
properties and therapeutic effects of scaffolds fabricated with
different biomaterials. In addition, this review discusses design
strategies, performance optimization, and clinical application
prospects of various scaffold materials and explores the
mechanisms of action and therapeutic potential of different
bionic scaffold materials, hoping to provide theoretical reference
and enlightenment for articular cartilage regeneration therapy.

2 Ideal bionic scaffolds for cartilage
engineering

To effectively accommodate the unique histological
characteristics of cartilage, several key aspects must be considered
when developing ideal bionic scaffolds.

2.1 Biocompatibility and biodegradability

The design of scaffolds cannot be separated from two
fundamental considerations: biocompatibility and
biodegradability (Lopa et al., 2018). Biocompatibility, defined as
the ability of the scaffold to interact with local tissue safely without
apparent hazardous effects, is a crucial property that must be
considered. Biodegradability is the ability of the scaffold to
degrade slowly and be metabolized by enzyme, facilitating the
regeneration (Frassica and Grunlan, 2020). Moreover, the
degradation products should not induce any degree of cellular
toxicity or interfere with the differentiation and proliferation of
stem cell or chondrocyte (Williams, 2019). Numerous scaffolds have
been designated for cartilage repair, among which, hydrogels made

from biodegradable synthetic and natural polymers are of particular
interest due to their desired biocompatibility and biodegradability
(Shi et al., 2024).

2.2 Mechanical and structural properties

The mechanical and structural properties of scaffolds are pivotal
to restore cartilage tissue (Rezuş et al., 2021). Ideal scaffolds should
offer adequate mechanical stimuli to facilitate cell growth and
differentiation (Ngadimin et al., 2021). Cartilage tissue is
constantly subjected to diverse mechanical loads, including
compression, tension, and shear, during daily physiological
activities. Scaffolds should bear appropriate strength and stiffness,
which ensures the structural integrity of the repaired site, preventing
collapse, deformation, or rupture under mechanical stress (Gilbert
et al., 2021). Additionally, the compressive modulus of materials
should closely match that of native cartilage. Chondrocytes can
maintain a favorable phenotype when the modulus of scaffolds lies
within an optimal range. The reported compressive modulus of
articular cartilage is 0.02–1.16 MPa in superficial zone and
6.44–7.75 MPa in deep zone (Chen et al., 2001).

Porosity is also important for mechanical properties. Proper
porosity facilitates nutrient flow, which affects cell proliferation,
migration, and ECM secretion (Wang S. et al., 2022). Furthermore, it
can effectively modify the mechanical properties of scaffolds (Cheng
et al., 2018). Increasing the pore size or volume fraction can reduce
the stiffness of the scaffold and facilitate tissue integration (Ciritsis
et al., 2018). If the porosity is insufficient, the available space may be
inadequate to support cell migration and proliferation. Conversely,
an excessively large porosity can lead to a reduction in mechanical
properties, and it can be difficult for the cells to adhere.

In addition, scaffolds should have exhibit long-term mechanical
durability. They can resist significant performance degradation
under prolonged mechanical stress, guaranteeing the progression
of the cartilage-repair. Since scaffolds also need to be degradable,
how to ensure the appropriate mechanical durability on the basis of
biodegradability is an important issue for the construction of an
ideal scaffold.

2.3 Bioactivity and functionality

Cartilage is unable to repair itself due to the slow rate of
chondrocyte proliferation and regeneration (Lin et al., 2022). In
order to accelerate the cartilage repair process, exogenous
intervention is necessary. Bionic scaffolds in combination with
different interventions, such as implantation of bioactive factors,
cells, extracellular vesicles, and drugs, can promote cartilage
regeneration (Nordberg et al., 2022). More importantly, smart
bionic scaffolds can be designed to have targeted bio-activity and
functional characteristics (Fan et al., 2020). By incorporating different
growth factors into scaffolds, the stimulatory effects of chondrogenesis
and bone regeneration can be promoted, respectively (Raina et al.,
2019). In addition, the surface topography of scaffolds can be
functionally tailored, from nano-topography to complex
micropatterns, providing a range of options to effectively promote
cell adhesion and proliferation (Daly et al., 2017). Cartilage defects are
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often associated with inflammation, and scaffolds with good drug
delivery capabilities can also promote cartilage regeneration by
carrying drugs or bioactive cytokines that modulate the immune
microenvironment (Zhang et al., 2019; Mekinian et al., 2017; Xiong
et al., 2022; Xie et al., 2021).

