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Osteoarthritis (OA) is a prevalent degenerative joint disorder characterized by
complex tissue interactions, featuring cartilage degradation, synovitis, and
aberrant subchondral bone remodeling. Current therapies often fail to halt
disease progression and typically lack comprehensive strategies targeting OA
pathogenesis. Osteochondral organoids have recently emerged as innovative 3D
biological models for investigating OA mechanisms and developing personalized
therapies. These models recapitulate dynamic cell-cell and cell-matrix
interactions within the articular microenvironment. This review evaluates
progress in applying osteochondral organoids to osteoarthritis, focusing on
their fabrication strategies, applications, and key challenges. It emphasizes
their role in osteoarthritis modeling, drug screening, and cartilage
regeneration, while exploring future directions for their development. Despite
these advances, clinical translation of osteochondral organoids faces significant
challenges, including standardization, vascularization, and immunomodulation.
Future integration with organ-on-chip platforms, multi-omics, and Al promises
to create more precise OA research models. Such integration will bridge the gap
between bench research and clinical practice.

KEYWORDS
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1 Introduction

Osteoarthritis (OA) is the most common degenerative joint disorder, whose prevalence
correlates strongly with both population aging and rising obesity rates. According to
statistics, approximately 35% of individuals over 60 years of age worldwide are affected by
OA, which is primarily manifested by joint pain, dysfunction, and a significant decline in
quality of life, causing a substantial burden on the socio-economy (Hunter et al., 2020; Yao
Q. etal,, 2023). OA pathogenesis extends beyond articular cartilage degeneration to include
synovitis, subchondral bone remodeling abnormalities, and neuro-periosteal signaling
dysregulation, reflecting complex multi-tissue and multi-pathway interactions (Yao Z.
et al,, 2023). These pathological imbalances severely restrict patients’” joint function and
quality of life (Griassel et al., 2021).
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Current OA treatments focus predominantly on symptom
NSAIDs,
corticosteroid/hyaluronic acid injections, and arthroplasty for

management,  including  oral intra-articular
advanced cases. However, these interventions often demonstrate
limited durability, significant adverse effects, or high invasiveness
(Yu and Hunter, 2015; Chen et al., 2021; Franchi et al., 2022). In
recent years, a number of emerging technologies have garnered
attention in the field of orthopedic research and practice. These
include platelet-rich plasma (PRP) injections, disease-modifying
anti-osteoarthritis drugs (DMOAD:s), and stem cell therapies (Jia
et al., 2022; Zhang et al., 2024). Despite their therapeutic promise,
these modalities have yet to achieve optimal clinical outcomes. Key
challenges remain, particularly regarding osteochondral integration
and sustained symptom alleviation.

Despite progress in OA research, current models fail to fully
recapitulate the intricate 3D architecture and multi-tissue crosstalk
of human joints. Traditional 2D models, while scalable, lack tissue
architecture, extracellular matrix interactions, and biomechanical
microenvironment, resulting in low physiological relevance and
poor pharmacological predictability (Alnasser, 2025). Animal
models, though widely used, suffer from interspecies differences
(e.g., metabolism, immune response), leading to mechanistic
misinterpretations (Zhang et al., 2022b). They are also costly,
time-consuming, and prone to false positives/negatives in toxicity
testing, contributing to low clinical translation rates (Huang et al.,
2021). In contrast, osteochondral organoids replicate native joint
cartilage with 3D structure, cellular heterogeneity, and functional
properties, enabling more accurate modeling of in vivo
microenvironments and cell-cell interactions (Yao et al.,, 2024).
These organoids support high-throughput drug screening, with
computational approaches further enhancing scalability (Boone
et al, 2025). Additionally, patient-derived organoids improve
individualized treatment and toxicity prediction. The advent of
organoid technology has engendered a novel paradigm for
osteoarthritis research. The induction of pluripotent stem cells
(iPSCs) or mesenchymal stem cells (MSCs) in biomimetic
scaffolds, in conjunction with specific growth factors and
mechanical stimulation, facilitates the construction of microtissue
models that exhibit the structural and functional characteristics of
natural bone and cartilage (Shen et al., 2024). These osteochondral
organoids are capable of mimicking the inflammatory response,
matrix degradation, and nerve-bone signaling disorders associated
with OA in vitro (Chen et al., 2022). Additionally, they serve as a
versatile platform for drug screening and the evaluation of
regenerative repair strategies. This review outlines the fabrication
of osteochondral organoids using diverse stem cell sources, hydrogel
scaffolds, advanced biomanufacturing, and directed differentiation
techniques. It also evaluates their applications, current challenges,
and future research directions.

2 Construction strategies for
osteochondral organoids

An osteochondral organoid is a three-dimensional micro-
osteochondral tissue constructed based on stem or progenitor
cells. It possesses the properties of self-renewal and self-
organization and is capable of mimicking the spatial structure of
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The
possess

(Fatehullah et al, 2016).
that
physiological functions necessitates the coordinated regulation of

natural osteochondral units

construction of  osteochondral  organoids
numerous variables. These variables include cellular components,
matrix gel materials, biofabrication techniques, and differentiation-
inducing microenvironments (Figure 1). This biomimetic approach
not only replicates tissue complexity but also drives innovation in

regenerative medicine technologies.
2.1 Cell sources
The

technology relies on stem cells with multilineage differentiation
potential. These stem cells are employed to construct 3D

fundamental principle of osteochondral organoid

microstructures  replicating  native  osteochondral  tissue
architecture. This requires precise spatiotemporal control of
growth and differentiation to achieve biomimetic tissue
formation (Wang J. et al.,, 2025). MSCs and iPSCs have become
predominant cell sources for osteochondral organoids due to their
exceptional plasticity and multilineage differentiation capacity

(Urli¢ and Ivkovi¢, 2021) (Figure 2) (Table 1).

2.1.1 Mesenchymal stem cells

Mesenchymal stem cells (MSCs) offer distinct advantages for
osteochondral organoid construction through their multilineage
differentiation capacity and paracrine signaling (Zhu et al., 2024).
BMSCs modulate inflammatory microenvironments via exosome
and miRNA secretion, attenuating cartilage degeneration and
promoting tissue regeneration (Wang et al., 2022). BMSC-derived
organoids are significantly influenced by inflammatory
with  their
dependent on microenvironmental regulation (Zhang et al,
2025). Notoh et al. (2024) developed a BMSC-based cartilage-like
organoid using basement membrane extract (BME), though BMSC

microenvironments, therapeutic efficacy closely

acquisition shows donor dependence. BMSC-derived organoids
demonstrate an extracellular matrix composition closer to native
cartilage, rich in type II collagen and proteoglycans (Noh et al.,
2023). However, this matrix exhibits progressive degradation over
time. Notably, BMSCs display a strong tendency toward
hypertrophic differentiation during chondrogenesis, often leading
to calcification and ossification (Alahdal et al., 2021). Studies
in BMSC-derived
chondrogenic organoids, potentially compromising their long-
term therapeutic efficacy (Zhang et al., 2021). While BMSCs
possess strong expansion capacity, they exhibit significant batch-
to-batch variability—particularly influenced by donor age and

consistently detect hypertrophy markers

osteoarthritis disease progression (Zupan and Strazar, 2024).
Compared to BMSCs, human umbilical cord-derived MSCs (hUC-
MSCs) demonstrate superior chondrogenic potential in 3D culture,
forming cartilage organoids with enhanced regenerative capacity
(Zhang Y. et al, 2023). hUC-MSCs exhibit greater clonogenicity,
proliferation rate, migratory potential, and immunomodulatory
activity, along with increased secretion of pro-chondrogenic factors
(Anetal, 2025). Additionally, preclinical studies suggest that UC-MSCs
have a lower risk of hypertrophy compared to BM-MSCs (Chen X. et al,,
2024). Their standardized sourcing and robust expansion capacity
further support scalability for clinical applications. Researchers
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FIGURE 1

