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Oral-maxillofacial bone defects complicated by tumors, infections, or other bone
diseases pose a significant clinical challenge. Traditional tissue-engineered bone
substitute still has limitations regarding its three elements that resulting in
unsatisfactory regeneration capability. Smart materials are a cutting-edge type
of functional materials that can sense and respond to a wide range of
environmental conditions or stimuli, including optical, electrical, magnetic,
mechanical, thermal, and chemical signals. According to the type of stimulus
to which the materials respond, they can be classified into externally stimulated
materials and internally stimulated materials. This review, based on the latest
advances in smart materials for bone defect repair, summarizes the different
stimulus-responsive strategies of smart materials and the materials under each
strategy. It also discusses the classic biomedical applications of these materials in
the repair of oral-maxillofacial bone injuries in recent studies, compares the
advantages and disadvantages of different strategies, and discusses the current
challenges and future prospects of smart materials.

KEYWORDS

smart materials, stimuli-responsive materials, bone tissue engineering, oral-
maxillofacial bone, bone repair and regeneration

1 Introduction

Bone defects in the oral and maxillofacial region are common clinical challenges,
severely affecting patients’ masticatory function, facial appearance, and quality of life.
During the process of repairing these bone defects, a variety of biomaterials are widely used.

Bone tissue engineering integrates biomaterial scaffolds, cells, and bioactive factors to
construct biomimetic structures to enhance bone regeneration (Koons et al., 2020). The
application of additive manufacturing technology and topographical, chemical, and/or
biochemical modifications has continuously enhanced the osteogenic activity of bone tissue
engineering (Zhang et al., 2019b; 2020). Recently, researchers gradually recognized that the
repair process of bone defects is not a static and one-stage process (Li et al., 2024). Bone
regeneration and remodeling are long-term dynamic processes. Therefore, there is a need to
develop responsive biomaterials that can synchronize the interactions between the material
and the surrounding tissues in both space and time. Meanwhile, challenge pathological
conditions, such as bacterial infection, chronic inflammation, and disorders affecting
systemic metabolism, raised the difficulties of local regenerative capability of the defect
area, which requests more complex approaches to simultaneously cope with adverse
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metabolic conditions and stimulate tissue regeneration (Monfoulet
et al., 2014; Tao et al., 2020).

In this context, smart materials, also known as responsive
biomaterials, have emerged. These smart materials retain the
basic framework of traditional materials but have been endowed
with the ability to sense and respond to environmental changes
through innovative approaches such as the introduction of
functional groups, the incorporation of electromagnetic
materials, the reconfiguration of material structures, and the
embedding of sensors (Wei et al., 2022). This dynamic
responsiveness enables smart materials to better adapt to the
complex microenvironmental changes during bone defect
repair, thereby enhancing the effectiveness and efficiency of
tissue regeneration (Table 1). The types of stimuli that smart
materials can respond to can be divided into external stimuli
(such as light irradiation, electric and magnetic fields,

ultrasound, and appropriate mechanical stimulation) and
internal stimuli (such as excess reactive oxygen species
(ROS), slight acidity, endogenous electric fields, specific ion
concentrations, secreted enzymes, or specific immune
environments) (Figure 1).

In this review, we summarized the different stimulus-responsive
strategies, including smart materials under external and internal
stimulus-responsive strategies, and elaborated on the classic
biomedical applications for oral and maxillofacial bone injury
repair in recent studies. We also compared the advantages and
disadvantages of different strategies and discussed the current
challenges and future prospects of these new biomaterials. This
knowledge may help to construct multifunctional biomaterials in the
future to meet the needs of oral-maxillofacial bone defects repair in
different environments.

2 External stimuli

External stimuli such as light, magnetic fields, electrical
stimulation, and appropriate mechanical stimulation can generate
heat or promote the adhesion, proliferation, and differentiation of
osteoblasts within scaffolds, thereby facilitating bone therapy and
regeneration. In this section, we elaborate on various external
stimulus-responsive strategies (Table 2).

2.1 Photothermal

Photothermal stimulation refers to the process of achieving
regulatory effects by converting light energy into thermal energy
(Liu A. et al., 2025). The core components of photothermal
responsive materials comprise: (1) Photothermal conversion
components (e.g., graphene, black phosphorus, and gold
nanoparticles), which efficiently absorb specific wavelengths of
light, thereby inducing transformations such as material
deformation, drug release, or bioactivity activation (Huang et al.,
2017; Chen et al., 2019; Bisoyi and Li, 2022); (2) Bone repair matrices
(e.g., polylactic acid, polycaprolactone, hydrogels, or β-tricalcium
phosphate), which provide mechanical support and facilitate the
delivery of osteogenic factors (such as magnesium ions) (Zhang D.
et al., 2024; Liu A. et al., 2025).

