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Spectroscopic soft sensors are developed by combining spectral data with
chemometric modeling, and offer as Process Analytical Technology (PAT)
tools powerful insights into biopharmaceutical processing. In this study, soft
sensors based on Raman spectroscopy and linear or partial least squares (PLS)
regression were developed and successfully transferred to a filtration-based
recovery step of precipitated virus-like particles (VLPs). For near real-time
monitoring of product accumulation and precipitant depletion, the dual-stage
cross-flow filtration (CFF) set-up was equipped with an on-line loop in the
second membrane stage. With this set-up, spectral data from three CFF runs
were collected, differing in initial product concentration and process parameters.
Under the scope of multi-attribute monitoring, a comprehensive investigation of
the sensor sensitivity towards protein and precipitant and their Raman spectral
features was carried out. This study reveals much higher sensitivity towards the
precipitant ammonium sulfate (AMS) than the VLPs and the need for attribute-
specific spectral preprocessing. To enhance the detector’s sensitivity towards
proteins, a higher exposure time was applied during CFF processing than during
model building from pure-component stock solutions. As a result of this
increased exposure time, the predominant sulfate band exhibited
oversaturation effects, which otherwise could have been used for AMS
quantification via linear regression. Nevertheless, AMS prediction using
purpose-driven preprocessing operations and PLS models was achieved with
normalization and a data-driven variable selection technique, next to baseline
correction and signal smoothing. For VLP monitoring, a novel pre-cropping
approach improved spectral appearance after further preprocessing in
protein-associated wavenumber regions. However, fluctuations in prediction
were much higher for VLPs than for AMS, and prediction accuracy was
especially limited in low protein concentration ranges. These results highlight
the potential of Raman-based PAT sensors for real-time monitoring of
biopharmaceutical processes, while underscoring the general importance of
attribute-specific selections of sensors, preprocessing operations, and models
for PAT tool development.

Raman spectroscopy, virus-like particles, cross-flow filtration, process analytical
technology, partial least squares regression, spectral preprocessing, process
monitoring, detector oversaturation
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1 Introduction

Virus-like particles (VLPs) have emerged as a promising
alternative to viral vectors, with applications ranging from
vaccines to drug and gene delivery systems (Qian et al., 2020).
Structurally mimicking native viruses but lacking viral genetic
material, VLPs offer a unique combination of safety and efficacy
(Chackerian, 2007; Zeltins, 2013; Nooraei et al., 2021). In vaccine
application, their higher immunogenicity compared to subunit
vaccines (Tariq et al, 2022) can be even further directed or
enhanced by surface modifications using genetic or chemical
approaches (Chung et al., 2020). Since Hepatitis B core Antigen
(HBcAg) VLPs were expressed (Burrell et al., 1979) and visualized
(Stahl et al., 1982) as one of the first VLPs, they continue to be the
subject of ongoing research and recent advancements have been
achieved in surface displays (Moradi Vahdat et al., 2021; Hassebroek
et al, 2023) or payload packaging (Cooper and Shaul, 2005;
Porterfiled et al., 2010; Petrovskis et al., 2021).

Due to the diverse structural complexity of different VLP types,
purification strategies are usually developed individually, which
may lead to costly manufacturing processes involving numerous
unit operations (Moleirinho et al., 2020). The need for broadly
applicable, scalable, and cost-effective manufacturing processes
drives the development of novel purification strategies (Effio and
Hubbuch, 2015). Due to the relatively large size of the VLPs,
processes based on size-selective separation techniques such as
exhibit
characteristics and provide an alternative to chromatographic
methods (Hillebrandt and Hubbuch, 2023). Using cross-flow
filtration (CFF), buffer exchange by
diafiltration (DF) enables dynamic processes previously
achieved only through dialysis or dilution, while also allowing

precipitation or filtration standardized platform

constant-volume

product concentration by ultrafiltration (UF) (van Reis and
Zydney, 2007). Recent developments have demonstrated the
applicability of CFF throughout downstream processing of
HBcAg VLPs, from the initial capture step for VLP re-
dissolution from VLP precipitates (Hillebrandt et al., 2020;
Dietrich et al.,, 2025), to the final polishing steps including their
disassembly into subunits (Hillebrandt et al., 2021) and subsequent
reassembly into capsids (Rudt et al., 2019). These developments
position filtration-based purification technologies at the forefront
of standardized platform technologies for protein nanoparticle
purification.

