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Objective: Due to its inherent high instability, the selection of fixation strategies
for unilateral Denis type II sacral fractures remains a controversial challenge in the
field of traumatic orthopedics. This study focuses on unilateral Denis type II sacral
fractures. By applying three different fixation methods, it aims to explore their
biomechanical properties and provide a theoretical basis for optimizing clinical
fixation protocols.
Methods: A ligament-intact three-dimensional finite-element model of a right-
sided Denis type II sacral fracture, including ipsilateral superior and inferior pubic
rami fractures, was generated. Three fixation models were simulated: (1) S1/
S2 transiliac-transsacral screw fixation (S1/S2-TTS); (2) unilateral L4/5 triangular
osteosynthesis (UTOS); and (3) bilateral S2-alar-iliac screws combined with an
iliosacral screw (BS2AI-ISS). Appropriate material properties, boundary
conditions, and loading protocols were assigned. A 500 N axial compressive
load superimposed with a 7.5 Nm torque was applied to simulate standing
position and multiplanar spinal motion. Biomechanical parameters evaluated
included vertical sacral stiffness, maximum von Mises stress within implants,
and relative interfragmentary displacement (RID) at the fracture site.
Results: Sacrum vertical stiffness: All constructs significantly increased sacrum
vertical stiffness compared with the intact model. Normalised stiffness values
were 443.18% (S1/S2-TTS), 228.38% (UTOS) and 397.26% (BS2AI-ISS). Maximum
implant von Mises stress: Under every loading mode, S1/S2-TTS exhibited the
lowest and most evenly distributed stress (range 30.30–49.23 MPa). Maximum
stresses ranked from lowest to highest: S1/S2-TTS < BS2AI-ISS < UTOS. Relative
interfragmentary displacement: In standing position, mean RID were 0.0313 ±
0.0148 mm (S1/S2-TTS), 0.0736 ± 0.0314 mm (UTOS) and 0.0539 ± 0.0163 mm
(BS2AI-ISS). Only the difference between S1/S2-TTS and UTOS reached statistical
significance (p = 0.047). Similar patterns were observed in extension, left flexion
and left rotation; no significant differences were found in right flexion or
right rotation.
Conclusion: The present study demonstrates that BS2AI-ISS provides
biomechanical stability comparable to both S1/S2-TTS and UTOS for unilateral
Denis type II sacral fractures. Notably, BS2AI-ISS achieves this stability without
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compromising lumbar motion and irrespective of sacral morphologic variations.
These findings suggest that BS2AI-ISS may serve as an effective alternative for
managing unilateral Denis type II sacral fractures.

KEYWORDS

biomechanical, sacral fracture, triangular osteosynthesis, S2-alar-iliac screw, finite
element analysis

1 Introduction

The pelvis serves as the cornerstone connecting the spine and
lower extremities, primarily relying on the sacrum and
surrounding strong ligaments to bear the downward axial
pressure from the spine and the upward counterforce
transmitted from the lower limbs (Kweh et al., 2022; Liu et al.,
2016b; Pascal-Moussellard et al., 2016). When subjected to shear
force over an extended period, both high-energy and low-energy
trauma can lead to vertically unstable sacral fractures (Acklin
et al., 2018; Endo et al., 2025). Among these, the transforaminal
vertically unstable sacral fracture (Denis type II) is one of the
severe injuries to the posterior pelvic ring, mostly caused by high-
energy trauma (Barber et al., 2023). It can result in pelvic ring
collapse, lower limb length discrepancy, and irreversible nerve
traction injuries (Xu et al., 2022). Conservative treatment may
lead to adverse complications such as fracture redisplacement,
hypostatic pneumonia, and bedsores, significantly increasing the
disability and mortality rates (Lehman et al., 2012). Therefore,
restoring the sacral height and maintaining vertical stability are
the core goals of surgery (Liu et al., 2021).