TABLE 1 Advantages of smart materials over traditional materials.

Material properties Limitations of traditional
materials

Solutions provided by smart
materials

References

Bioactivity Passive conduction, no osteo-inductivity Controlled release of growth factors Krishna et al. (2015), Bansal et al.
(2020), Li et al. (2021)

Environmental Responsiveness Static structure, poor adaptability to
infection/mechanical environment

Defined or programmable shape changes by
environmental stimuli

Lendlein and Gould (2019), Shang
(2019)

Vascularization Capability No active angiogenic capability Integrates angiogenic functional materials and
multiple biological factors

Nicosia et al. (2023), Yuan et al.
(2023)

Synchronization of Material
Degradation and Bone Regeneration

Uncontrollable degradation rate Tunable material degradation for bone
reconstruction

Xu et al. (2018), Lu et al. (2025)

Personalization and Biomimetic
Precision

Macroscopic matching is acceptable, but
microscopic structure is coarse

Custom-engineered scaffolds that closely
mimic native tissue physiology

Aljohani and Desai (2018), Aversa
et al. (2018)

FIGURE 1
Mechanisms and Stimuli Factors of Smart Materials.
Abbreviations: ROS, Reactive Oxygen Species; pH, potential
of hydrogen.
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Commonly utilized light sources encompass near-infrared (NIR)
and ultraviolet (UV) radiation. NIR is widely utilized for photothermal
effects due to its exceptional tissue penetration depth, enabling energy
delivery to deep tissues. This capability is attributed to minimal
absorption by hemoglobin and water molecules, ensuring limited
energy attenuation during therapeutic applications (Zhang J. et al.,
2024). Under photothermal stimulation, scaffolds exhibit a shape
memory effect: heating above the transition temperature softens the
material, allowing it to conform to irregular bone defects; subsequent
cooling solidifies the scaffold into the desired geometry (Wang H. et al.,
2025; 2025c). Concurrently, photothermally triggered temperature
elevation induces material expansion or cleavage of chemical bonds,

enabling precise release of anti-inflammatory drugs, growth factors, or
other bioactive agents (ZhangD. et al., 2024). In photothermal-activated
systems, mild heating (42 °C) upregulates heat shock protein
HSP70 and activates the MAPK/ERK osteogenic pathway. This
process further promotes the release of mineralizing ions (e.g., Ca2+,
PO4

3-), thereby accelerating tissue mineralization (Zhu et al., 2024).
The application of photothermal stimulation is highly

controllable; NIR can be exactly delivered to the defect site to
achieve therapeutic effect. Moreover, it is non-invasive, non-
toxic, and possesses high biosecurity. The photothermal effect
itself has the ability to regulate the immune microenvironment,
promoting the polarization of macrophages from pro-inflammatory

TABLE 2 Types of external stimuli, materials or methods, effects, and applications.

Stimulus Materials or methods Effects Application References

Photothermal Chemical modification or elemental
doping of hydrogels/polymers/
metallic compound

(1) Thermal effects of light energy
conversion

(2) Molecular structural changes
triggered by light

Photothermal therapy, antibacterial,
anti-inflammatory, and bone
formation promotion

Hu et al. (2024), Zhu et al. (2024),
Chen et al. (2025)

Magnetic field Nanoparticles doped with iron
compounds

Magnetic field attracts magnetic
particles

(1) Programmed drug release
(2) Influence on cell osteogenic activity
(3) Antibacterial and anti-

inflammatory effects

Long et al. (2023), Ma et al. (2023),
Wu et al. (2024)

Humidity Porous structures that can adsorb
water molecules

Adsorption and desorption of water
molecules by the material

Degradation and ion release,
antibacterial, osteogenic, angiogenic,
and nerve repair-promoting effects

Shuai et al. (2022), Yang et al. (2024)

Piezoelectricity Nanoparticles or hydrogels loaded
with piezoelectric fillers

Piezoelectric charges generated by
ultrasonic vibration or direct force
application

Piezoelectric effect and drug release,
regulating the microenvironment of
bone defects, promoting osteogenesis,
angiogenesis, and anti-inflammatory
effects

Roldan et al. (2023), Wu et al. (2023),
Zhou et al. (2024a), Yue et al. (2025)

TABLE 3 Types of internal stimuli, materials or methods, effects, and applications.