Filtration set-ups typically include in-line flow and pressure
sensors to monitor and control standard process parameters such
as transmembrane pressure and permeate flux (van Reis and
Zydney, 2007). However, gaining further insights into such
dynamic processes typically relies on manual sampling and oft-
line analytics, limiting the scope of process understanding and
resulting in product loss, especially in small-scale unit operations.
In 2004, the FDA formally established the framework for Process
Analytical Technology (PAT) to support enhanced process
understanding, monitoring, and control by measuring process
(FDA, 2004).
Through sensor integration and evaluation of the collected data,

parameters and product quality attributes
process data can be continuously gathered in (near) real-time
(Rathore et al., 2010; Glassey et al., 2011). In filtration set-ups,

sensors are implemented directly in-line or within an on-line
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measurement loop. For the monitoring of quality attributes in
biopharmaceutical filtration processes, several soft sensors have
been recently developed by coupling spectroscopic sensors and
chemometrics, including ultraviolet-visible (UV/Vis) (Rudt et al.,
2019; Rolinger et al., 2020a; Hillebrandt et al., 2022), mid-infrared
(MIR) (Wasalathanthri et al., 2020), near-infrared (NIR) (Thakur
et al.,, 2020; 2021; Vasko et al., 2024), and Raman spectroscopy
(Rolinger et al., 2023; Vasko et al., 2024). These spectroscopic
sensors differ in their underlying measurement principles and
inherent sensitivity to specific substances. While UV/Vis
spectroscopy is highly accurate for protein concentrations and
has already been used to monitor product variants (Brestich et al.,
2018) and quaternary structure (Ridt et al., 2019; Hillebrandt
etal., 2022), the simultaneous monitoring of protein and excipient
concentrations can be realized by MIR (Wasalathanthri et al,
2020), NIR (Thakur et al., 2021), or Raman spectroscopy (Weber
and Hubbuch, 2021; Rolinger et al, 2023). For Raman
spectroscopy, recent advancements have been made towards
monitoring of particulates in phase-behavior dependent
processes, such as crystallized enzymes (Wegner et al., 2024) or
precipitated VLPs (Dietrich et al., 2024), as well as monitoring of
multiple quality attributes during fermentation (Santos et al.,
2018), chromatography (Wang et al., 2023), and formulation
(Wei et al., 2022) of monoclonal antibodies.

Given the high sensitivity of Raman spectroscopy, raw Raman
spectral data exhibit undesired variability, requiring considerable
effort in data preparation before being used for modeling. Such pre-
processing operations comprise signal correction techniques to
effects, filter
techniques to reduce uncorrelated noise or extract spectral
features by derivative-filtering, and cropping techniques to reduce

correct baseline, background, or scattering

dimensions or focus on relevant spectral regions (Rinnan et al., 2009;
Bocklitz et al., 2011). Beyond manual selection of cropping intervals,
ranging from solely discarding the edge regions to selecting spectral
regions of interest, variable selection techniques offer data-driven
selection, aiming to minimize the loss of important spectral data
while improving model robustness (Andersen and Bro, 2010).
Variable importance in projection (VIP) represents such a data-
driven strategy, quantifying the contribution of each wavenumber to
partial least squares (PLS) models (Mehmood et al., 2012).

In many studies, however, a sequence of preprocessing
operations with their parameters is given for a model presented,
with limited in-depth analysis of Raman spectral features
beforehand or explanations for choosing those operations. An
approach addressing systematic soft sensor development was
reported by Dietrich et al. (2024), who first studied the effects of
selected preprocessing operations on Raman spectral data before
screening multiple combinations of preprocessing operations, so-
called preprocessing pipelines, to assess the impact of individual
operations on model performance. Although they demonstrated the
quantification of selectively precipitated VLPs in crude, clarified
lysate through incorporation of specific preprocessing operations to
account for turbidity and eliminate interferences caused by
contaminating species, they reported limited transferability of the
VLP models from off-line screening to on-line fed-batch data.
Model transfer may be more successful in process stages with
increased product purity, such as in the recovery step of these
precipitated VLPs after reducing the impurity load.
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TABLE 1 Experimental conditions of the three CFF experiments (EXP1-3).