Strategies for the construction of osteochondral organoids. This pyramid outlines strategies for the gradual construction of osteochondral
organoids, starting at the bottom and going all the way to the top. Cell Sources: The basis of this strategy involves the selection of appropriate cell types,
such as bone marrow mesenchymal stem cells, human umbilical cord mesenchymal stem cells, induced pluripotent stem cell-derived mesenchymal
stem cells, induced pluripotent stem cells, osteoblasts, chondrocytes, and endothelial cells. Matrix Gel Selection: The next layer involves the
selection of appropriate matrix materials to support cell growth and differentiation layer by layer. Commonly used matrices include matrix gels, collagen
hydrogels, polyethylene glycol hydrogels, DNA hydrogels, and Construction Techniques: Key techniques such as layered induction, 3D printing, and
microfluidics are employed to guide the development of osteochondral organoid structures. Directed Differentiation: Specific cytokines and mechanical
interventions are essential to drive cell differentiation and tissue development within the organoids. Formation of fully developed osteochondral

organoids at the apex. Image created by Figdraw.

achieved osteochondral organoid self-assembly via spatially controlled
differentiation of umbilical cord MSCs in engineered microgels,
advancing hierarchical tissue regeneration, though human umbilical
cord MSCs require neonatal umbilical cord as a source, which is limited
by time and geographic location (Yang Z. et al., 2023).

Conventional tissue-derived MSCs often face challenges such as
osteogenic differentiation and limited expansion capacity (Hamilton
et al, 2023). In contrast, iPSC-derived MSCs (iPSC-MSCs), generated
through standardized differentiation protocols, offer a more stable and
reproducible cell source. Compared to primary MSCs, iPSC-MSCs
exhibit superior proliferative capacity, enhanced immunomodulatory
function, and higher biological efficiency (Shi et al., 2024). In preclinical
studies, iPSC-MSCs and their derivatives successfully integrated into
damaged joints in both rabbit ACLT (anterior cruciate ligament
transection) models and primate cartilage defect models, promoting
long-term tissue repair without immune rejection (Abe et al., 2023; Kim
J. et al,, 2024). The differentiation protocol was established to generate
osteochondral organoids from hiPSC-derived MSCs, with the
demonstration that osteoprotegerin (OPG) mutations disrupt
mineralization processes in both cartilage and bone compartments

Frontiers in Bioengineering and Biotechnology

of the organoids (Rodriguez Ruiz et al., 2022). This model provides new
insights into the understanding of the pathological mechanisms of
osteoarthritis and other related diseases. Given their scalability,
functional superiority, and compatibility with organoid systems,
iPSC-MSCs represent a promising tool for OA therapy and cartilage
tissue engineering.

These differences suggest that hUC-MSCs may be more suitable
for constructing therapeutic cartilage organoids, while BM-MSCs
are better suited for disease mechanism research. Currently, iPSC-
MSCs primarily serve as a tool for basic research, as their clinical
application requires further safety validation. When selecting a
tissue include cell accessibility,

source, key considerations

expansion capacity, and specific therapeutic objectives.

2.1.2 Induced pluripotent stem cells

Induced pluripotent stem cells (iPSCs) are generated through
genetic reprogramming of somatic cells to acquire embryonic stem
cell-like properties, including self-renewal capacity and multilineage
differentiation potential. iPSCs have been widely applied in
regenerative medicine, disease modeling, and drug discovery,
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FIGURE 2

Cell Sources for Osteochondral Organoids. This figure illustrates 2 cell sources and their associated processes for constructing osteochondral
organoids: (A) Mesenchymal cells: Mesenchymal stem cells can be obtained from the bone marrow and the umbilical cord. The process involves sample
collection to obtain a cell sample, followed by cell dissociation to get separated cells. These cells are then cultured in 3D to produce osteochondral
organoids. (B) Induced pluripotent stem cells: Fibroblasts are induced into induced pluripotent stem cells (iPSCs) through gene editing.
Subsequently, the induced pluripotent stem cells are cultured. Through induced differentiation, transforming growth factor -3 (TGF -#3) induces the
formation of cartilage tissue, and bone morphogenetic protein -2 (BMP -2) induces the formation of bone tissue, ultimately achieving osteochondral

differentiation. Image created by Figdraw.

particularly for osteochondral organoid
construction and articular cartilage repair (Abe et al, 2023;
Liuyang et al,, 2023; An et al,, 2024). In 2019, Lin et al. developed
a microphysiological osteochondral chip based on iPSCs and

mimicked the pathologic alterations of OA, laying a foundation for

showing promise

the subsequent development of osteochondral organoid (Lin et al.,
2019). In 2020, Limraksasin et al. generated mouse iPSC-derived
osteochondral organoids using microwell and dynamic culture
systems, offering novel construction strategies (Limraksasin et al.,
2020). Mouse iPSC-derived osteochondral organoids were developed
through timed exposure to TGF-p3 and BMP2 in 2021, effectively
modeling endochondral ossification (O’Connor et al., 2021). While
iPSC technology provides unlimited cell sources for organoid
construction, current high costs limit widespread application and
require future cost-reduction strategies.

2.2 Matrix gels

Hydrogel matrices serve as essential 3D scaffolds for
osteochondral organoid engineering. Hydrogels are classified as

Frontiers in Bioengineering and Biotechnology

natural or synthetic based on their origin and regulatory
mechanisms, each offering distinct advantages in bioactivity,
the
bioactivity of natural hydrogels with the programmability of

mechanical strength, and responsiveness. Combining
synthetic ones enables precise modulation of the cellular
microenvironment. Biomimetic designs have advanced from
multifunctional platforms with

single-material systems to

enhanced performance.

2.2.1 Natural hydrogels

Presently, Matrigel remains the gold standard hydrogel for
osteochondral organoid culture owing to its unique bioactive
properties. This matrix can effectively support the adhesion,
Its
composition activates key signaling pathways that direct MSC

viability and expansion of stem cells. rich collagen
differentiation toward osteogenic and chondrogenic lineages. This
facilitates in vitro generation of osteochondral organoids with
native-like  histoarchitecture ~and functionality. =~ However,
Matrigel’s undefined composition, batch variability, and murine
tumor origin limit its applications (Kaur et al., 2021). These defects

not only hinder the experimental reproducibility of the technology,
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TABLE 1 Comparison of cell sources.