Stimulus Materials or methods Effects Application References

pH Embedding pH-sensitive chemical
bonds
Constructing pH-sensitive
materials

(1) Collapse or
decomposition of the
coating

(2) Changes in molecular
conformation

(3) Breakage of chemical
bonds/linkers

(1) Promoting osteoblast adhesion and altering
the electrical potential of the osteogenic
surface

(2) Triggering the release of antibacterial and
anti-inflammatory drugs

Zha et al. (2024), Sha et al. (2025)

Enzyme Substrates corresponding to
specific enzymes:
(1) Matrix metalloproteinases
(2) Alkaline phosphatase
(3) Collagenase
(4) Gingipains

Substrate degradation under
the catalysis of enzymes

(1) Enzyme-triggered release of drug molecules to
prevent bacterial infections or promote bone
regeneration

(2) Enzyme-triggered degradation and
remodeling of bone repair scaffold materials

Cheng et al. (2024), Zhang et al.
(2024c), Zhou et al. (2024b), Liu
et al. (2025e)

Glucose (1) Loading GOx
(2) Loading phenylboronic acid

groups

Enzyme-catalyzed glucose
decomposition
Glucose binding to
phenylboronic acid groups

Enzyme-catalyzed or phenylboronic acid binding,
regulating glucose concentration, alleviating
inflammatory responses, triggering drug release,
and promoting bone defect healing

Li et al. (2023), Liu et al. (2025d),
2025b

ROS Constructing biomaterials whose
physical properties are affected by
ROS
Introducing chemical bonds that
react with ROS into the material:
(1) Boronic ester bonds;
(2) Sulfur-containing chemical

bonds

Physical property changes of
the material triggered by ROS
Drug release under ROS-
mediated biochemical
reactions

Molecular release triggered by ROS response to
reduce inflammatory reactions, promote
osteogenesis, and regulate immune responses

Tyagi et al. (2021)
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M1 to anti-inflammatory M2, reducing inflammation and
enhancing angiogenesis (Zhang D. et al., 2024; Zhu et al., 2024).
In addition, UV (wavelength 254–365 nm) can also induce the
formation of a three-dimensional network structure between
material molecules, serving as a stimulus for photo-responsive
materials. Ding et al. developed a photo-responsive hydrogel for
bone tissue formation, which is composed of a photo-cross-linkable

polymer solution, a photo-initiator, and a UV absorber. Upon UV
irradiation, the polymer undergoes photo-crosslinking to form a
solid filler that can carry human bone marrow mesenchymal stem
cells, facilitating osteogenic differentiation (Ding et al., 2022).
Similarly, Hu et al. achieved the modification of hyaluronic acid
withmethacrylic anhydride, enabling the hyaluronic acid to undergo
photo-crosslinking under UV irradiation to form a stable three-
dimensional network structure. Based on this structure, an
antibacterial agent was loaded, making it an injectable material
with both oral-maxillofacial defect repair and antibacterial functions
(Hu et al., 2024).

In addition to the encouraging achievements of the
aforementioned photo-responsive biomaterials, there are still
unresolved issues. NIR has low penetration efficiency in deep
tissues, which affects the photothermal conversion effect in
maxillofacial scaffold defects, thereby ultimately hindering the
regeneration of deep tissues in vivo (Chen et al., 2020).

2.2 Magnetic field

Magnetic field (MF) is a non-invasive stimulation, which excels
in high tissue penetration, less toxic side effects and high
controllability. External static magnetic fields (SMFs) have direct

TABLE 4 Comparison of different response strategy types.

Types Characteristics and benefits Existing problems References

Photothermal (1) Non-invasive and highly controllable
(2) Significant photothermal therapeutic efficacy

(1) Limited tissue penetration depth
(2) The intense photothermal effect may induce damage to

adjacent normal tissues
(3) Potential toxicity associated with the use of

photoactivated materials

Zhang et al. (2022a), Cedillo-Servin
et al. (2024), Wu et al. (2024)

Magnetic field (1) Superior capacity for tissue penetration
(2) Non-invasive and highly controllable

(1) The distribution of magnetic heat was uneven
(2) Excessive localized heat may induce thermal injury to

adjacent tissues

Li et al. (2020), Fragal et al. (2022)

Piezoelectricity (1) Enhanced conductive properties
(2) Significant regenerative capacity without the need

for exogenous drugs or growth factors

(1) Densification, alkali volatilization, and elevated
temperatures during synthesis procedures

(2) Long-term biosafety and cytotoxicity profiles are yet to be
fully established

Pfeiffenberger et al. (2021),
Shahabipour et al. (2023)

Humidity (1) Energy-efficient operation without external power
supply

(2) Reversible behavior with high cycling durability

(1) Insufficient response kinetics and material stability
(2) Irreversible damage under extremely high or low

humidity conditions

Zhang et al. (2022b), Hill et al. (2024)

ROS (1) Intelligent and prompt responsiveness to
environmental stimuli

(2) Notable regenerative outcomes and therapeutic
efficacy

(1) The limited action range and brief lifespan of ROS can
significantly diminish the effectiveness of stimuli