Multiple studies have shown that the use of two transiliac-
transsacral screws (TTS) is an effective method to stabilize the
fracture (Fu et al., 2014; Turbucz et al., 2023; Zheng et al., 2021;
Ziran et al., 2022). However, the sacral dysmorphism rate is as
high as 40%, which may increase the risk of screw placement and
neurovascular injury (Jäckle et al., 2022; Jeong et al., 2017; Kaiser
et al., 2014). Triangular Osteosynthesis (TOS) technique
proposed by Schildhauer et al. (2003) offers biomechanical
stability comparable to that of TTS, but it requires fixation of
the lumbar spine, which affects mobility and can lead to screw
protrusion or skin necrosis (Min et al., 2014; Wenning et al.,
2021). In recent years, S2-alar-iliac (S2AI) screws have gained
popularity for posterior pelvic-ring stabilization (Wakayama
et al., 2022). Du et al. (2024) found that bilateral S2AI screw
fixation provides superior stability in low-density pelvic models
compared to ilioscral screw (ISS) and TTS fixation, and it offers
more cortical purchase and fewer skin complications during
lumbopelvic fixation, although it still restricts activity in the
lumbosacral region.

We therefore propose a novel construct—bilateral S2AI screws
combined with an iliosacral screw (BS2AI-ISS)—that theoretically
avoids both sacral morphologic constraints and compromise of

lumbar mobility. However, it remains unclear whether this new
internal fixation method can meet the biomechanical stability
required for sacral fractures.

The present finite-element study was designed to compare the
biomechanical performance of S1/S2-transiliac-transsacral screws
(S1/S2-TTS), unilateral L4/L5-triangular osteosynthesis (UTOS),
and BS2AI-S1 constructs in stabilising unilateral Denis type II
sacral fractures. Particular attention was paid to fracture-site
displacement and implant stress distribution, with the aim of
providing a new perspective for the clinical selection of
internal fixators.

2 Methods

2.1 Construction of the intact spino-pelvis
finite element model

The three-dimensional finite element model of the spine-pelvis
(L4-L5-Pelvic) was derived from the CT images (64-slice CT scan
with a slice thickness of 0.625 mm) of a healthy male (40 years old,
body mass index 22.3). The cortical and cancellous bone of the
L4 vertebra, L5 vertebra, and pelvis were segmented from the CT
data using Mimics 21.0 (Materialise, Leuven, Belgium) to construct
the three-dimensional spine-pelvis model. The extracted lumbar and
pelvic structures were imported into Geomagic Studio
17.0(Geomagic, Morrisville, NC, United States) for model
reconstruction and smoothing to generate high-quality surface
models. Subsequently, joint cartilage and intervertebral discs were
created in Solidworks 2021 (Dassault Systemes Corp., Velizy-
Villacoublay, France) based on the anatomical structures of the
model using Boolean operations (Figure 1).

2.2 Construction of the finite element
models of denis II type sacral fracture and
different fixation methods

The intact spino-pelvic model was used to construct a Denis
Type II sacral fracture model with intact ligaments (right
transforaminal fracture and right superior and inferior pubic
ramus fractures) via the split function in Solidworks (Figure 1).
In this study, the anterior pelvic ring was fixed with pubic ramus
screws in all cases, while three internal fixation techniques were
simulated for posterior pelvic ring fixation, including S1/S2-TTS,
UTOS, and BS2AI-ISS (Figure 2).

In this study, the diameter of S2AI screws and iliac screws was
set to 9 mm. The diameter of lumbar pedicle screws, ISS, TTS, and
retrograde pubic ramus screws was 6.5 mm, and the diameter of
titanium rods was 6 mm. The length of L4 and L5 pedicle screws was

Abbreviations: S2AI, S2-alar-iliac; ISS, Iliosacral screw; S1/S2-TTS, S1/S2-
transiliac-transsacral screws; TOS, Triangular osteosynthesis; UTOS,
Unilateral L4/5-triangular osteosynthesis; BS2AI-ISS, Bilateral S2AI screws
combined with iliosacral screws; VS, Vertical Stiffness; RID, Relative
interfragmentary displacement; FE, Finite element.
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50 mm; the length of S2AI screws, ISS, iliac screws, and pubic ramus
screws was 90mm; and the length of S1 and S2 TTS was 160mm and
140 mm, respectively.