References

Cell source

Scaffold/
Matrix

Culture
method

Key features

10.3389/fbioe.2025.1629608

Applications

Limitations

Lin et al. (2019)

Notoh et al. (2024)

Yang et al. (2023b)

Rodriguez Ruiz
et al. (2022)

IPSCs reprogrammed
from hBM-MSCs

MSCs

hUC-MSCs

Primary chondrocytes
from osteoarthritis
patients; hiPSCs, with
CCALI mutation and
repair

Methacrylated
gelatin (mGL)-
crosslinked hydrogel
scaffold

Basement membrane
extract (BME,
containing laminin,
collagen IV)

CH-Microcryogels:
hyaluronic acid
[HA]-based; OS-
Microcryogels:
hydroxyproline
[HYP]-based

3D culture matrix

Dual-flow bioreactor
system with cartilage
induction medium
(top) and osteogenic
induction medium
(bottom)

3D culture: MSCs
mixed with BME to
form cartilage
organoids;
differentiation
regulated via SMAD/
NEF-kB signaling
pathways

Self-assembly into
biphasic structures
after 7-day pre-
differentiation; mixed
induction medium

TGF-B3-induced
chondrogenesis of
hiPSCs into cartilage
organoids; BMP-2-
driven osteogenic

Simulates cartilage-bone

microenvironment;

promotes functional cell-

cell interaction; enables
drug screening

Enhances cartilage
maturation; upregulates
chondrogenic genes;
mimics endochondral
ossification

Directed differentiation
capacity; no layer

separation; spontaneous

in vivo assembly

Recapitulates
pathological features

(fibrosis, mineralization);
demonstrates differential

gene expression

Osteoarthritis
modeling; drug
development

Skeletal
development
research; bone defect
repair

Osteochondral
regeneration; drug
screening

Disease modeling;
drug screening;
mechanistic studies

Lacks tide line-like
structure; simple
scaffold composition;
requires further
validation of drug
screening efficacy

High batch variability
in BME; challenges in
modeling vascular
invasion; limited
control over terminal
ossification

Complex fabrication
process; small sample
size; translational
challenges; potential
immune reactions

Limited simulation of
cell-cell crosstalk;
donor-to-donor
variability; low
statistical power

differentiation
Limraksasin et al. | Mouse iPSCs No scaffold; ultra- Microspace Self-organization Regenerative Species-specific
(2020) (reprogrammed from  low attachment aggregation into capacity; tunable bone/ medicine; disease limitations; low
gingival fibroblasts) microwell plates for | spherical constructs; cartilage ratio; expression | modeling structural complexity;
embryoid body (EB) | shaking culture with of lineage-specific unknown long-term
formation stage-specific markers stability
induction osteogenic/
cartilage
O’Connor et al. Mouse iPSCs No scaffold; time- Micromass culture Models endochondral Osteoarthritis Limited
(2021) (reprogrammed from | dependent growth with sequential growth = ossification; multi-gene modeling; redifferentiation
tail fibroblasts) factor exposure factor induction to expression validation; personalized potential; complex
(TGEF-B3 followed by = mimic endochondral multipotent medicine growth factor

BMP2)

ossification

differentiation capacity

titration; insufficient
in vivo validation

Notes: hUC-MSCs, Human umbilical cord-derived mesenchymal stem cells; hiPSCs, human induced pluripotent stem cells.

but also impose significant limitations on its clinical translation.
Consequently, developing standardized hydrogels with defined
compositions has become a research priority.

Furthermore, Collagen hydrogels represent clinically promising
biomaterials that combine native ECM bioactivity with tunable
physical properties. Its three-dimensional network structure can
accurately mimic the multilayered fibrous architecture of
osteochondral tissues, and the unique arginine-glycine-aspartic
acid (RGD) sequence endows it with excellent cell adhesion
properties (Liu et al, 2019). Recent advances demonstrate
collagen hydrogels’ potential as Matrigel alternatives for
osteochondral regeneration. It has also exhibited a remarkable
capacity to meticulously modulate stem cell differentiation in
osteochondral organoid cultures.

2.2.2 Synthetic hydrogels

While natural hydrogels effectively mimic native tissue ECM
and offer good biocompatibility, their clinical translation is
constrained by batch variability and undefined compositions.

Frontiers in Bioengineering and Biotechnology

Synthetic hydrogels have emerged as promising alternatives due
to their reproducible properties and tunable biofunctionality (Chen
W. et al., 2024) (Table 2). PEG’s bioinert nature and customizable
modification sites make it ideal for osteochondral applications. Li
et al. developed piezoelectric GeIMA/PEG-BT nanocomposite
hydrogels that transduce low-intensity pulsed ultrasound (LIPUS)
into endogenous electrical cues, activating Wnt/p-catenin and PI3K/
Akt pathways to enhance osteogenesis and bone defect healing (Li
M. et al., 2025).

DNA hydrogels utilize DNA molecules as primary building
blocks, forming a highly porous three-dimensional network
through physical entanglement or chemical crosslinking (Mo
et al, 2021). DNA hydrogels represent a novel class of 3D
programmable biomaterials with sequence-specific self-assembly
capabilities, offering unique advantages in biocompatibility,
molecular recognition, and stimuli-responsiveness (Qiao et al,
2024). Zhu et al. engineered GelMA/DNA hybrid hydrogels that
recapitulate both the biochemical and viscoelastic properties of
native bone ECM, facilitating the self-organization of mineralized
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TABLE 2 Summary of composite hydrogel scaffolds.

10.3389/fbioe.2025.1629608

Reference Scaffold Structure Key Innovations Potential advantages
Applications
Ni et al. (2020) SF/HPMC-MA dual-network BMSCs 1. Dual-network structure Cartilage tissue repair 1. Excellent mechanical
hydrogel (B-sheet SF + UV- enhances mechanical properties properties and
crosslinked HPMC-MA) 2. Low-power ultrasonic biocompatibility
induction of B-sheet formation 3. 2. Precise 3D printing
Promotes BMSCs proliferation capability
and chondrogenic gene 3. Facilitates chondrogenic
expression differentiation
Yang et al. PEMN hydrogel (agar-based, BMSCs 1. Physical crosslinking for high Osteochondral regeneration, | 1. High mechanical strength
(2023a) pre-shaped + post-osmotic toughness 2. No chemical drug delivery and degradability
enhancement) crosslinkers required 3. 2. Precise control of complex
Controllable shape 4. Induces shapes
endogenous cell mineralization 3. Strong adhesiveness for
tissue integration
4. Promotes bone regeneration
Xiao et al. (2025) | HG-AA1:1-SDF-1 composite BMSCs, 1. Acid-responsive release of SDF- = Bone defect repair, 1. Intelligent dual-controlled
hydrogel (HA-CHO/GeIMA + = HUVECs la to recruit endogenous BMSCs  orthopedic implants drug release
Arg-CDs + SDF-1a + Ca®") 2. Arg-CDs metabolize to 2. Synergy between bone
generate NO, activating osteo/ formation and angiogenesis
angiogenic pathways 3. 3. Avoids risks of exogenous
Eliminates need for exogenous cells
cell transplantation 4. Improves acidic
microenvironment
Li et al. (2025a) Gel/PBT@BMSCs piezoelectric | BMSCs 1. 3D-printed barium titanate Bone tissue engineering, 1. Efficient bone regeneration
hydrogel (GeIMA + PEG- scaffold2. Combined with LIPUS = personalized medicine 2. Balance of biocompatibility
modified BT nanoparticles) to enhance piezoelectric effect and and mechanical strength
activate PI3K/Akt pathway 3. 3. Customizable complex
High-precision DLP printing structures
Liu et al. (2024a) | Bilayer piezoelectric- BMSCs 1. Combination of piezoelectricity =~ Osteoarthritis, sports injury | 1. Biomimetic bilayer structure
conductive hydrogel (upper and conductivity to mimic repair 2. Stable electrical output
dECM-FF peptide piezoelectric physiological properties 2. FF performance
layer + lower PEDOT/Gel-C peptide self-assembly enhances 3. Promotes cell migration and
conductive layer) performance 3. Mechanical- differentiation
electrical stimulation coupling for 4. High potential for clinical
directional differentiation translation
Ma et al. (2023) Magnetic composite BMSCs 1. Magnetic-responsive targeted Cartilage regeneration, 1. Magnetically controlled
microcarriers (dopamine- localization 2. Static magnetic magnetic-targeted therapy precise delivery
Fe;0, porous structure) field promotes proliferation/ 2. Enhances collagen secretion
differentiation 3. Porous structure and cartilage maturation
supports cell growth 3. Reduces postoperative pain
4. Excellent blood
compatibility
Rong et al. (2024) | Composite hydrogel scaffold BMSCs 1. Porous magnetic microspheres = Subchondral bone repair 1. Efficient VEGF delivery
(GMHA + hollow magnetic loaded with VEGF 2. Fe;O, 2. Accelerates new bone
hydroxyapatite microspheres) nanoparticles enhance osteogenic formation
differentiation 3. Fine-tuned design for bone
3. Photopolymerized GMHA repair requirements
matrix