(2) This effect may also cause damage to normal cells

Mouthuy et al. (2016), Wang et al.
(2025b)

pH (1) Intelligent and swift adaptation to environmental
conditions

(2) Modulation of the local acidic milieu to enhance
bone regenerative processes

(1) The duration of therapeutic efficacy may be insufficient
to achieve optimal therapeutic outcomes

(2) The prolonged acidic microenvironment may hinder
subsequent bone regenerative processes

Li and Zhang (2021), Gong et al.
(2024)

Enzyme (1) Exceptional specificity towards their substrates
(2) Precise and intricate process

(1) The shared substrates among closely related enzyme
families may compromise specificity (Xu et al., 2023)

(2) The biocompatibility and long-term cytotoxicity profiles
require further assessment

(3) Dysregulation of enzyme activity can influence the
duration of action

Singh et al. (2020), Xu et al. (2023),
Yousefiasl et al. (2023)

Glucose (1) High Specificity with minimal interference
(2) Closed-loop feedback mimicking pancreatic β-cell

physiology

(1) Insufficient response kinetics and sensitivity
(2) Material fatigue under repeated glucose stimulation
(3) Interference from dynamic physiological

microenvironments

Unruh et al. (2015), Zhang et al.
(2019a), Wang et al. (2024)

FIGURE 2
Design strategies and mechanisms of smart materials in the
treatment of oral-maxillofacial bone defects.
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biological effects on cells and promote osteogenesis of mesenchymal
stem cells (MSCs) by affecting cell metabolism and signaling (Yan
et al., 2025). The enhanced osteogenesis is thought to be associated
with MF-induced opening/closing of ion channels, cytoskeleton
remodeling, cellular membrane potential elevation of the
stimulated osteoblasts. Also, the biological effects of MF also act
on pathogens. Wu et al. reported the disruption of bacterial biofilms
by integrating magnetic nanoparticles (MNPs) into tricalcium
phosphate scaffolds under the action of SMFs, which led to the
effective control of infection (Wu et al., 2024).

The construction of magnetic-responsive materials is usually
based on MNPs, dominated by Fe3O4, Fe2O3, and FeO. Chen et al.
has designed a magnetic-responsive composite coating by loading γ-
Fe2O3 nanoparticles onto TiO2 nanoporous arrays, which promotes
cell proliferation and accelerates osteogenesis under SMFs (Chen
et al., 2024). Some studies have combined magnetic silica
nanoparticles with MSCs to prepare magneto-mechanical-
bioengineered MSCs, which can activate the YAP/β-catenin
signaling pathway under SMF to promote osteogenesis,
mineralization, and angiogenesis, while decease bone resorption
and rebalancing bone metabolism (Yu C. et al., 2023).

In addition, magnetic materials improve the mechanical
strength of scaffolds. One study significantly enhanced the
mechanical properties of hydrogel by introducing Fe3O4

nanoparticles and tannic acid (Zou et al., 2023). Magnetic
materials can be used for remote drug-controlled release with the
help of MF. A study has developed a double crosslinked magnetic
hydrogel for remote controlled pulsatile release of parathyroid
hormone by MNPs, which can mimic the clinical mode of drug
delivery (Long et al., 2023).

Magnetic responsive materials have significantly enhanced the
functions of bone implant materials, but their biosafety issues need
to be noted. Degradation of magnetic materials in vivo products may
be cytotoxic. MNPs may release metal ions (Co2+, Fe3+) after
degradation in vivo, and long-term accumulation can easily
induce cytotoxicity or inflammatory reactions (Liu W. et al.,
2023). Therefore, biodegradable magnetic phases should be
developed, or the risk of ion leakage should be reduced through
surface functionalization such as coating with stem cell membranes
(Wu et al., 2024). On the other hand, magnetic fields have tissue
penetration capabilities, energy attenuation is significant with
increasing depth (Shen et al., 2023). Therefore, for deep bone
defects, multi-level amplification strategies can be combined to
enhance local magnetic field strength (Cedillo-Servin et al., 2024).

2.3 Humidity

Humidity-responsive smart materials detect environmental
humidity changes and generate controllable physical or chemical
responses. These responses—such as swelling, contraction,
degradation, or drug release—promote bone tissue regeneration.
The mechanism relies on material hydration/dehydration via water
molecule adsorption/desorption, primarily driven by physical
interactions (e.g., hydrogen bonding, van der Waals forces)
between the material and water (Shuai et al., 2022; Du et al.,
2023; Mao et al., 2024; Yang et al., 2024).