2.3 Material properties, boundary
conditions, and loading

In Ansys 2021 (ANSYS Inc., Canonsburg, PA, United States),
the major ligaments around the lumbopelvic region were
simulated using spring ligaments according to previous
studies. Cortical bone, cancellous bone, intervertebral discs,
articular cartilage, and implants were all meshed with 10-node
tetrahedral elements (Ma et al., 2023; Yang et al., 2023; Yang
et al., 2025). The cortical bone, cancellous bone, intervertebral
discs, joint cartilage, and implants were all meshed using 10-node
tetrahedral elements. In the constructed finite element model, the
connections between the facet joints, screw head-rod, annulus
fibrosus-nucleus pulposus, and cartilaginous endplate-vertebra
were modeled using tie constraints. The contact conditions
between the sacroiliac joint cartilage, pubic symphysis
cartilage, and screws and bone were set as frictional contact
with friction coefficients of 0.015, 0.2, and 0.6, respectively. A
friction coefficient of 0.3 was applied between the fracture
surfaces (Yang et al., 2025). An axial load of 500 N was
applied to the upper surface of the L4 vertebra, and the six
degrees of freedom of the acetabulum were constrained to
simulate the standing position. On this basis, a torque of

7.5 N/m was added to simulate the physiological motions of
flexion, extension, left flexion, right flexion, left rotation, and
right rotation (Figure 3) (Wang et al., 2021).

2.4 Model validation and mesh quality
assessment

In this study, the validation of the finite element model was
conducted by referring to the methods described by Miller et al.
(1987). Specifically, a load of 294 N was applied to the upper
surface of the sacral to simulate translational motions in the
superior-inferior, anterior-posterior, and medial-lateral
directions. Additionally, a moment of 42 N/m was applied
to simulate the motion patterns of flexion, extension, and
axial rotation. By recording the displacement responses
under these loads and moments, the mechanical behavior of
the model was evaluated (Figure 4). Ultimately, the finite
element simulation results of this study demonstrated high
consistency with those of several previously published studies,
indicating the model’s good reliability and accuracy
(Eichenseer et al., 2011; Xu et al., 2020). The mesh quality
of the internal fixation models was assessed, and the results
showed that the element quality of all models was above 0.8,
indicating that the constructed mesh had high quality and
could meet the accuracy requirements for subsequent finite
element analysis. Moreover, the number of elements and nodes
for each model is presented in Table 1.

FIGURE 1
Process of creating a finite elementmodel fromCT scan data for biomechanical analysis. (a)Original DICOMCT scan image of the pelvis and lumbar
spine. (b) High-quality surface model after denoising and smoothing in Geomagic Studio. (c) Spino-pelvic model with intervertebral discs and cartilage
constructed in Solidworks. (d) The pelvic Denis type II fracturemodel imported into the ANSYS software is used to simulate themechanical analysis under
the fracture condition.
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2.5 Finite element analysis

This study evaluated different sacral fracture fixation techniques
under seven motion states: standing, flexion, extension, left flexion,
right flexion, left rotation, and right rotation. The vertical stiffness
(VS) of the sacrum in the standing position was calculated by
dividing the load by the vertical displacement of the center point
on the upper surface of the sacral, using the formula: VS = Load (N)/
Displacement (mm). The VS of each fixation model was normalized
to that of the intact spine-pelvis and presented as a percentage, with
the VS of the intact spine-pelvis set at 100%. Five pairs of
observation points were set along the fracture line on the
anterior surface of the sacral, and the relative interfragmentary
displacement (RID) was assessed using the three-dimensional
coordinates (x, y, z) of each pair of points, with the calculation

formula: RID =
�����������������������������
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

√
(Figure 5).

Other evaluation variables include the maximum Von Mises stress
of bone and implants, as well as the stress shielding phenomenon.

2.6 Statistical analysis

Data collection and management were conducted using Microsoft
Excel 2019. For statistical analysis, SPSS version 25.0 (SPSS, Chicago, IL,
United States) was employed. Descriptive statistics were computed to
summarize the variables, which were expressed as mean ± standard
deviation (SD). To determine if there were significant differences among
groups, we performed one-way Analysis of Variance (ANOVA). In cases
where ANOVA indicated significant differences (p < 0.05), we conducted
post hoc analysis using the Least Significant Difference (LSD) test to

FIGURE 2
Fixation configurations investigated in this study: (a) Posterior view of S1/S2-transiliac-transsacral screws (S1/S2-TTS). (b) Lateral view of S1/S2-
transiliac-transsacral screws (S1/S2-TTS). (c) Posterior view of unilateral L4/5-triangular osteosynthesis (UTOS). (d) Lateral view of unilateral L4/5-
triangular osteosynthesis (UTOS). (e) Posterior view of bilateral S2-alar-iliac (S2AI) screws combined with iliosacral screws (BS2AI-ISS). (f) Lateral view of
bilateral S2-alar-iliac (S2AI) screws combined with iliosacral screws (BS2AI-ISS).
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identify which specific groupmeans differed from each other. The level of
statistical significance was set at p < 0.05 for all tests.