10.3389/fbioe.2025.1631807

Experiment Clarified lysate Process Process monitoring
Condition DV On-line loop flow rate Acquisition mode Raman exposure time
mL min~* ms
EXP1 dilution 6 semi-continuous 175/1,250
EXP2 ‘ dilution ‘ 7 ‘ continuous ‘ 1,250
EXP3 ‘ spike ‘ 7 ‘ continuous ‘ 1,250

Seamless VLP recovery is enabled by integrated dual-stage
CFF, isolating the re-dissolved VLPs through precipitant
depletion in the second membrane stage (Dietrich et al,
2025). Here, Raman spectroscopy has already been used for
off-line quantification of the precipitant, ammonium sulfate
(AMS), but so far, no attempt has been made to develop
multi-attribute monitoring to provide simultaneous insights
into VLP enrichment and AMS depletion.

In this study, we present a systematic, purpose-driven approach
for PAT tool development for multi-attribute monitoring by Raman
spectroscopy. The development aims for simultaneous insights into
product accumulation and precipitant depletion during a filtration-
based recovery step of precipitated VLPs using the integrated, dual-
stage CFF set-up proposed by Dietrich et al. (2025). First, we
investigate the contributions of product and precipitant to the
spectral data using stock solutions of the pure components.
Based on these insights and aiming to ultimately transfer the
developed models to process data containing contributions of
both
preprocessing operations on the Raman spectral data are

species  simultaneously, the effects of individual
thoroughly assessed. We develop regression models of varying
complexity using either product- or precipitant-containing stock
solutions and attribute-specific spectral preprocessing operations,
thereby addressing challenges such as differences in detector
sensitivity and detector saturation effects. By implementing
Raman spectroscopy in an on-line loop in the second membrane
stage of the dual-stage CFF setup, we collect process data in near
real-time from three CFF experiments with variations in initial
product concentration and process parameters. Eventually, we
transfer the developed models to on-line process data to visualize
the process dynamics of VLP recovery and precipitant depletion and
demonstrate the importance of individual preprocessing operations

for model transfer.

2 Materials and methods
2.1 Virus-like particles

The VLP of interest assembles of C-terminally truncated wild-
type HBcAg proteins (Cp149), for which the plasmids were initially
provided by Prof. Adam Zlotnick from Indiana University (Zlotnick
et al, 1996). The procedure of their intracellular expression in
Escherichia coli (E.coli), cell harvest, cell lysis, and lysate
clarification was performed as described in Hillebrandt et al.
(2020). All clarified lysate material was pooled to create a single
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batch for all experiments. Clarified lysate was stored in aliquots
at —20°C and thawed on the day of the experiments, followed by
sterile filtration and conditioning for immediate use. Conditioning
involved diluting the clarified lysate with pH 8.0 lysis buffer (50 mM
Tris, 100 mM NaCl, 1 mM EDTA) to achieve a specific ultraviolet
(UV) absorbance (EXP1-2) or spiking with VLP-enriched material
(EXP3), and adjusting to 0.25% (v/v) polysorbate20 for all
experiments (EXP1-3). Note that the spiking (EXP3) was meant
to match the level of host-cell impurities in the EXP1-2 material, so
the spiking material replaced the amount of dilution material
initially needed. The conditioning of clarified lysate is
summarized for all experiments in Table 1. The VLP-enriched
material was derived from the final product of EXP2, which was
further dialyzed into the lysis buffer overnight using a 10 kDa
MWCO Slide-A-Lyzer G2 cassette (Thermo Fisher Scientific
Inc., Waltham, US).

2.2 Capture process and process monitoring

Fully integrated processing was enabled using the dual-stage
CFF setup presented by Dietrich et al. (2025) with minor
modifications. With this dual-stage CFF set-up, the VLP
capture process involves selective VLP precipitation, followed
by two consecutive, constant-volume DF steps for washing the
VLP precipitates (DFI) and final recovery of the re-dissolved
VLPs (DFII/UF). Precipitation and washing were similarly
performed for all experiments according to Dietrich et al.
(2025), while several settings during VLP recovery (DFII/UF)
differ between the experiments EXP1 and EXP2-3, as
summarized in Table 1.

All consecutive process steps are illustrated schematically in
Figure 1 and a piping and instrumentation diagram is additionally
provided in Supplementary Figure S1. Two serially connected
KrosFlo Research KRIIi CFF units (Spectrum Labs, Rancho-
Dominguez, US) were equipped with 0.2um and 300 kDa
MWCO Hydrosart membranes (200 cm’ Sartorius Stedim
Biotech GmbH, Géttingen, DE), respectively. The permeate flow
rates were controlled at 2 mLmin™' by an in-house developed,
MATLAB-based  backpressure  valve involving
automatic backpressure valves (Spectrum Labs) in the retentate
streams and SLS-1500 flow sensors (Sensirion AG, Stifa, CH) in
the permeate streams. An AKTA Start (Cytiva, Uppsala, SE)
connected in series enabled permeate stream monitoring by in-
line UV and conductivity sensors and collecting permeate stream
fractions by the fraction collector. Valves were included in the setup