Many synthetic polymers exhibit humidity responsiveness. The
molecular chains of thermoplastic polyurethane contain numerous
amino (N–H) and carbonyl (C=O) groups. Upon exposure to
moisture, water molecules form hydrogen bonds with these
functional groups, leading to hydration-induced deformation.
This property renders thermoplastic polyurethane an ideal
candidate for bone defect repair in minimally invasive surgery
(Zhang Y. et al., 2019). Moreover, incorporating naturally
humidity-responsive polymers into synthetic polymers enhances
composite properties while maintaining structural stability. For
instance, amorphous calcium-magnesium pyrophosphate
possesses substantial free volume and active sites, enabling rapid
hydration-driven expansion. Cassava starch contains abundant
hydroxyl groups that form water-absorbing hydrogen bonds.
Amorphous calcium-magnesium pyrophosphate/cassava starch
composite scaffolds exhibit rapid humidity response: their
swelling increases porosity, promote cell/cytokine attachment,
while the expansion rate matches bone growth, thereby
supporting in vivo tissue regeneration (Yang et al., 2024).
Similarly, silk fibroin protein extracted from silkworm cocoons
was applied. Silk fibroin comprises disordered hydrophilic
(amorphous) regions and crystallizable hydrophobic blocks (β-
crystal regions). The water-soluble hydrophilic regions confer
elasticity and toughness, enabling hydration-driven shape
memory. MgO particles were incorporated to modulate
degradation rate, enhancing the material’s adaptability to in vivo
bone tissue regeneration (Mao et al., 2024).

Humidity-responsive materials hold significant potential for
bone regeneration, yet several challenges require improvement.
While current materials enable programmable multi-stage
deformations at varying humidity levels, their performance often
be negatively affected in extreme humidity environment (Du et al.,
2023). Also, existing systems exhibit constrained stiffness,
compromising their usage in load-bearing bone defects. Last but
not least, maintaining structural integrity and stable volume post-
hydration is critical.

2.4 Piezoelectricity

Piezoelectric materials refer to certain materials that are
associated with mechanical stress and the generation of electrical
charges on surfaces. Generally, a piezoelectric material will generate
an induced charge internally after being mechanically stressed,
triggering a positive piezoelectric effect. If an electric field is
subsequently applied to this material, it will cause a geometric
strain, resulting in an inverse piezoelectric effect (Uchino, 2017).

Interestingly, natural bone defect healing progress, coordinately
regulated by chemical, physical, and electrical signals (Pfeiffenberger
et al., 2021), intrinsically leverages piezoelectricity: collagen
polarization under stress generates a net negative surface charge.
This attracts calcium ions into osteoblasts via voltage-gated
channels, facilitating mineralization (Ahn and Grodzinsky, 2009;
Khare et al., 2020). By exploiting bone’s sensitivity to these
piezoelectric signals, which modulate metabolism and
osteogenesis, piezoelectric materials demonstrate strong potential
in bone tissue engineering (Nain et al., 2024).
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Researchers explore piezoelectric materials for the complex oral-
maxillofacial environment, with injectable/moldable hydrogels
incorporating piezoelectric nanoparticles emerging as a central
focus (Zhu et al., 2020). These composites offer excellent
biocompatibility, tunable mechanics, and efficient localized
electroactivity, enhancing bone repair. Innovatively, Zhou et al.
incorporated dynamically covalently crosslinked piezoelectric
nanoparticles into a hydrogel. This design improved material
performance and significantly accelerated bone healing in vivo.
Mechanistic studies revealed the hydrogel promotes intracellular
calcium influx, continuously activating PI3K/Akt and MAPK/ERK
osteogenic pathways to drive bone marrow mesenchymal stem cell
differentiation (Zhou S. et al., 2024).

Successful bone repair requires inflammation control,
demanding piezoelectric materials that synergistically regulate the
inflammatory microenvironment. Wu et al. developed a BaTiO3/
PDA@HA hydrogel scaffold that provides electro-
immunomodulation via bioactive interfaces, promoting reparative
M2 macrophage polarization via PI3K/Akt signaling to create a pro-
regenerative niche (Wu et al., 2023). For inflamed environments,
Ricotti et al. designed a BaTiO3/graphene oxide hydrogel system; its
synergistic effects directly drive new bone formation in oral-
maxillofacial inflammation, offering novel strategies for severe
inflammatory bone defects (Ricotti et al., 2024).