3 Results

3.1 The VS of each model

In this study, the VS of each fixation model was normalized to
the VS of the intact spino-pelvic structure, presented as a percentage
with the VS of the intact spino-pelvic structure set as 100%. The
results showed that all fixation techniques significantly increased the
VS of the sacrum. Specifically, the VS of the sacrum in the S1/S2-
TTS, UTOS, and BS2AI-ISS models increased to 443.18%, 228.38%,
and 397.26%, respectively (Figure 6).

3.2 Maximum Von Mises stress of
the implants

In all motion states, the maximum VonMises stress levels of the
internal fixators in all models were lower than the yield strength of
titanium alloy. Further analysis revealed that the S1/S2-TTS model
exhibited the lowest stress values in all test states, with the maximum
Von Mises stress ranging from 30.30 MPa to 49.23 MPa. The stress
values in the BS2AI-ISS model were intermediate, ranging from
51.67 MPa to 76.47 MPa. In contrast, the UTOS model showed the
highest stress values, with the maximum Von Mises stress ranging
from 110.41 MPa to 329.01 MPa (Figure 7;
Supplementary Table S1).

3.3 Stress shielding phenomenon

In all motion states, the stress distribution of the three models
was transmitted along the iliopubic line. For the S1/S2-TTS,
UTOS, and BS2AI-ISS models, the maximum Von Mises stress
ranges of the bone tissue were 80.76–80.87 MPa,
82.25–82.35 MPa, and 111.34–111.42 MPa, respectively, with
all maximum stress values being lower than the yield
strength of bone.

Meanwhile, to evaluate the biocompatibility of the implants, this
study analyzed the stress shielding effect of the implants on sacral
fractures. The maximum stress difference between the implant and
the injured sacrum can be used to characterize the degree of the
stress shielding phenomenon. In the standing position, the
maximum stress differences between the implant and the injured
sacrum in the S1/S2-TTS, UTOS, and BS2AI-ISS models were
14.74 MPa, 183.43 MPa, and 19.59 MPa, respectively. In other
motion states, the maximum stress differences between the implant

FIGURE 3
Demonstration of seven different postures for biomechanical analysis. (a) Standing (b) Flexion (c) Extension (d) Left flexion (e) Right flexion (f) Left
rotation (g) Right rotation.

FIGURE 4
Validation of our finite element model (Present model) via sacral
displacement comparison with experimental data by Miller et al.,
Turbucz et al., and Xu et al. under comparable loads. Error bars
indicate one standard deviation.
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and the injured sacrum showed a consistent trend with that in the
standing state (Figure 8; Supplementary Table S2).

3.4 RID at the observation points on the
anterior surface of the sacral fracture line

In the standing position, the mean RID in the S1/S2-TTS, UTOS,
and BS2AI-ISS models were 0.0313 ± 0.0148 mm, 0.0736 ±
0.0314 mm, and 0.0539 ± 0.0163 mm, respectively. The LSD post
hoc test showed that only the difference between S1/S2-TTS and
UTOS was statistically significant (p = 0.047), while the differences
between BS2AI-ISS and S1/S2-TTS, and between BS2AI-ISS and
UTOS did not reach a significant level (p = 0.352 and p = 0.441,
respectively).

In the conditions of extension, left flexion, and left rotation, the
above difference pattern was consistent with that in the standing
position; in the conditions of right flexion and right rotation, there
were no statistically significant differences in RID among the three
models (Figure 9).

4 Discussion

Sacral fractures are a rare and challenging type of fracture,
accounting for 28%–45% of all pelvic fractures, among which
unstable fractures account for 17%–30% (Denis et al., 1988;
Taguchi et al., 1999). Surgical intervention is the preferred
treatment method, as it can both restore and stabilize the normal
anatomical structure of the sacrum and prevent sequelae of
malunion of the sacrum (Santolini et al., 2020). The key to sacral
fracture repair is that the implant can achieve good stability in both
vertical and horizontal directions while minimizing adverse effects

FIGURE 5
Finite element model with five pairs of observation points for the evaluation of relative interfragmentary displacement (RID). An enlarged view
highlights a pair of observation points, a1 (xa1, ya1, za1) and a2 (xa2, ya2, za2), utilized for measuring RID.