Notes: HUVECs, Human Umbilical Vein Endothelial Cells.

bone-like tissues (Zhu et al., 2025). RGD-functionalized silk fibroin/
DNA (RSD)
chondrogenesis via integrin-mediated mechanotransduction and
enhanced GAG synthesis (Shen et al, 2024). These advances
establish DNA-based hydrogels as a platform technology for
osteochondral  organoid combining molecular

microspheres were designed to promote

engineering,
programmability with tissue-specific bioactivity to advance
regenerative strategies.

Different types of hydrogels play crucial roles in promoting the
self-organization of bone-cartilage zonal structures due to their
Gradient
hydrogels accurately mimic the biochemical and mechanical

unique biochemical and mechanical properties.

Frontiers in Bioengineering and Biotechnology

gradients found in native tissues, from superficial cartilage to

deep bone, enabling zone-specific cell behavior and
differentiation while maintaining paracrine signaling between
cells (Zhu et al,, 2023). Bilayer and multilayer hydrogels support
dual-lineage differentiation of cartilage and bone cells through
physical layering and functional delivery of growth factors (Wei
et al, 2023; Yao H. et al, 2023). Composite hydrogels, which
incorporate microgels or stem cell spheroids, enhance zonal
control and interface integration (Lee et al, 2024). Smart
hydrogels offer novel solutions for minimally invasive repair of
irregular defects and interface stabilization (Zhang L. et al., 2023).

Acellular hydrogels demonstrate significant translational potential,
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attributable to their inherently low immunogenicity and remarkable
host cell recruitment capacity (Schwab et al., 2023).

The mechanical properties of hydrogels, such as stiffness and
elastic modulus, finely regulate chondrogenic and osteogenic
differentiation (Liu et al, 2023). Lower stiffness promotes
dynamic cytoskeletal remodeling in chondrocytes and cartilage
formation, whereas higher stiffness favors bone formation (He
2025; 2025).
characteristics, including viscoelasticity and stress relaxation,

et al, Tong et al, Dynamic mechanical
further influence cell fate through mechanotransduction (Kim
H.-S. et al, 2024). The key to achieving efficient functional
integration of bone and cartilage lies in the rational design of
biochemical gradients and mechanical zoning, combined with
interfacial chemical adhesion and dynamic regulation strategies.
While hydrogel technology demonstrates significant promise for
osteochondral organoid engineering, key translational challenges
remain: batch-to-batch inconsistency in natural hydrogels, long-
term biocompatibility concerns with synthetic polymers, and limited
vascular/neural network integration. Future development should
integrated 3D

bioprinting-organ-on-chip platforms, and patient-specific disease

focus on Al-driven material optimization,
modeling for clinical translation. Advanced bioinspired hydrogel
systems, through their tunable properties and multifunctional
offer

engineering and personalized regenerative therapies.

design, transformative potential for precision tissue

2.3 Advanced biofabrication technologies

2.3.1 3D bioprinting

Scaffold-free organoids, which rely on cellular self-assembly,
better recapitulate native tissue microarchitecture and are
particularly suited for disease modeling (Luo et al, 2023).
However, they face challenges in scalability and vascularization,
often requiring external perfusion systems for adequate nutrient
supply (Gao et al.,, 2025). 3D bioprinting enables precise spatial
patterning to engineer complex tissue architectures with integrated
vascular networks, while supporting high-throughput and
reproducible organoid production (Hu et al, 2025). This has
driven growing adoption of 3D bioprinting for organoid
2021).

recapitulates articular cartilage’s hierarchical structure through

engineering (Su et al, 3D Dbioprinting precisely
controlled bioink deposition and multiscale scaffold fabrication
(Matai et al., 2020; Banerjee et al, 2022). In 2018, Zhao et al.
first combined computational modeling with airflow-assisted 3D
bioprinting to generate vascularized bone organoids (Zhao et al.,
2018). In this study, BMSCs and HUVECs were encapsulated in
hydrogel microspheres and co-differentiated toward osteogenic and
vascular lineages. Vascularized bone tissue formed within 10 days,
which provides a solution to the difficult problem of vascularization
of osteochondral organoids. In 2020, Ni et al. developed 3D-
bioprinted BMSC-laden filipin-HPMC dual-network scaffolds
that enhanced cartilage repair (Ni et al., 2020). In 2022, Zhang
et al. fabricated 3D-bioprinted hMSC-seeded graphene oxide
scaffolds (Zhang et al, 2022a). Cyclic mechanical loading in
bioreactors enhanced the scaffolds’ mineralization, stiffness, and
osteogenic potential. These results confirm mechanical stimulation’s
in bone advance functional

importance regeneration and
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osteochondral organoid development. In 2024, A GelMA/AIgMA/
HAP hybrid bioink was developed by Su et al. to mimic the native
bone ECM via innovative biomaterial integration (Wang J. et al.,
2024). Using DLP bioprinting, they created biomimetic bone
culture

constructs  supporting

differentiation. The resulting microtissues exhibited native-like

long-term and multilineage
structure-function relationships and enhanced defect repair,
advancing osteochondral regeneration.

Despite its advantages, 3D bioprinting faces challenges in
controlled factor release, ECM homogeneity, and mechanical
stability.  Post-implantation  structure-function  relationships
require systematic evaluation. Patient-specific cell variability
poses additional challenges for consistent organoid functionality
and clinical translation. Future integration with dynamic culture
systems could enhance tissue maturation and microenvironmental
adaptation. Therefore, the optimal strategy depends on the research
objectives: scaffold-free approaches are preferable for investigating
self-organization mechanisms or streamlined culture processes,
hydrogel-based ~ systems  better  suit studies  requiring
microenvironment control or dynamic culture conditions, while
bioprinting offers advantages for applications demanding high
spatial precision or vascular network integration.

The emergence of 4D bioprinting introduces temporal control to
3D-printed constructs, enabling dynamic shape-morphing and
functional adaptation (Lai et al., 2024; Yarali et al., 2024). Smart
materials with time-dependent properties can be programmed to
respond to physiological cues, facilitating host integration of
implanted osteochondral organoids (Annan et al, 2024). This
approach  achieves  spatiotemporal coordination  between
structural remodeling and functional maturation, advancing

regenerative medicine toward dynamic, patient-specific therapies.