controller,
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FIGURE 1

Schematicillustration of VLP processing by integrated dual-stage

CFF. A dual-stage CFF set-up with a 0.2 pm/300 kDa MWCO
membrane configuration is used for the process steps precipitation,
precipitate wash (DFI), and VLP recovery (DFII/UF). VLP recovery
involves DF-induced VLP re-dissolution, VLP isolation in the second
membrane stage, and VLP concentration by subsequent UF. An on-
line loop equipped with a Raman flow cell in the second membrane
stage allows for near real-time monitoring by Raman spectroscopy
Adapted from Dietrich et al. (2025)
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to bypass the second CFF unit in the wash step (DFI). An on-line
loop was further installed in the second CFF unit, including a
Minipuls 3 peristaltic pump (Gilson, Villiers le Bel, FR), and a
flow cell for Raman measurements. The on-line loop flow rate
was set to 0.6 mLmin™" (EXP1) or 1.2 mLmin™"' (EXP2-3).

Selective VLP precipitation was performed in the reservoir of
the first CFF unit, which was induced by gradually adding the
precipitant stock solution (4M AMS) to the conditioned,
clarified lysate until reaching the target precipitant
concentration of 1.1 M AMS. Following a 30-min incubation
under stirring conditions, the wash step (DFI) was carried out,
and the permeate bypassed the second CFF unit to monitor and
collect the permeate stream directly. The VLP precipitates were
washed with wash buffer (lysis buffer containing 1.1 M AMS) for
6 to 6.5 diafiltration volume (DV), until the UV absorbance of
the permeate stream dropped below 60 mAU to ensure that the
majority of still soluble impurities passed the 0.2 um membrane.
It has to be noted that the conductivity data have been
qualitatively used as an indicator for the presence of AMS
during the wash step (data not shown).

The VLPs were recovered in the second DF step (DFII) with
pH 7.2 re-dissolution buffer (50 mM Tris, 150 mM NaCl) for six
(EXP1) or seven DVs (EXP2-3) using the dual-stage CFF setup. DF
induced VLP re-dissolution, the re-dissolved VLPs passed the
0.2 pm membrane and accumulated in the second CFF retentate,
as they are not able to pass the 300 kDa MWCO membrane of the
second CFF unit. By decoupling the first CFF unit, the accumulated
VLPs were further concentrated from 25 mL (DV) to a final volume
of 10 mL by integrated UF. During this VLP recovery (DFII/UF),
process monitoring was performed by semi-continuous (EXP1,
alternating exposure times: 175 and 1,250 ms) or continuous
(EXP2-3, 1,250 ms exposure time) Raman measurements in the
implemented on-line loop to obtain on-line spectral data. Further,
process samples for off-line analysis were taken at 0.5DV, at each
DV, and the final UF step. Off-line Raman measurements at 175 ms
and 1,250 ms were performed on each process sample to obtain off-
line spectral data, alongside off-line UV spectroscopy to quantify the
VLP content.

2.3 Stock solutions for model building

AMS-containing  stock  solutions were prepared by
proportionally mixing wash buffer and re-dissolution buffer to
mimic the DF dynamic in the VLP recovery step (DFII) and
hence fully cover the buffer composition and AMS content
(0-1.1 M AMS). Raman spectra were recorded off-line at
110 and 175 nm exposure times and used for model building.

The VLP stock solution was derived from the final product of the
dual-stage CFF process presented in the study by Dietrich et al.
(2025), which was further concentrated by UF using Vivaspin
20 centrifugal filters (Sartorius Stedim Biotech GmbH). A
dilution series of the VLP stock solution using the re-dissolution
buffer was prepared and off-line measured by Raman spectroscopy
at an exposure time of 1,250 ms. The spectral data were used for
model building.
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2.4 Analytics

2.4.1 Raman spectroscopy

The Raman spectrometer HyperFlux™ PRO Plus 785 (Tornado
Spectral Systems, Toronto, CA) was equipped with a BioReactor
BallProbe within a flow cell (both MarqMetrix, Seattle, US) and
controlled by SpectralSoft 3.2.6 (Tornado Spectral Systems). The
spectra were recorded in the spectral range from 200 to 3300 cm™*
with 1 cm™ resolution, a laser power of 495 mW, and exposure times
of 175 or 1,250 ms. For off-line Raman measurements, the flow cell
was equipped with inlet and outlet capillaries and manually filled

with the sample using a syringe.