Piezoelectric material applications are rapidly expanding,
particularly in periosteal engineering where electrical stimulation
enhances bone repair (Liu J. et al., 2023; Liu H. et al., 2023; Yue et al.,
2025). Recognizing the periosteum’s critical role in early bone
formation, its protection/utilization is now a key bone defect
strategy (Shahabipour et al., 2023). Yue et al. developed a PVDF
piezoelectric periosteal scaffold with curcumin-loaded Mg-MOF,
synergistically promoting nerve repair, angiogenesis, and
inflammation regulation (Yue et al., 2025). Separately, Liu et al.’s
TiO2@PVDF nanofiber membrane (0.3 wt% TiO2) demonstrated
markedly enhanced cell adhesion/proliferation via high surface
potential, while electromechanical stimulation robustly induced
early alkaline phosphatase activity–confirming electrical
properties’ essential role in osteogenesis initiation (Liu J. et al., 2023).

Piezoelectric materials for oral-maxillofacial bone repair have
evolved from single-component exploration to designing
mechanism-driven multifunctional composites (hydrogels, fiber
membranes, coated scaffolds). Future efforts must address long-
term stability and precise electrical control in physiological
environments, establish standardized performance comparisons,
and translate findings into clinical solutions for large and
infected defects.

3 Internal stimulation

Pathological progression closely links to altered physical/
biochemical microenvironmental cues. These can act as intrinsic
triggers for specific materials, triggering structural transformations
that elicit biological effects on surrounding tissues. Highlighting
distinctions between endogenous and exogenous stimulus strategies,
this section focuses on recent advances in internal stimulus-
responsive implants (Table 3).

3.1 pH

The microenvironmental pH critically regulates tissue-
engineered bone regeneration by modulating protein adsorption
on artificial bone surfaces, osteogenesis-related cellular behaviors,
bone matrix secretion/maturation, biomineralization, and
inflammatory responses with vascular remodeling in bone defects
(Liu et al., 2016; Hao et al., 2017).

Microenvironmental pH critically regulates MSCs and
osteoblast proliferation (Hao et al., 2017). Acidic pretreatment
(pH 6.8) enhances stem cell marker expression while improving
viability and proliferation (Hazehara-Kunitomo et al., 2019). While
an alkaline environment (pH 8.0–8.4) promotes initial proliferation
in pre-osteoblasts, alkali-treated titanium surfaces inducing local
pH elevation cause cell alkalosis and inhibit human bone marrow
mesenchymal stem cell proliferation (Li et al., 2014; Galow et al.,
2017). Notably, both acidic (pH 6.3/6.7) and highly alkaline (pH 8.5)
conditions significantly suppress human bone marrow
mesenchymal stem cell proliferation by accelerating cellular
senescence, whereas physiological (pH 7.0/7.4) and mildly
alkaline (pH 8.0) microenvironments optimally support cell
survival and proliferation (Fliefel et al., 2016).

Oral-maxillofacial bone defects form a local acidic
microenvironment due to reduced blood supply, anaerobic
metabolism, and lactic acid accumulation from hematoma,
infection, and inflammation (Hazehara-Kunitomo et al., 2019).
Tissue-engineered bone exhibits reduced pH buffering from
limited vascular ingrowth, inflammatory responses, and confined
cell space, leading to acidic metabolite accumulation and heightened
cellular sensitivity to pH fluctuations (Monfoulet et al., 2014; Pj and
Carmeliet, 2016).

Construction strategies for pH-responsive materials comprise
three main categories: functional group design, dynamic bond
incorporation, and use of self-assembling peptides/nanozymes
(Sha et al., 2025). Anionic polymers (e.g., polyacrylic acid) swell
with cations, while cationic chitosan dissolves in acidic
environments—suitable for infected bone defects (Lin et al.,
2018). Dynamic bonds (e.g., hydrazone, Schiff base) enable self-
healing and responses to pH/temperature (Li Z. et al., 2022). Self-
assembling peptides (e.g., histidine-rich) form nanofiber gels at
pH 6.0. Nanozymes like sulfur quantum dots exhibit acidic
peroxidase-like activity (sterilization) and neutral catalase-like
activity (bone repair) (Li Z. et al., 2022; Liu et al., 2025c).

Current pH-responsive bone repair materials primarily
comprise smart polymers (e.g., polyacrylic acid, chitosan,
polyline) or nanocomposite structures (e.g., Metallo phenolic
networks, peptide self-assembly systems) (Bonchev and
Bogovska-Gigova, 2025; Sha et al., 2025). These materials adapt
to local pH changes by reversibly altering physical/chemical
properties—such as swelling/contraction, degradation
modulation, and drug release—enabling targeted antimicrobial
delivery in the acidic microenvironment (pH 5.5–6.8) of infected
oral-maxillofacial defects (Lin et al., 2025; Ma et al., 2025). During
early inflammation, accelerated acidic degradation releases
antimicrobial agents; as pH rises to physiological levels,
degradation slows to provide sustained scaffolding for bone
regeneration (Li Z. et al., 2022).
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pH-responsive bone repair materials face technical limitations.
Current materials require >0.5 pH unit changes for
activation—insufficient for mild infections with only 0.2–0.3 unit
differences (Tapponi et al., 2025). For example, metal phenolic
networks coatings trigger drug release only at pH < 6.0, delaying
response to early mild infections (pH 6.5–7.0) (Ali et al., 2023).