2.3.2 Microfluidic chip technology

Static culture, performed using standard Petri dishes or scaffold
systems, works well for basic research and cost-effective setups.
However, it often faces limitations in oxygen and nutrient
distribution, which can lead to hypoxic conditions developing in
the central areas of cell masses or tissues (Patel et al., 2021). Dynamic
culture systems enhance nutrient/oxygen delivery while promoting
cell proliferation, ECM deposition, and tissue functionality—better
replicating physiological microenvironments in vivo (Li Y. et al,,
2025). Microfluidic systems offer superior platforms for cellular
studies and pharmaceutical development through precise microscale
engineering (Bhatia and Ingber, 2014; Tolabi et al., 2023; Liu et al.,
2024b). These platforms incorporate engineered microchannels and
semipermeable membranes that: Support multicellular coculture
Recapitulate  physiological interfaces and
Consequently,

tissue
they
physiologically relevant tissue and organ functionality. Research
has demonstrated that Microfluidic Hydrogel-Based Scaffolds
(MHBS) can meticulously modulate the local concentration

systems,

mechanoenvironments. achieve more

distribution of nutrients, oxygen gradients, and biochemical
factors to facilitate the differentiation of stem cells into cartilage
cells (Tolabi et al, 2023).
organoid systems offer three key advantages: (1) real-time

Microfluidic-based osteochondral

microenvironment  modulation, 2) enhanced  culture
reproducibility, and (3) scalable automated production. The

microfluidic platform, which is based on Organ-on-a-Chip
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(OOC), dynamically simulates the biophysical and chemical signals
of cartilage (Skoracka et al., 2024). This enables controlled
investigation of OA pathogenesis and optimization of
chondrogenic differentiation protocols. In addition, Quintard
et al

microphysiological system featuring a functional endothelial

engineered an  innovative  microfluidic-based
network that integrated with mesenchymal spheroids, pancreatic
islets, and iPSC-derived vasculature to establish perfusable vascular
connections (Quintard et al., 2024). The vascularization approach
markedly enhanced organoid growth kinetics, structural
maturation, and physiological functionality. These results indicate
its promising potential for resolving vascularization challenges in
osteochondral organoid engineering.

The microfluidic system enhances the physiological relevance of
osteochondral organoids by simulating hypoxic cartilage regions
and normoxic bone regions (Gonzilez-Guede et al, 2024).
Osteochondral tissue chips can apply tissue-specific compression
levels to sustain tissue viability and compositional stability for up to
2 months, and replicate the mechanical strain gradients of the joint
microenvironment (Mainardi et al., 2025). Moreover, integrating
biopolymers and decellularized extracellular matrix (dECM) as bio-
ink can improve the density and cell distribution of cartilage ECM,
thereby enhancing the accuracy of pathological simulation
(Upadhyay et al, 2024). Microfluidic technology can achieve
high-throughput screening through automated design, such as
rapid sorting of MSC subsets with chondrogenic potential,
significantly enhancing repair efficiency (Yang et al, 2024).
Another study developed a joint chip containing cartilage and
synovial ~compartments, supporting parallel

personalized therapies (Petta et al., 2024).

testing  of

Microfluidic multi-tissue integration technology represents a
pioneering approach in osteoarthritis research. The co-culture
system leverages microfluidic

platforms to simultaneously

fibroblasts, and
macrophages, maintaining cell viability for up to 24 h and

cultivate human osteoblasts, chondrocytes,
replicating joint environments in both healthy and diseased states
(Mirazi and Wood, 2025). Additionally, a microphysiological system
incorporating biphasic bioreactors enables signal transduction
between cartilage and bone-like analogs, eliciting inflammatory
responses in cartilage region (Smith et al, 2025). The joint-on-
chip model, integrating cartilage and synovial compartments,
employs  hydrogel-embedded
fibroblasts to evaluate personalized therapeutic strategies (Petta

chondrocytes and  synovial
et al,, 2024). Microfluidic technology further replicates the three-
of the
vasculature, providing a physiologically relevant research model
(Thompson et al,, 2023). Moreover, the multi-region suspension

dimensional architecture synovium and associated

tissue model, utilizing open microfluidic patterning (STOMP),
generates suspended multi-region tissues that mimic natural
interfaces, offering innovative tools for studying cell contraction
and tissue integration (Haack et al, 2025). Collectively, these
underscore the transformative

technologies potential  of

microfluidic multi-tissue integration in advancing

osteoarthritis research.

Despite its transformative potential in osteoarthritis research,
microfluidic technology faces several challenges. The technical
complexity of integrating multilayer scaffolds, such as bone-
hinders stable material adhesion and

cartilage interfaces,
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mechanical compatibility (Maherani et al., 2024). Additionally,
current models struggle to replicate the high peripheral strain
and dynamic mechanical environment of joints, while the dense
cartilage extracellular matrix in chips restricts cell proliferation and
microscale remodeling (Liu et al., 2024c). Furthermore, the modular
design of organ-on-chip systems lacks standardized protocols and
systematic integration of variables, such as sex and age (Conceigao
et al., 2025). These limitations impede the widespread adoption and
simulation ~ of  microfluidic

accurate technology  in

osteoarthritis studies.

2.3.3 Integrated 3D bioprinting-
microfluidics systems

In a previous study, Davoodi et al. engineered biomimetic tissues
replicating native tissue architecture and function through
integrated  extrusion  bioprinting-microfluidics  approaches
(Davoodi et al, 2020). Microfluidic platforms enable pre-
bioprinting optimization of culture parameters through
controlled mechanical stimulation and gradient factor exposure.
Subsequent precise cell-biomaterial assembly yields biomimetic
tissue constructs. High-precision bioprinting generates stratified
cartilage-bone interfaces (Lopa et al, 2018). Modular hydrogel
bioinks incorporating chondrocyte-laden microspheres were
developed to print scaffolds that recapitulate the hierarchical
structure of articular cartilage (Yin et al, 2023). This highlights
the therapeutic potential of integrated microfluidics-bioprinting
systems for cartilage repair. Multi-material bioprinting allows for
the creation of precisely patterned cellular compartments and
(Wang T. et al, 2025). When combined with
microfluidic systems, it enables

regulation (perpendicular or parallel to scaffolds) to guide cell

channels

control directional flow
distribution, on-chip spatiotemporal control of biochemical
gradients, and precise 3D spatial organization of multiple cell
types (Xu et al, 2025). The convergence of bioprinting,
microfluidics and organoid technologies can better emulate

chondrocyte niches, advancing functional cartilage regeneration.