3 Different bionic scaffolds for
cartilage repair

3.1 Natural component-based scaffolds

As natural components present in the ECM, collagen and
hyaluronic acid (HA) play important roles in bionic scaffold.
These components possess notable biocompatibility and
biodegradability, thereby supporting regeneration. Muhonen et al.
demonstrated the positive effect of collagen scaffolds on cartilage
repair in large animal models (Muhonen et al., 2016). In order to
enhance the repair ability, many collagen-based composite scaffolds
have been designed. Intini et al. developed innovative collagen
scaffolds for cartilage repair, by incorporating type II collagen
plus HA into type I collagen scaffold (Intini et al., 2022). Gao
et al. developed a type I collagen-HA hydrogel that helped
regenerate hyaline cartilage without the need for additional
cellular components (Gao et al., 2023). Levinson et al. combined
HA-transglutaminase hydrogel with a collagen scaffold for
treatment of cartilage defects in an ovine model (Levinson et al.,
2021). This combination demonstrated great biocompatibility and
facilitated in situ cartilage regeneration.

Gelatin is another natural material derived from collagen.
Compared to collagen, it does not have an immunogen sequence,
so it rarely causes an immune response (Kang and Park, 2021). Due to
poor intermolecular interactions, the mechanical property of gelatin
does not match that of cartilage, therefore modification or
crosslinking with other molecules are of necessity (Sakai et al.,
2009). Anand et al. synthesized a crosslinked pullulan-gelatin
scaffold, which higher production of cartilage-specific ECM and
upregulated sulfated glycosaminoglycan (Anand et al., 2021). Yang
et al. reported a gelatin hydrogel modified using alanyl-glutamine
(Yang et al., 2022). This modification enables the scaffold to release
glutamine through in vivo degradation, which, in turn, activates the
energy metabolism of chondrocyte. Consequently, this effectively
promotes the repair of damaged cartilage.

Derived from natural silk, silk fibroin is widely used for cartilage
repair (Silva et al., 2019). It demonstrates good biocompatibility, a
slow rate of degradation, and strong mechanical property, which
makes it a suitable candidate for cartilage regeneration (Wang et al.,
2023). It also maintains chondrocyte phenotype and directs more
cartilage-specific protein formation than the collagen-based
biomaterials (Bhardwaj et al., 2016).

Chitosan is an analogue of chitin formed by chitin deacetylation. It
has potential to become an ideal material in cartilage tissue engineering
fields due to its biocompatibility, biodegradability, antibacterial
properties, and ability to be molded into various geometries
(Muzzarelli, 2009). Currently, some chitosan scaffolds have been
used in clinic. Calvo et al. reported a chitosan scaffold combined
with microfractures for treatment of patellofemoral osteochondral
lesions (Calvo et al., 2021). Poggi et al. reported a chitosan-based

scaffold applied in patellar cartilage lesion, which showed acceptable
clinical and imaging results at 2 years after implantation (Poggi et al.,
2023). Due to the disadvantages of single materials, researchers make
further attempts to aggregate multiple materials to construct bionic
scaffolds. Yang et al. designed a collagen-gelatin-HA-chondroitin
sulfate tetra-copolymer scaffold better than the gelatin scaffold ex
vivo (Yang et al., 2023). He et al. combined silk fibroin and
chitosan to build microsphere scaffold for cartilage reparation (He
et al., 2021). Yet the clinical outcomes are still lacking.

3.2 Decellularized scaffolds

Decellularized scaffold is obtained from foreign or
heterogeneous tissues by removing cells and can be used for seed
cell culturing (Zhang et al., 2023) with suitable microenvironment
(Li et al., 2023). The advantages of decellularized scaffolds are as
follows: First, the risk of inflammation and immune rejection are
declined by removing cellular components and antigens (Zhang
et al., 2022; Villamil et al., 2020; Giovanni et al., 2019). After
decellularization, the microstructure of preserved articular
cartilage tissue can provide a high degree of mechanical
similarity to native tissue (Luo et al., 2015; Rothrauff et al.,
2017a; Rothrauff et al., 2017b; Liu et al., 2025).