2.4.2 UV spectroscopy

The UV spectrometer consisted of an RS diode array detector
integrated into a high performance liquid chromatography
(HPLC) system, all controlled by Chromeleon 6.8 (Dionex
Ultimate 3000 RS, US).
chromatography (SEC) using a BioSEC-5 column (4.6x
300 mm, 5 um, 1,000 A; Agilent, Santa Clara, US) was used to
separate differently sized species with method settings similar to
Hillebrandt et al. (2020): 20 pL injection volume, 0.4 mL min™
flow rate, and 14 min isocratic elution. The UV spectra were

Sunnyvale, Size-exclusion

recorded in the spectral range from 220 to 400 nm. With peak
areas at 280 nm, a universal purity measure regarding host-cell
proteins (HCPs) and nucleic acids derived by dividing A280yp
by A280a and is described as SEC-purity. A280yp-derived
VLP concentrations were calculated using Beer’s law and a
theoretical Cpl49 extinction coefficient of 1.764 gL'
(ProtParam tool; Gasteiger et al. (2005)).

2.5 Data analysis and computation

Data analysis and computation were performed in Python 3.8.
Different strategies were used for spectral data preprocessing and
regression modeling for AMS and VLP quantification. Model
building was exclusively performed with off-line spectral data
derived from stock solutions. The evaluated error metrics
included the root mean squared error (RMSE) and the coefficient

of determination (R?) to assess model accuracy.

2.5.1 Spectral data processing and model
building—AMS

Spectral data preprocessing covered averaging, normalization,
baseline correction, smoothing, and cropping. Averaged spectra
from 50 recordings were normalized using the OH Raman band at
3299 cm™ to account for turbidity effects and variations in applied
exposure times. A Whittaker filter employing the adaptive
smoothness penalized least squares (asPLS) (Zhang et al., 2020)
was applied for baseline correction (A value of 6 x 107, second-
order difference matrix, tolerance of 1 x 1073), followed by a
Savitzky-Golay filter (SGF) for spectral smoothing (second-
degree polynomial, window size of 11). Three cropping
strategies were applied to account for selected features
attributed to AMS. The wavenumber 980 cm™' reflecting the
highest intensity was used for a linear regression model
(LRams). Unaffected by edge effects from prior baseline
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! was selected for

correction, the spectral interval 340-2650 cm™
a PLS model (PLSsms). To qualitatively assess the importance of
specific wavenumbers and identify AMS-associated regions, VIP
scores were applied according to Mehmood et al. (2012). The
resulting spectral intervals, 427-471, 600-634, 960-999, and
1103-1115 cm™!, were scaled to unit variance and subsequently
used for regression modeling for refined PLS models (PLS-
VIP4 s PLS-VIP24pss).

Spectra recorded at 175 ms exposure time were used for model
building. For both PLS models, hyperparameter optimization with
the number of latent variables in the range of 2-10 was performed by
cross-validation using a random split of 80% training data and 20%
validation data. The NIPALS algorithm was applied according to
Wold et al. (2001). For all regression models, spectra recorded at
110 ms exposure time were used as test data.

2.5.2 Spectral data processing and model
building—VLP

Spectral data preprocessing included averaging, pre-
cropping, baseline correction, smoothing, and cropping. Two
pre-cropping (P1/P2) and cropping (C1/C2) intervals were
combined, resulting in four differently preprocessed spectra
for model building (PLS-PX-CYvyyp). Averaged spectra from
50 recordings were first pre-cropped by excluding the
wavenumber ranges between 920 and 1030 cm™ (P1) or
between 920 and 1200 cm™ (P2), which includes the region
with the highest AMS-associated intensity. Baseline correction
was performed by employing the Whittaker filter (A value of
1 x 10%, third-order difference matrix, tolerance of 1 x 107%),
followed by SGF-based spectral smoothing. Further, the spectra
were cropped to the interval 1203-1349 c¢cm™ (Cl) or
1331-1349 cm™!

model building were performed, as described in Section 2.5.1

(C2). Hyperparameter optimization and

but spectra recorded at 1,250 ms exposure time were used
as test data.

3 Results

3.1 AMS: Raman spectroscopy and linear
regression for precipitant quantification

Raman spectra of AMS-containing stock solutions were
recorded over the precipitant concentration range of 0-1.1 M
AMS covering the range for VLP recovery by CFF. Spectral data
recorded at 175 ms exposure time were used for preprocessing
pipeline development and model building. Table 2 summarizes the
parameter settings for spectral preprocessing operations and
model building.