3.2 Enzymes

Enzyme-responsive smart materials for bone repair are a class of
biomaterials that can specifically recognize changes in enzyme
activity in the bone injury microenvironment and trigger their
own functions (such as drug release, structural transformation, or
signal transduction) accordingly (Liu X. et al., 2025).

The core principle of enzyme-responsive materials is enzyme-
catalyzed reactions, and their design relies on enzyme-sensitive
chemical bonds and enzyme-catalyzed signal transduction. The
former involves embedding chemical bonds in the material that
can be hydrolyzed or modified by specific enzymes (such as
phosphate ester bonds, peptide bonds),thereby enabling the
material to be triggered by specific enzymes and undergo
conformational changes (Zhang M. et al., 2024; Zhou X. et al.,
2024). Alkaline phosphatase, matrix metalloproteinase, collagenase,
and gingipains can all serve as target enzymes (Liu et al., 2021; Liu X.
et al., 2025; Xu et al., 2023; Zhou Y. et al., 2023; Zhou X. et al., 2024;
Zhang M. et al., 2024).

The latter, that is, enzyme-catalyzed signal transduction, refers
to the conversion of pathological signals into chemical changes
recognizable by materials. These nanozymes, which have catalase,
superoxide dismutase, and glutathione peroxidase enzyme-like
properties, effectively reprogram the microenvironment of the
mandible and treat mandibular osteoradionecrosis (Cheng et al.,
2024). Compared with traditional bone repair materials, enzyme-
responsive materials have the advantage that they can release drugs
only in areas with high enzyme expression, thereby avoiding
systemic toxicity. Enzyme activity is positively correlated with the
degree of pathology, and the material can automatically adjust the
release amount accordingly, avoiding excessive drug damage (Zhou
X. et al., 2024).

Enzyme-responsive smart materials face clinical translation
challenges primarily concerning enzyme stability. The complex in
vivo environment can deactivate immobilized enzymes,
necessitating protective strategies like nanoencapsulation (Singh
et al., 2020). For materials with multiple enzymes, optimizing
sequential reactions and cascade regulation remains critical.
Future integration with artificial intelligence and machine
learning offers potential to predict enzyme-material interactions
and optimize kinetics (Kroll et al., 2023; Wang et al., 2025d).

3.3 Glucose

Long-term hyperglycemia can weaken the immune system of
patients, leading to exacerbation of oral-maxillofacial inflammation,
reduced bone repair capacity, severe loss of alveolar bone mass, poor
osseointegration of dental implants, and poor repair of oral-
maxillofacial bone defects (Wu et al., 2015).

The design of glucose-responsive smart materials is primarily
based on two main strategies: glucose oxidase (GOx)-based system,
phenylboronic acid-based system (Li et al., 2023). GOx, primarily
found in human red blood cells, renal tubules, and hepatocytes,
specifically catalyzes the conversion of β-D-glucose into gluconic
acid and hydrogen peroxide (H2O2). Based on this principle,
glucose-responsive 3D-printed scaffolds can be engineered (Liu
et al., 2025b). Phenylboronic acid, as a Lewis acid containing a
boron atom, has the core characteristic of being able to specifically
and reversibly bind with the vicinal diol group in glucose molecules
(Morariu, 2023). This unique glucose responsiveness makes it an
ideal molecular tool for constructing smart delivery systems (Wang
et al., 2024; Liu S. et al., 2025). Elevated blood glucose prompts
phenylboronic acid groups to bind glucose preferentially. This
disrupts boronate ester crosslinks, loosening the hydrogel
structure. Conversely, low glucose reduces this binding,
stabilizing crosslinks and maintaining a compact hydrogel to
slow substance release (Wang et al., 2024).

It is worth noting that the bone tissue of patients with type
2 diabetes often has dysfunction in resistance to deformation and
fracture. This decline in mechanical properties makes fracture
healing even more difficult. Therefore, good mechanical
properties are crucial for providing a stable microenvironment
for bone tissue regeneration (Jiang et al., 2022).

Smart materials for bone repair based on GOx and
phenylboronic acid groups have shown significant potential in
the repair of diabetic bone defects. Although their response
mechanisms are different, both can achieve dynamic regulation
of the pathological microenvironment of bone defects.

3.4 ROS

Excessive ROS increase the apoptosis rate of osteoblasts, damage
stem cell function, accelerate osteoclast differentiation and bone
resorption, exacerbate inflammatory responses and vascular
damage, thereby delay the healing process of bone defects (Tao
et al., 2020; Ren et al., 2022).