2.4 Directed differentiation

Osteochondral organoid construction centers on chondrogenic
and osteogenic differentiation - critical processes for OA reversal
and cartilage defect repair (Donges et al., 2024; Kronemberger et al.,
2025). TGF-B/BMP signaling and mechanical cues coordinately
regulate osteochondral organogenesis, enhancing stem cell
differentiation toward chondrocyte and osteocyte lineages. TGF-
B3 induced self-assembled spheroids develop articular cartilage-like
morphology and molecular signatures. These spheroids
simultaneously upregulate cartilage markers (COL2A1, ACAN).
This established a framework for reproducible osteochondral
organoid generation (Negishi et al., 2024). TGF-B/BMP signaling

enhances both chondrogenic differentiation efficiency and cartilage

matrix biomechanics. This occurs through upregulated
proteoglycan and COL2 synthesis, improving organoid repair
capacity  (Kronemberger et al,  2025).  Mechanical

microenvironments regulate chondrocyte phenotype and ECM
homeostasis via integrin-mediated mechanotransduction and
ECM remodeling feedback loops. These mechanisms enhance the
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Osteochondral Development Model. Embryonic stem cells or induced pluripotent stem cells are utilized. Through a series of differentiation steps in vitro,
an osteochondral structure is formed. Developmental Process Monitoring, such as microscopic observation, is employed to study the normal
developmental process of osteochondral tissues. (B) Pathological Modeling of Osteoarthritis. Gene editing is used for genetic disease modelling.
Additionally, relevant factors including nerve cells, inflammatory factors, vascular endothelial cells, and macrophages are introduced to investigate the
factors influencing the onset and progression of osteoarthritis. (C) Drug Development Osteochondral organoids are used for drug efficacy testing and
drug toxicity testing. These tests evaluate the therapeutic effects and potential toxicity of drugs for osteochondral - related conditions, providing data
support for drug development. (D) Regeneration Medicine Patient-derived tissues are processed and cultured to generate organoids. Subsequently,
patient-specific osteochondral organoids are utilized in regenerative medicine research and therapies to promote the repair and regeneration of

damaged osteochondral tissues in patients. Image created by Figdraw.

therapeutic potential of osteochondral organoids for cartilage repair
(Ni et al,, 2020).

3 Osteochondral organoids for
osteoarthritis modeling

3.1 Pathomimetic modeling of OA using
osteochondral organoids

Osteochondral ~ organoids effectively —mimic in  vivo
microenvironments, enabling detailed studies of cartilage
degeneration and subchondral bone remodeling in OA

(Figure 3). These models serve as dual-purpose platforms for
both elucidating OA pathogenesis and developing diagnostic/
The iPSC-derived osteochondral
organoids successfully repaired full-thickness cartilage defects in
rabbit models, restoring biomechanical function via ECM-mediated

therapeutic ~ innovations.
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host integration (Al et al., 2024). Nevertheless, long-term functional
outcomes require validation under physiologically relevant loading
conditions. Van Hoolwerff et al. generated cartilage organoids from
hiPSC-derived ~ chondroprogenitors,  revealing  FN1-C518F
mutations disrupt FN1-COL2 binding and induce OA-like
chondrocyte phenotypes (van Hoolwerff et al, 2021). This
finding identifies FN1-COL2 interactions as novel therapeutic
targets for OA intervention. COL6A3 variants in hiPSCs were
engineered via CRISPR-Cas9 by Bloks et al. for the purpose of
modeling cartilage pathology (Bloks et al., 2024). COL6A3 variants
disrupted mechanotransduction, causing cartilage matrix metabolic
imbalance under mechanical stress. This process upregulates key
inflammatory regulators (PTGS2, PECAM1, ADAMTS5, and
IncRNA MIR31HG), providing insights into OA’s mechano-
thus
valuable tools for decoding OA’s molecular networks. However,

inflammatory pathways. Gene-edited organoids offer

Current models need improved dynamic loading systems and multi-
tissue integration capabilities. Future development requires smart
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materials and multi-interface engineering to build pathomimetic
models for clinical translation.

3.2 High-throughput drug
screening platforms

Traditional bone tissue engineering relies on iterative in vivo
testing to optimize scaffold composition, cell sources, and growth
factors, but this approach is limited by high costs, lengthy timelines,
and poor reproducibility due to non-standardized conditions
(Horvath et al, 2016). self-
assembled 3D microtissues, disease

Osteochondral organoids,
faithfully
pathophysiology. Beyond personalized drug screening and
regenerative therapy assessment, they serve as powerful tools for
2023). Their
microenvironments enable OA molecular network studies and

as
recapitulate

medical research (Zeng et al, biomimetic
accelerate bench-to-bedside translation (Piraino et al., 2024).
Abraham et al. developed OA-mimicking articular spheroids
using osteochondral organoids to evaluate A2A adenosine
receptor agonists, demonstrating their potential as high-fidelity
platforms for pharmacological validation (Abraham et al,, 2022).
Integrated osteochondral organoid systems enable comprehensive
evaluation of skeletotropic compounds and regenerative therapies
while maintaining critical tissue crosstalk, bridging target validation
to precision medicine. In preclinical studies, intra-articular Sema3A
administration in murine and non-human primate OA models
inhibited aberrant innervation and suppressed hypertrophic
chondrocyte markers, thereby maintaining joint homeostasis
(Huang et al., 2025). Clinical trials confirmed Sema3A’s ability to
alleviate pain and slow OA progression, supporting organoid-based
screening of Sema3A-related therapies. Future integration of high-
throughput drug screening and Sema3A-upregulating gene editing
with OA organoids may yield breakthrough therapies.

However, current osteochondral organoid models primarily
focus on isolated bone or cartilage tissues, limiting their ability to
simulate multi-tissue interactions involving the synovium, blood
vessels, and nerves. This constraint reduces the accuracy of drug
response and metabolite toxicity predictions. Future advancements
should prioritize multi-tissue organoids integrated with microarray
platforms to model dynamic inflammatory networks. Additionally,
incorporating hepatic metabolism and renal clearance functions is
essential for accurate drug metabolite toxicity evaluation. Co-
culturing osteochondral organoids with liver organoids could
establish comprehensive drug metabolism platforms. To address
challenges in patient-derived organoids, such as prolonged
timelines, high costs, and donor variability, integrating single-cell
sequencing with standardized patient subtype-response databases
offer a promising solution. This approach supports data-driven,

personalized treatment strategies.

3.3 Regenerative medicine and tissue repair
strategies

3.3.1 Osteochondral organoid transplantation

Current clinical management of advanced OA and large
cartilage defects relies on autologous or allogeneic cartilage
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transplantation. However, autografts face donor site morbidity
and supply limitations, while allografts carry risks of immune
rejection and pathogen transmission. Osteochondral organoids
present a promising alternative addressing these challenges. Tam
et al. first demonstrated stable cartilage formation through
heterotopic  transplantation of engineered osteochondral
organoids (Tam et al., 2021). This work establishes that IL-1f
disrupts bone repair via MMP13-mediated ECM degradation,
identifying a key molecular target for restoring the inflammation-
regeneration equilibrium. While organoid models demonstrate
promising cartilage-to-bone conversion rates and repair efficiency
in vitro, their structural integrity under physiological loading
conditions and functional integration with native tissues require
rigorous preclinical validation. Researchers developed single
chondral organoid approach derived from bone marrow
mesenchymal stem cells (BMSCs) mimicking native tissue
architecture and biomechanics (Chen et al., 2025). Under the
guidance of the natural microenvironment at the osteochondral
defect site, heterogeneous osteochondral regeneration with a precise
gradient can be achieved, which represents an important
advancement for clinical applications. Osteochondral organoids
recapitulate endogenous cartilage repair mechanisms. Moreover,
scalable production permits direct implantation of large-format
This breakthrough
establishes new paradigms for orthopedic regenerative medicine.

organoids for enhanced regeneration.