The spectral preprocessing pipeline involved normalization,
baseline correction, and signal smoothing derived from the
pipeline development of Dietrich et al. (2025) to remove
baseline drifts and enhance spectral differences. Figure 2
illustrates raw and preprocessed spectra of the AMS-containing
stock solution set over the entire spectral range. In the raw spectra,
precipitant-dependent baseline drifts are visible with baseline
increases with higher AMS concentrations (cf. Figure 2A).
Baseline correction using the asPLS Whittaker filter, combined
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TABLE 2 Spectral preprocessing and model building.
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with smoothing using the SGF filter, consistently removed these
baseline drifts across the entire recorded wavenumber range (cf.
Figure 2B). The distinct resolution of the predominant Raman
band near 980 cm ™' is attributable to gradually increasing sulfate
ions of AMS (Spinner, 2003; Fontana et al., 2013). In general, several
components of precipitant and buffer contribute to the spectral
appearance, which is described in Supplementary Section 2 and
presented in a higher resolution in Supplementary Figure S2.

The uniformly preprocessed spectra have been cropped to a
distinct wavenumber or wavenumber interval prior to regression
modeling. Besides linear regression using the predominant
sulfate-associated band maximum at 980 cm™', several PLS
models were evaluated, differing in the cropped wavenumber
intervals used for model building (cf. Table 2; Figure 2B). Simple
linear regression aligned well for the test set with a R* of
0.999 and a RMSE of 0.013 M AMS over the concentration
range from 0 to 1.1 M AMS. It has to be noted that cross-
validated PLS models using the entire spectral range or selected
wavenumber intervals identified through VIP scores showed
comparable error metrics, with similar R?> values and RMSE
ranging between 0.010 and 0.013 M AMS. Interestingly, the
VIP scores applied to qualitatively assess the importance of
specific wavenumbers identified higher contributions of
sulfate-associated than ammonium-associated regions. Further,
scaling to unit variance improved error metrics for PLS-VIP s s
models, but resulted in higher errors for a PLS model build with
scaled spectral intensities (R?: 0.990, RMSE: 0.035 M) than the
presented PLS,ys model without scaling (R*: 0.999, RMSE:
0.012 M). Due to distinct sulfate Raman bands, noise-
dominated regions may be mistakenly weighted as important
in the scaled PLS model with noise-induced variations in areas
lacking true signal.

In summary, simple spectral preprocessing followed by linear

' enables Raman

regression using the intensity at 980 cm
spectroscopy for AMS content quantification.  Spectral
comparison suggests model transferability to CFF-based processes

without buffer or protein species interference.

3.2 AMS: on-line precipitant quantification
by PLS-VIP model transfer despite different
exposure times and detector

saturation effects

All the AMS models built on stock solutions were transferred to
process-derived spectra to determine the AMS depletion throughout
the CFF-based recovery step of the re-dissolved VLPs (DFII/UF).
Figure 3 presents the predicted AMS concentrations for the applied
AMS models on the off-line and on-line spectral data for the three
CFF experiments (EXP1-3) performed.

Across all CFF experiments, the observed progression of the
AMS concentration follows a distinct pattern, with first increasing
and then, from the second DV onward, decreasing AMS
concentrations. This progression in the second membrane stage
is attributable to the process step (DFII). DF with re-dissolution
buffer in the dual-stage CFF set-up leads to an overall AMS
depletion present in the first membrane stage, resulting in an
overlap of AMS accumulation and simultaneous AMS depletion
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Raman spectral data: AMS. Derived from a set of stock solutions with varying AMS concentrations, averaged raw spectral data (A) were preprocessed

by normalization, baseline correction, and smoothing (B). The predominant Raman band near 980 cm™ corresponding to the sulfate ion is used for linear
regression. The PLS modelincludes the wavenumber interval 340-2650 cm™ highlighted in light-gray, while the VIP-based intervals selected for the PLS-
VIP models are shaded gray. The spectra are colored with brighter colors representing higher AMS concentrations.

in the second membrane stage. Comparable AMS progressions
observed within the first six DVs of the DFII process indicate
consistent and reproducible processing by dual-stage CFF.
Extending the DFII process from six (EXP1) to seven DVs
(EXP2-3) further reduced the AMS content in the final retentate
before the subsequent UF, representing an improvement in the
overall VLP recovery process.