FIGURE 6
Normalized vertical stiffness of different internal fixation
techniques.

TABLE 1 Number of elements and nodes and elements quality in different
models.

Model Intact S1/S2-TTS UTOS BS2AI-ISS

Nodes 1931776 1959389 1966024 1956623

Elements 1241086 1251111 1254400 1248793

Elements quality 0.8307 0.8289 0.8294 0.8295
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on the patient, thereby promoting early mobilization and
rehabilitation (Zheng et al., 2023).

TheVS of the sacrum is one of the key indicators used to evaluate its
ability to resist deformation under vertical loads (Acklin et al., 2018).
Turbucz et al. (2023) assessed the fixation of sacral Denis Type II
fractures with different combinations of ISS and TTS and found that the
use of TTS provided higher stability, while 2 TTS screws were superior
to all other internal fixation combinations, with the greatest vertical

stability, minimal inter-fragment displacement and implant stress. The
results of this study showed that all three different internal fixation
models significantly increased the VS of the sacrum. The VS of the
BS2AI-ISS model was slightly lower than that of the S1/S2-TTS model,
but the VS of both models was much higher than that of the UTOS
fixation model. This result indicates that the BS2AI-ISS model has
similar stability to the S1/S2-TTS model in controlling the deformation
of the injured sacral fracture.

FIGURE 7
VonMises stress distribution of pelvic bones with three internal fixations in standing position. (a) Anterior view of S1/S2 - TTS; (b) Posterior view of S1/
S2 - TTS; (c) Anterior view of UTOS; (d) Posterior view of UTOS; (e) Anterior view of BS2AI - ISS; (f) Posterior view of BS2AI - ISS.

FIGURE 8
Von Mises stress distribution of three internal fixation constructs in standing position. (a) S1/S2 - TTS; (b) UTOS; (c) BS2AI - ISS.
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In biomechanical studies, the maximum Von Mises stress of
bone and implants is an important indicator for evaluating the risk
of secondary fractures and implant fractures (Frost, 1997). Böhme
et al. (2012), through finite element (FE) model analysis combined
with radiological examinations during clinical rehabilitation, found
that the locations of implant loosening and secondary fractures were
highly consistent with the areas with the highest stress levels. The
results of this study showed that the maximum von Mises stress of
the bony structures corresponding to the three internal fixation
models was significantly lower than the yield threshold of cancellous
bone. The stress nephogram further revealed that under different

loading conditions, the stress trajectory continued along the
iliopubic arch and spread uniformly, with no abnormal stress
concentration. It can be inferred that all three fixation methods
can effectively reconstruct the physiological load transmission
channel of the pelvis, significantly reduce the risk of
postoperative secondary bone fractures, and their mechanical
behavior conforms to the biomechanical principles of pelvic
stability reconstruction (Liu et al., 2016a).

In addition, in all motion states including the standing position, the
maximum stress values of the implants in the three models of internal
fixation models did not exceed the yield stress of titanium alloy,

FIGURE 9
Posture - specific RID (Relative interfragmentary displacement) comparison of three internal fixations: Insights from LSD post - hoc analysis. Seven
postural conditions: (a) Standing; (b) Flexion; (c) Extension; (d) Left flexion; (e) Right flexion; (f) Left rotation; (g)Right rotation. One -way ANOVAwith LSD
pairwise comparisons was performed; “*” denotes p < 0.05 (significant), “ns” denotes non - significant results.
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indicating that the risk of implant fracture and failure can be ignored
under static and regular motion states (Ma et al., 2023). However, the
study also found that the implant stress in the UTOS model was much
higher than that in the other two models in all postures. This result
indicates that the risk of implant fatigue damage and screw loosening in
the S1/S2-TTS model and BS2AI-ISS model is lower than that in the
UTOS model. We speculate that the S1/S2-TTS model and BS2AI-ISS
model not only fixed the bilateral sacrum but also the bilateral ilium,
having a suspension bridge structure similar to the sacroiliac complex,
thereby making the stress of the implant more dispersed.