3.3.2 Cellular microenvironment

After implantation, osteochondral organoids act as therapeutic
agents, with the injury microenvironment playing a pivotal role in
successful tissue repair. Key factors influencing repair include
hypoxia, inflammation, regulation, and signaling
pathway interactions (Gu et al., 2023).

immune

3.3.2.1 Hypoxia-mediated regulation

Given the stark differential responses of cartilage and bone to
oxygen tension, biomimetic oxygen gradients play a pivotal role in
reconstructing the osteochondral unit (OCU) (Taheem et al., 2020).
Dehghani et al. demonstrated that hypoxic preconditioning
significantly enhances the chondrogenic differentiation of buccal
fat pad stem cells (BFPSCs) in a bilayer chitosan hydrogel scaffold,
improving osteochondral defect repair (Dehghani Nazhvani et al.,
2021). This finding underscores the importance of oxygen gradient
design in osteochondral regeneration and offers new insights for
Further
show that hypoxia-preconditioned
(H-ApoEVs)
(MSCs) are more effective than

optimizing organoid-based therapeutic strategies.

supporting this, studies

apoptotic  extracellular vesicles derived from
mesenchymal stem cells
ApoEVs

proliferation,

NOrmoxic in promoting stem cell migration,

thereby
enhancing cartilage repair (Ding et al., 2024). By integrating 3D-

and macrophage M2 polarization,
printed ECM scaffolds for mechanical support with biomimetic
oxygen microenvironments, this delivery system presents a novel
approach for exosome-mediated cartilage regeneration.
Additionally, research indicates that bone marrow-derived
MSCs (BMSCs) expanded under normoxia progressively lose
their
and

stemness, whereas hypoxic preconditioning preserves

undifferentiated stress

the

state by suppressing oxidative

activating HIF-la signaling axis, thereby improving
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regenerative efficacy (Camarero-Espinosa et al., 2024). Intriguingly,
selective activation of the TGF-B pathway can simultaneously
support stem cell quiescence maintenance and lineage-specific
differentiation in a single culture system, suggesting that hypoxia
may dynamically balance cell fate decisions by modulating HIF-
1a-SMAD crosstalk (Yao L. et al., 2023). These findings collectively
suggest that hypoxic preconditioning should be incorporated into
future osteochondral organoid models to enhance cartilage
repair outcomes.

3.3.2.2 Inflammation and immunomodulation

Inflammation and immunomodulation exert dual-phase
regulation during cartilage repair, balancing pro-regenerative and
anti-inflammatory responses. Activin A, a member of the
transforming growth factor-beta (TGF-P) superfamily, exhibits
significant upregulation during the process of fracture healing. It
directly promotes the differentiation of fibroblasts, chondrocytes,
and osteoblasts through the activation of the ACVR2B receptor,
while remaining virtually silent in intact bone (Yao L. et al., 2023).
The TGF-B family regulates processes
chondrogenesis via SOX9 activation (Camarero-Espinosa et al.,
2024). Tt

M2 macrophages and enhancing Treg function, maintaining

diverse including

also mediates immune tolerance by polarizing
repair-phase immune homeostasis. Optogenetic tools enabled
spatiotemporally precise TGF-p pathway control, -effectively
correcting cartilage defects and bone remodeling disorders (Wu
et al,, 2023). These findings highlight the potential of integrating
inflammatory-immune balance mechanisms into next-generation
osteochondral organoids. For example, precise control of Activin
A/TGF-B signaling pathway expression can be achieved by
mimicking the osteochondral repair
Optogenetic TGF-P release could promote M2 macrophage

microenvironment.

polarization and Treg activation, enhancing immune homeostasis
at the cartilage-bone interface for advanced in vitro modeling.
Dynamic hydrogels with timed-release properties could enable
biomimetic platforms that support both chondrogenesis and
immune tolerance. These models may address clinical challenges
in balancing tissue regeneration and inflammation during
osteochondral repair.

4 Current challenges and future
perspectives

4.1 Technical bottlenecks

The challenge of vascularization of osteochondral organoids
during long-term culture is directly related to functional
maintenance and graft survival (He et al., 2022). Experiments
have shown that organoids lacking functional vascularization
have significantly reduced viability after 4 weeks of in vitro
culture, with up to 60% attenuation of their secretory function
(Abraham et al., 2024). In vitro cartilage organoid culture can benefit
from the introduction of vascular endothelial growth factor (VEGF),
which promotes organoid hypertrophic differentiation. However,
this requires regulation through anti-angiogenic drugs like Axitinib
to prevent ectopic ossification (Vanlauwe et al., 2024). Cord blood
endothelial colony forming cells (CBECFCs) have been shown to
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form dynamic vascular networks with inflammatory responsiveness
due to their strong angiogenic capacity and immunomodulatory
properties (Smadja et al., 2025). Coculture of CBECFCs with
organoids facilitates stable capillary network formation in

engineered bone regions while simultaneously enhancing

chondrogenic and osteogenic differentiation. Microfluidic chip
the of
endochondral ossification, providing a model for studying human

technology can replicate early vascular networks
endochondral ossification (Kesharwani et al., 2025). Alternatively,
bioprinting can be used to directly print endothelial cell channels to
generate vasculature (Cadena et al., 2024).

Immune rejection presents a major translational hurdle for
As
organoids retain the characteristics of their tissue of origin, which

may trigger immune rejection during transplantation. Studies have

osteochondral ~ organoids. three-dimensional cell cultures,

shown that fully xenogeneic renal organoids exhibit stronger rejection
responses than chimeric organoids (Elder et al., 2018). CRISPR-Cas9-
mediated knockdown of HLA class I molecules effectively reduces
T-cell-mediated immune recognition in osteochondral organoids but
may compromise their immunosurveillance function (Gaykema et al,
2024). This paradox is particularly prominent in osteochondral
the of
contrast immunogenicity  of

Organoid - unique immune
chondrocytes with  the

osteoblasts. Recent studies have shown that combining the low
immunogenicity characteristics of CBECFCs (cord blood endothelial
colony-forming cells) with precise immunoediting techniques may

immunity  properties
strong

allow the construction of general-purpose osteochondral Organoids
with vascularization potential (Smadja et al., 2025). More notably, Joint-
specific immune isolation devices incorporating TGF-3 modulation
could create multi-layered immune barriers for osteochondral
organoids (Wang X. et al, 2025). This integrated approach
minimizes systemic immunosuppression risks and enhances clinical
translation. Additionally, during the construction of organoid-scaffold
complexes, when engineered hydrogels are used as carrier matrices, fine
surface functionalization modification or matrix component
optimization can be employed to effectively regulate host immune
responses and significantly reduce the risk of foreign body reactions
triggered by material implantation (Chen et al,, 2025). By mimicking the
biochemical-mechanical microenvironment of the natural extracellular
matrix, this strategy can simultaneously achieve the dual objectives of
enhancing immunocompatibility and maintaining organoid function.

Organoids also present potential safety risks that require careful
evaluation. Organoids pose infection risks post-implantation due to
incomplete sterilization of their internal 3D structures. Moreover,
cell migration to non-target areas may cause abnormal
vascularization in cartilage regions, disrupting physiological
function. iPSC-derived products risk containing residual
undifferentiated iPSCs with high proliferative and differentiation
potential, potentially forming teratomas or tumors (Dou et al,
2025). Studies show even trace iPSC residues pose risks,
necessitating highly sensitive quality control methods or suicide
gene switches (Hill et al., 2024).