All AMS models applied on off-line spectral data recorded at
175 ms Raman exposure time show comparable AMS content
predictions at the sampling points (cf. Figures 3A-C). With only
one exception, the predictions of the PLS models fluctuate only
marginally and without a distinct pattern around the prediction
obtained using linear regression. However, all PLS-based AMS
content predictions for the 0.5DV sample in EXP2 deviate
significantly from those of the linear regression (cf. Figure 3B).
Those observed deviations in prediction can be attributed to spectral
appearance as PLS models incorporate additional spectral intervals
beyond the 980 cm™ band maximum used for linear regression.
Since both under- and overestimations are observed, a generally
defective spectrum has been suspected and identified (cf.
Supplementary Figure S3A). Overall, simple linear regression
relying on the 980 cm™' band intensity of preprocessed Raman
spectra was successfully transferred to process-derived spectra for
off-line AMS quantification.

For on-line AMS quantification, the on-line spectra derived
from either semi-continuous (175 ms, EXP1) or continuous
(1,250 ms, EXP2-3) spectral acquisition were assessed regarding
AMS predictions (cf. Figures 3D-F). In the semi-continuous spectral
acquisition mode during EXP1, spectra were continuously recorded
in time frames around the sampling points using the same Raman
exposure time of 175 ms as for off-line AMS quantification.

The PLS-VIP2,ys exhibit
fluctuations within those time frames compared to the more

model predictions marginal

consistent predictions of all other models (cf. Figure 3D).

However, those consistent and to off-line quantification
comparably precise predictions provide a solid basis for
continuous process monitoring in near real-time.
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Given that a higher exposure time of 1,250 ms is required for the
later model transfer for simultaneous VLP prediction, continuous
spectral acquisition at 1,250 ms was performed during EXP2-3. The
higher applied exposure time led to an oversaturation of the
predominant 980 c¢m™' sulfate band, resulting in a distinctive
appearance of the corresponding band region. Exemplarily
illustrated for EXP2, Figure 4 shows raw and preprocessed spectral
data of the 980 cm™ sulfate band region, resolved by DV in panels to
visualize the spectral effects of oversaturation. The greater the
oversaturation with higher AMS concentrations until 1.6 DV, the
more pronounced the resulting split peak appears, and the more
distinct the baseline shift towards higher intensities is observed (cf.
Figure 4B). With afterwards decreasing AMS concentrations and the
corresponding reformation of the split peak, the baseline shifts slightly
further towards higher intensities, contrary to the expectation (cf.
Figure 4C). Only later in the process is a slight baseline shift towards
lower intensities observed (cf. Figure 4D), but the baseline no longer
reaches its initial level. The difference in the baseline level is
exemplified by two spectra with identical AMS concentration but
recorded at different DV (cf. Figure 4E). As expected, this difference
in the baseline level is no longer apparent after preprocessing (cf.
Figure 4]), as is the case for all previously described baseline shifts (cf.
Figures 4G-I). The unexpected behavior of the baseline shift suggests
the influence of a secondary factor unrelated to AMS concentration.

The split peak appearance is reflected in the incorrect predictions
between 0.5 and 3.6-3.8 DVs when applying the linear regression and
the PLSops model (cf. Figures 3EF). These two models can only
reliably predict the AMS concentration as long as saturation does not
occur, which corresponds to approximately 0.2 M AMS as critical AMS
concentration at the exposure time of 1,250 ms. As expected, the
progression of the predicted AMS concentration during oversaturation
using linear regression directly reflects the split peak behavior at
980 cm ™. In contrast, the two other presented PLS-VIP models are
indeed capable of predicting AMS concentrations higher than 0.2 M
AMS despite the observed spectral appearance (cf. Figures 3E,F). While
the PLS-VIP4 4,15 model predictions exhibit minor fluctuations in the
time frame of band oversaturation, the predictions below 0.2 M AMS
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FIGURE 3

AMS model predictions. For all CFF runs, the predicted AMS concentrations are shown, which derived from individual off-line measurements at

175 ms exposure time (A-C) and on-line measurements (D-F) in semi-continuous (175 ms, EXP1) or continuous (1,250 ms, EXP2-3) acquisition mode;
along with their corresponding color assignments for the models used. Dotted lines (off-line) using a quadratic fit serve solely as visual guides to facilitate
interpretation. The dashed lines (on-line) represent continuous prediction. Predictions by defective spectra are highlighted with dark-gray shaded
areas. Predictions by spectra with oversaturation of the 980 cm™ band at 1,250 ms exposure time are shaded light-gray.