A commonmethod for decellularization is freeze/thaw cycle. This
physical method can stimulate cell rupture via forming ice crystals (P
et al., 2014). However, the ultrastructure of the ECM is disrupted,
requiring further removal of cellular debris (Roth et al., 2017).Shen
et al. used ultrasound waves to release chondrocytes suitable for
cartilage slices no more than 30 μm (Shen et al., 2020). Chen et al.
reported a decellularized cartilage from porcine via CO2 extraction
(Chen et al., 2021). Chemical methods are performed through
different acellular chemical reagents. These detergents destroy cell
membrane, separating DNA from proteins and removing cellular
components from cartilage (Kanda et al., 2023). Schneider et al.
developed a protocol via integrating freeze-thaw cycles for
devitalization, HA as decellularization agent and the removal of
glycosaminoglycans (Schneider and Nürnberger, 2023).

3.3 Synthetic polymer scaffolds

Synthesized materials can balance mechanical properties, low
immunogenicity, and degradability (Jiann et al., 2023). In cartilage
regeneration, poly (ε-caprolactone) (PCL) and poly (lactic-co-
glycolic acid) (PLGA) have attracted significant interests.

PCL can be used alone or combined with other polymers to
develop scaffold (Chen et al., 2014). When PCL is coupled with the
polyethylene glycol (PEG), it is possible to obtain amphiphilic
thermosensitive copolymers (PCL-PEG) with shiftable properties
upon temperature change (Dethe et al., 2022). Fu et al. designed a
PCL-PEG-PCL scaffold which improved cell proliferation and
adhesion for cartilage repair (Fu et al., 2016). With the
development of 3D printing technique, Li et al. prepared a
chitosan hydrogel/3D-printed PCL hybrid with stem cells, hence
enhancing the repair of cartilage (Li et al., 2021).

PLGA, a copolymer of polylactide (PLA) and polyglycolide (PGA),
has become a widely used material due to its good mechanical
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properties, non-toxic biodegradation, and controllable biodegradation
period (Croll et al., 2004). Xin et al. already proved an electrospun
PLGA nanofiber scaffold can promote cartilage differentiation (Xin
et al., 2007). However, PLGA has poor hydrophilicity and limited
natural cell recognition sites (Wan et al., 2004). Previously, PLGA
scaffolds were prepared by electrospinning, while electrospun
nanofibers had only one component of the matrix or had a simple
structure due to technical limitations. Thus, the application potential of
pure synthetic scaffolds is constrained (Zhao et al., 2016). Recently,
With the advancement of technology, researchers have designed
different forms of PLGA scaffolds for cartilage repair. Through 3D
printing, Ding et al. developed a PLGA scaffold with Cell-Free Fat
Extract (Ceffe) loaded (Ding et al., 2024). Compared to the pure PLGA
scaffold, it showed remarkable vascular formation. Qu et al. developed
an open-porous PLGAmicrospheres as cell carriers for cartilage repair
(Qu et al., 2021).

While nano-sized structures exhibit effective simulation of
ECM, they may limit cell infiltration (Pham et al., 2006). On the
other hand, the construction of micro-nanofibers overcomes this
shortcoming and helps to achieve larger pore size, better cell
differentiation and ECM construction (Ahmadian et al., 2023).
Levorson et al. developed an electrospun scaffold with two
different micro-nanofibers, PCL and fibrin, which can maintain
scaffold cellularity in serum-free conditions and the deposition of
GAGs (Levorson et al., 2013).

3.4 Exosome-laden scaffolds

Mesenchymal stem cells (MSCs) have attracted considerable
attention in regenerative medicine due to the differentiation
potential and immunomodulatory properties (Nikfarjam et al.,
2020; Xiaofang et al., 2024). Studies indicated that the pleiotropic
effects of MSCs is mediated by paracrine factors (Lai et al., 2015;
Rani et al., 2015; Iso et al., 2007). Exosomes, as one of the most
important paracrine mediators of MSCs, participate in intercellular
crosstalk and alleviate and even reverse the effects of osteoarthritis
(Tao et al., 2017; He et al., 2020; Thomas et al., 2023).

Given that exosomes are cleared within a few hours in vivo,
bionic scaffolds are used as possible vectors for exosome delivery
(Chen et al., 2019; Cheng et al., 2023). Pang et al. designed gelatin
methacryloyl hydrogels loaded with MSC-derived nanovesicles,
which exhibit sustained release and excellent mechanical
properties (Pang et al., 2023). They achieved 100% sustained
release in 30 days. Shen et al. reported an injectable silk fibrion
hydrogel to preserve and release exosomes in a controlled manner,
which achieved 85%–89% release in 30 days (Shen et al., 2022). Tao
et al. used poly (D,l-lactide)-b-poly (ethylene glycol)-b-poly (D,l-
lactide) triblock copolymer gels as carrier of small extracellular
vesicles and achieved 80% release in 35 days (Tao et al., 2021).