Traditional non-degradable materials may release toxic ions in
an ROS environment or hinder the ingrowth of new tissue, further
delaying healing and creating a vicious cycle (Wang et al., 2025b).
Whereas, the therapeutic goal of ROS-responsive materials is not
simply to reduce ROS levels, but to regulate ROS levels within an
appropriate range (Tyagi et al., 2021; Ren et al., 2022). Low
concentrations of ROS can activate pathways such as MAPK/
ERK, promoting the expression of osteogenic markers, and
driving the osteogenic differentiation of MSCs. Therefore,
excessive clearance of ROS may block osteogenic differentiation
signals and delay bone defect healing (Mouthuy et al., 2016; Tyagi
et al., 2021; Zhang Q. et al., 2024).

Interestingly, under controlled conditions, ROS can exert strong
antibacterial effects (Xu et al., 2025). Recently, an emerging dynamic
therapy has emerged that treats deep hypoxic infected bone defects
by increasing ROS levels. This implant generates sulfate radicals
(·SO4

−) and ·OH in a hypoxic environment, killing bacteria through
lipid peroxidation and ferroptosis mechanisms. However, the
critical concentration of ROS that promotes osteogenesis still
needs further investigation (Wang et al., 2025b).
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ROS-responsive materials are primarily engineered around
three core mechanisms: chemical bond cleavage, physicochemical
property transformation, and bioactive regulation. The chemical
bond cleavage strategy, utilizing ROS-sensitive bonds (e.g., thioketal,
selenium-selenium bond, phenylboronic ester) that oxidatively
break under high ROS levels to trigger material degradation or
payload release, represents the most prevalent design approach (Li
X. et al., 2022; Zhang Q. et al., 2024). Notably, bond sensitivity varies,
necessitating selection based on the application context, such as
chronic inflammation (Yu et al., 2022). The physicochemical
property transformation mechanism exploits ROS-induced
alterations in material state or surface characteristics, primarily
categorized into hydrophobicity-to-hydrophilicity transitions
(solubility switching) for controlled release and surface charge
reversal to enhance cellular uptake (Zhou J. et al., 2023).
Bioactive regulation extends beyond delivery, directly targeting
the pathological microenvironment by incorporating ROS-
scavenging antioxidants or nanozymes, or by modulating ROS
levels to influence cell behavior and promote tissue repair (Yin
et al., 2021; Peng et al., 2024; Zhang Q. et al., 2024).

To address complex pathological environments like infected
bone defects, multi-mechanistic integration, representing a cutting-
edge approach, combines strategies such as photothermal effects to
accelerate ROS-sensitive bond cleavage or enzyme-responsiveness
for dual-signal triggered release (Tian et al., 2022; Yu P. et al., 2023).

However, significant challenges remain: current ROS-responsive
systems often exhibit linear response mechanisms, ill-suited to
fluctuating ROS levels characteristic of sites like bone defects.
The inherent background concentration, activity, and fluctuations
of endogenous ROS often render single-mechanism responses
insufficient, underscoring the urgent need for strategies
responsive to multiple signals or featuring intelligent feedback
control (Chen et al., 2023; Zhang Q. et al., 2024).

4 Conclusion

Here, we reviewed the research progress of smart materials in
the field of maxillofacial bone reconstruction, discusses the
characteristics of smart materials and their applications, and
analyzes in detail the current status and prospects of the
application of external stimulus and internal stimulus-responsive
smart materials. By categorizing the types of stimuli to which smart
materials respond, this paper discusses in depth the application
scenarios of each type of stimuli in clinical practice and looks
forward to the future development direction (Table 4). Despite
promising functionalities, smart stimuli-responsive systems are
still in the preclinical exploration phase, requesting intensified
research efforts to bridge the gap toward clinical adoption.

Firstly, comprehensive biosafety assessments of these materials
and their bioactive degradation byproducts are imperative.
Secondly, given the prolonged regeneration timeline for bone
tissue defects—particularly segmental defects requiring months of
healing—coupled with lifelong remodeling processes, the long-term
structural integrity and sustained responsiveness of smart bone
substitutes must be rigorously validated through extended in vivo
studies. Furthermore, osseous tissues exhibit distinct physical and

mechanical characteristics compared to other clinical
targets—particularly in terms of load-bearing capacity and
mineralization dynamics—necessitating tailored optimization of
external stimulus parameters (e.g., intensity, duration, frequency)
prior to clinical deployment. Notably, internal stimuli entail patient-
specific modulation due to inter-individual variability and dynamic
pathophysiological progression, significantly complicating their
control precision (Figure 2).
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