Based on the stress shielding theory, the smaller the stress
difference between the pelvis and the implant, the better the
biocompatibility of the implant. Hu et al. (2019) constructed a
finite element model for the treatment of sacral fractures using a
tension band plate or 2 sacroiliac screws, and the results showed that
the biomechanical compatibility of the model fixed with 2 sacroiliac
screws was significantly better than that of the model with the
tension band plate. In this study, under different motion states, the
biomechanical compatibility of the BS2AI-ISS model was slightly
inferior to that of the S1/S2-TTS model, but much better than that of
the UTOS model. It is speculated that the reason for this
phenomenon may be that the UTOS model adopts a trans-
lumbosacral fixation method. During movement, the implant is
prone to stress concentration in the lumbosacral region, resulting in
a higher maximum Von Mises stress, which in turn makes the stress
shielding phenomenon in the UTOS model more significant than in
the other two models.

Based on the biological principles of fracture healing, intermittent
movement (micromotion) between fracture ends can promote callus
formation and accelerate fracture healing (Claes, 1989; Woo et al., 1984).
Studies have shown that such micromotion should not exceed 1 mm, as
exceeding this limit will have a negative impact on fracture healing (Claes,
2011; Goodship and Kenwright, 1985). In this study, the fracture
displacement values of the three internal fixation models under
different motion modes did not exceed 1 mm, indicating that all
three internal fixation models can provide a relatively stable healing
environment for the injured sacrum. Zheng et al. (Zheng et al., 2021)
found that under a vertical load of 500 N, the RID displacement of sacral
Denis Type II fracturesfixedwith 2TTS screwswas lower than that of the
UTOS model, which is consistent with the results of this study. Further
inter-model comparison revealed that the RID of the UTOS model was
statistically significant compared with that of the S1/S2-TTS model in
standing, hyperextension, left lateral flexion, and left rotation, which
indicates that the S1/S2-TTS model is superior to the UTOS model in
maintaining the stability of sacral fractures. For the BS2AI-ISSmodel, the
study found that although its RID was lower than that of the S1/S2-TTS
model in all postures, there was no significant statistical difference
between the two models. This indicates that this structure can
effectively transfer the load from the lumbar spine to the bilateral
ilium through the internal fixation system in any posture, thereby
maintaining the stability of the sacral fracture.

In summary, the proposed internal fixation combination of bilateral
S2AI screws combined with unilateral sacroiliac screws has the
following potential advantages: 1. Wide anatomical indications: For
patients with TTS/ISS transosseous corridor obstruction (e.g., Tarlov
cysts, tumors), our technique offers a viable alternative—one potentially
more effective than in sacral dysmorphism—by bypassing pathological
bony routes. 2. Preservation of lumbosacral mobility: The fixation range

ends at the S1 vertebra, without the need for transarticular fixation of
the lumbar spine, which theoretically can reduce the risk of lumbosacral
stiffness and adjacent segment degeneration. 3. Excellent mechanical
properties: Finite element analysis shows that compared with the classic
S1/S2-TTS and UTOS, the fixation efficacy of BS2AI-ISS for unilateral
Denis Type II sacral fractures has no statistically significant differences
in key biomechanical indicators such as maximum internal fixation
stress and relative displacement of fracture, and the three have equal
immediate stability.

This study still has some limitations. Firstly, the titanium rod
between the bilateral S2AI screws may cause skin irritation, leading
to complications such as skin pain and necrosis. The connection
between the titanium rod and the screw head cannot improve the
acute angle between the screw head and the screw, and previous
studies have shown that the acute angle between the screw head and
the screw is a potential failure point. Secondly, the bone
homogenization model used in this study does not consider bone
mineral density, and the osteoporotic model may cause greater
displacement. Furthermore, although studies have confirmed that
both pubic ramus screws and plates can stabilize the anterior pelvic
ring, this study mainly focuses on sacral fractures and does not
analyze pubic ramus fractures. Finally, we mainly used static loads,
and although various postures were simulated, the impact of long-
term biomechanics could not be discussed in depth. Future
cadaveric biomechanical experiments and clinical studies are still
needed for further verification.

5 Conclusion

The present study evaluated the biomechanical stability of three
internal fixation methods, namely, S1/S2-TTS, UTOS, and BS2AI-
S1, in unilateral sacral Denis Type II fractures. The results showed
that all three methods could achieve good biomechanical stability,
with S1/S2-TTS being the highest, BS2AI-ISS being moderate, and
UTOS being the lowest. BS2AI-ISS can still obtain good
biomechanical stability without affecting lumbar spine movement
and being restricted by sacral morphology, suggesting that BS2AI-
ISSmay be an alternative option for the treatment of unilateral sacral
Denis Type II fractures.
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