3.5 Gene-activated bioprinted scaffolds

Gene therapy promotes cartilage repair via sustained delivery of
therapeutic genes, and approaches have recently been used into
clinical trials (Grol, 2024; Muthu et al., 2023). Bionic scaffolds
combined with gene complexes are designed to reduce the gene

diffusion in vivo and control releasing rate in situ, thereby ensuring
cartilage regeneration (Wang et al., 2024b; Kim and Mikos, 2021).

A variety of scaffolds have been engineered to enhance the
efficacy of therapeutic genes. Claudio et al. fabricated a novel
microRNA-activated scaffold with composite type II collagen and
glycosaminoglycan-binding enhanced transduction system
nanoparticles (Intini et al., 2023). This innovative scaffold can
improve chondrogenesis. Kim et al. prepared pocket-type micro-
carriers with F-127 copolymers and biodegradable PLGA, which
promote the chondrogenic differentiation of MSCs (Kim et al.,
2021). Electrospun PCL scaffolds loaded silica nanoparticles-
associated pDNA were produced by Chernonosova et al. to
facilitate successful cell transfection (Chernonosova et al., 2023).
Venkatesan et al. used PCL films modified through the grafting of
poly (sodium styrene sulfonate) as carriers, in conjunction with a
recombinant adeno-associated virus, to facilitate cartilage repair
(Venkatesan et al., 2021). Natalia et al. designed HA-based gene-
activated cryogel with non-viral vectors based on niosomes to
promote in situ gene transfection (Carballo et al., 2023). Chen
et al. constructed a gelatin methacryloyl (GelMA) hydrogel with
seed cells and VEGFa siRNA-LNPs loaded to facilitate cartilage
formation (Chen et al., 2022).

4 Conclusion and future perspectives

Facing challenges in cartilage repair, the application of biological
scaffolds are increasing. With the support of new techniques such as
3D printing and bioprinting, novel scaffolds have been developed to
provide strong physical properties for chondrocytes and ECM.
Bioactive agents play an important role in cartilage repair
including bioactive factors, seed cells, extracellular vesicles (EVs)
to promote chondrocyte proliferation and differentiation. Recently,
due to the complex structure of cartilage, the construction of
multilayered bionic scaffolds has attracted widespread attention
(Kolar and Drobnič, 2023; Peng et al., 2023). Some of these
multilayered scaffolds have already been used clinically to treat
cartilage defects (Boffa et al., 2021; Berta et al., 2020). Cellular
behavior is closely related to the in vivo microenvironment and
endogenous pathways. In order to guide cellular behavior to achieve
specific goals, we can mediate different external stimuli such as
electricity, light, ultrasound, and magnetism through biomaterials to
guide cellular behavior to achieve specific goals. These stimuli-
responsive biological scaffold materials have great potential and
are also hot spots for future research (Liao et al., 2025).

Bionic scaffolds are expected to provide innovative solutions for
the treatment of cartilage injuries. However, there are still several
important issues that need to be addressed.

Material performance optimization: In addition to biocompatibility,
mechanical properties, and degradability, it is also important to
optimize the binding ability of cartilage repair scaffolds to adjacent
tissues and reduce the risks associated with rejection and tissue damage.

Bionic structure design: There are multilayered complex
structures in normal articular cartilage. Ideal scaffolds should
have the ability to replicate the multilayered structure of the
articular cartilage. This can be achieved by designing different
layers of structures, each exhibiting a corresponding
layered function.
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Bioactive factors applications: Scaffolds should be designed to
control the release speed and targeted delivery of different active
ingredients (cytokines, genes, extracellular vesicles, etc.) to optimize
their therapeutic potential in cartilage repair.

Cost control and cooperation: In order to make cartilage repair
scaffolds more practical, the processability of the scaffolds needs to
be improved and the cost of their preparation needs to be reduced.
Well-designed clinical trials are needed to facilitate the collaboration
between academia, industry, and regulatory agencies to help the
scaffolds from laboratory research to clinical use.

In conclusion, the evidence of bionic scaffolds for cartilage repair
is evolving, with potential to revolutionize the treatment and have a
significant impact on millions of osteoarthritis (OA) patients. While
challenges remain, continued research and development of bionic
scaffolds will offer attracting potential for the future.
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