Clinical translation of osteochondral organoids demands
resolving key challenges in GMP standardization, regulatory
clarity, and scalable production (Wang X. et al., 2025). GMP
hurdles include complex workflows, batch variability, and
stability from iPSCs/BMSCs

inflammatory microenvironments (Zhang et al., 2025). Potential

inconsistent organoid due to
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Al-Driven Cyclic Optimization System for Osteochondral Organoid Research. This figure illustrates a cyclic process for the research of
osteochondral organoids using Al deep - learning technology. First, osteochondral organoids are constructed using cells, hydrogels, induction factors,
and advanced technologies. Subsequently, multimodal data acquisition methods such as single - cell sequencing, deep radiomics, metabolomics, and
mechanical parameters are employed to obtain data, which is then subjected to data processing. Following this, the organoids are studied throughin

- vitro validation and in - vivo efficacy evaluation. The data generated during the research process is integratively analyzed and then fed back to Al deep -
learning to establish a dynamic prediction model. The model undergoes feedback optimization through algorithm optimization, further guiding the
construction of osteochondral organoids, thus forming a cyclic and iterative research system to continuously optimize and advance research related to

osteochondral organoids. Image created by Figdraw.

solutions involve AI-driven process optimization or bioprinting for
precise heterostructure control (El-Tanani et al., 2025). Regulatory
gaps persist, particularly for composite tissues (e.g., bone-cartilage
integration) and limited clinical trial data. International consensus is
needed to define organoid classification and approval pathways.
Scalability barriers stem from high costs and fidelity limitations.
Future efforts should prioritize non-viral vectors, modular
production, large-animal validation, and standardized imaging
evaluations (Hall et al., 2021; Sun et al., 2025).

4.2 Emerging interdisciplinary directions

The integration of smart materials with organ-on-a-chip platforms
has revolutionized OA and cartilage repair research. O’Donnell et al.’s
GelMA-based 3D organ-chip maintains stem cell adipogenic potential,
offering novel insights into knee OA pathogenesis (O'Donnell et al.,
2020). Hydrogel-based microphysiological systems recapitulate OA
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microenvironments by synovial ~fibroblasts and
chondrocytes, enabling investigation of synovial macrophage

accumulation and therapeutic discovery (Chijimatsu et al, 2017).

co-culturing

Advanced tissue engineering enables microphysiological platforms
that precisely control mechanical and biochemical gradients for drug
screening and disease modeling.

Empowered by multi-omics technologies and spatial parsing
methods, the depth and precision of organ-on-chip research will be
significantly enhanced. The application of single-cell sequencing and
spatial transcriptomics has enabled researchers to analyze the
mechanisms of cellular heterogeneity and microenvironmental
interactions within the microarray. Integrated flow cytometry-RNA
sequencing revealed distinct pro-angiogenic profiles between BMMSCs
and iPSCs-MSCs, informing optimized cell therapy approaches
(Gonzalez-Rubio et al., 2025). The integration of such technologies
not only enables dynamic tracking of disease-related gene expression
changes, but also reveals the spatial and temporal characteristics of cell-
matrix interactions at the micro-scale.
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The introduction of external physical stimuli such as magnetic
fields, optogenetics and mechanical forces may further expand the

boundaries of osteochondral Organoid functionalization.
Optogenetic ~ preconditioning  of  monocytes  suppresses
inflammatory  migration, demonstrating precise immune

modulation capabilities (Chijimatsu et al., 2017). Microfluidic
systems accurately replicate articular cartilage biomechanics,
enabling mechanistic studies of mechanical signaling in OA
pathogenesis and repair (Grottkau et al., 2022). Combined
application of these technologies in organoid engineering will
both elucidate OA pathophysiology and accelerate personalized
therapy development.

Artificial (AT)
osteochondral organoid research through applications
material optimization, organoid construction, data analysis,

intelligence significantly  advances

in

and disease modeling (Figure 4). In material optimization and
Al
Experiments (DoE) methods to refine biomaterial parameters,

scaffold design, employs computational Design of
such as those for silk fibroin (SF)-based hydrogels, enhancing
biomimetic performance (Shen et al, 2025). This approach
improves simulation of the vascularization gradient in
osteochondral tissue while optimizing scaffold porosity and
mechanical properties to closely mimic natural tissue structure
and function (Corrado et al., 2025). In organoid construction and
differentiation, AI-supported three-dimensional culture systems
facilitate the differentiation of BMSCs into chondrocytes and
osteoblasts, producing osteochondral organoids with gradient
heterogeneity and enabling synchronous regeneration of
cartilage and bone tissues post-implantation in animal models
(Chen et al,, 2025). Furthermore, Al-driven deep learning
analyzes high-throughput organoid data, minimizing errors
associated with manual

analysis, accelerating disease

mechanism elucidation and drug screening, simulating
pathological processes in diseases like osteoarthritis, and
enabling predictive models for personalized therapies
(Maramraju et al., 2024; Yang et al., 2025). In the future, AI-
based quantitative models for assessing inflammation, currently
applied in cardiac organoid research, could be adapted for
osteochondral organoid studies (Lin et al., 2025).

The convergence of organ chips, smart materials, physical
modulation technologies, and multi-omics establishes an end-to-
end framework bridging molecular mechanisms to clinical
applications. This interdisciplinary approach delivers innovative
tools for OA precision medicine while advancing foundational

technologies for regenerative breakthroughs.

5 Conclusion

Osteochondral organoids represent a transformative paradigm
in OA research, integrating advances in stem cell biology,
biomaterials science, and biofabrication technologies. As this
review systematically demonstrates, these 3D microphysiological
offer OA
pathogenesis, and develop

systems unprecedented opportunities to model

screen therapeutic compounds,

regenerative strategies, owing to their unique capacity to

recapitulate native tissue architecture and enable multi-

tissue crosstalk.
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Advances in osteochondral organoid construction include
optimized cell sourcing with MSCs and iPSCs for enhanced
differentiation and scalability, sophisticated biomaterial systems
ranging from natural hydrogels to synthetic matrices mimicking
native ECM, and innovative biofabrication techniques, such as 3D
bioprinting and microfluidic platforms, enabling precise spatial
organization and vascular These technological
yielded with
physiological relevance for studying OA mechanisms, particularly

integration.

synergies have organoid models improved
modeling the complex interplay between cartilage degradation,
subchondral bone remodeling, and synovial inflammation. The
applications of osteochondral organoids span pathomimetic
disease modeling and high-throughput drug screening platforms.
Notably, gene-edited organoids have provided novel insights into
OA-associated genetic variants and mechano-inflammatory
pathways, while patient-derived systems show promise for
personalized therapeutic testing. In regenerative medicine,
transplantation studies reveal the potential of organoids to repair
osteochondral defects through biomimetic tissue integration,
although long-term functional outcomes require further validation.

Despite these advances, challenges remain in achieving scalable,
standardized production with consistent quality, overcoming
vascularization and immunomodulatory barriers to clinical
translation, and establishing regulatory frameworks for
Replicating  the

microenvironment, including neural and immune components,

osteochondral  organoids. complete joint
also necessitates innovative solutions.

Future progress depends on interdisciplinary integration across
several fronts: intelligent systems combining smart materials with
organ-on-chip platforms for dynamic microenvironment control;
multi-omics and Al-driven approaches to create predictive OA
digital twins; and translational initiatives to establish GMP-grade
organoid biobanks and clinical validation pathways. As these
technologies mature, osteochondral organoids are poised to
bridge critical gaps between bench research and clinical practice,
enabling precision medicine approaches for OA diagnosis and
treatment. This evolving paradigm shifts OA research from
observational biology to mechanistic intervention, offering an
integrated platform that connects molecular discovery with
therapeutic development. Achieving this potential requires
continued innovation to overcome technical and translational
barriers while addressing ethical considerations in cellular

therapeutics.
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