are fairly consistent and comparable to those of the PLS s or linear
regression model. It has to be noted that besides the PLS-VIP4 s
model using all VIP-selected wavenumber intervals attributed to
sulfate contributions, model building with a combination of either
three or two intervals have shown comparable error metrics during
model building using 175 ms exposure time where no band
oversaturation was present. However, except for the wavenumber
combination of the PLS-VIP2,ys model, all failed in prediction
accuracy when applied to EXP2-3 data derived from on-line
Raman spectral data at 1,250 ms exposure time (data not shown),
even though the saturated band interval was excluded. The PLS-
VIP2 s model demonstrates more stable predictions in the time
frame of band oversaturation. However, compared to all other
models, it exhibits slightly shifted predictions below 0.2 M AMS
towards lower or higher AMS concentrations within the range of
0.2 to 0.08 M AMS or at the final stages of the process,
respectively.

Notably, defective spectra were recorded from 0.7 to 1.8 DV in
EXP3, exhibiting immense baseline shifts (cf. Supplementary Figure
S3B), ultimately leading to false predictions (cf. Figure 3F). Only
manually decoupling the on-line loop, flushing it with re-dissolution
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buffer, and reconnecting it provided expected spectral appearances
from 2.2 DV onward.

In summary, the process-derived spectra define the required
models for AMS quantification. Although differences in spectral
appearance existed as the exposure times varied between model
building and process-derived, continuously recorded Raman
spectral data, the progression of AMS depletion throughout the
CFF-based recovery step (DFII/UF) could be continuously
monitored through precise adjustment and refinement of the
models using VIP scores.

3.3 VLP: spectral pre-cropping improves
further spectral preprocessing and PLS
model building

Raman spectra of VLP-containing stock solutions were recorded
over a VLP concentration range of 0-2.2 gL™". Spectral data recorded at
1,250 ms exposure time were used for preprocessing pipeline
development and model building. Table 2 summarizes the parameter
settings for spectral preprocessing operations and model building.
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Spectral oversaturation effects. The changes in spectral appearance of the predominant 980 cm™ sulfate band in the raw (A-E) and preprocessed
(F-J) Raman spectra from EXP2 on-line Raman measurements are depicted and resolved by DV in panels to visualize the spectral effects of
oversaturation: reaching saturation after 0.5 DV (A/F), remaining in a oversaturated state due to the still increasing AMS concentration until 1.6 DV (B,G)
and a further decreasing AMS concentration (C,H) until reaching the AMS concentration at 3.8 DV after which the system falls below saturation again
(D,1). Arrows serve as visual guides to highlight the formation or decay of the split peak depending on the AMS concentration in the saturated state (B,C)
and baseline shifts (B—D). Additionally, two spectra obtained at 0.2 DV and 5.5DV at identical AMS concentrations are shown (E,J).

The spectral preprocessing pipeline involved pre-cropping,
baseline correction using the asPLS Whittaker filter, and signal
smoothing using the SGF filter to remove baseline drifts and
enhance spectral differences. illustrates raw and

preprocessed spectral data of the VLP-containing stock solution

Figure 5

set over the entire spectral range or selected wavenumber intervals.
In the raw spectra, baseline drifts are visible with baseline increases
with higher VLP concentrations (cf. Figure 5A). By simple baseline
correction and signal smoothing without the pre-cropping step
beforehand, these baseline drifts could not be consistently
removed in the wavenumber region 1200-1400 ' (cf. Figure 5B).
Additionally, the spectra show the 980 cm™ band attributable to
sulfate ions (Spinner, 2003; Fontana et al., 2013), indicating residual
AMS in the VLP stock solutions deriving from its preparation. As
the pronounced phenylalanine band at 1004 cm™" and other protein-
associated wavenumber regions 600-880 cm ' and 1200-1800 cm™
(Maiti et al., 2004; Rygula et al., 2013) will be partly obscured when a
considerable amount of the precipitant AMS is present,
1200-1400 cm™" region, being not affected by AMS obscuration,
was chosen for further preprocessing and model development.

A pre-cropping strategy was introduced, removing selected
wavenumber intervals of the spectrum to account for the baseline
shifts in this protein-associated region. The wavenumber interval
920-1030 cm™ (P1) was used to eliminate the contributions of the
predominant 980 cm™" sulfate band, resulting in a more consistent
spectral appearance of preprocessed spectra, allowing trends in the
1200-1400 cm ™' region to be observed (cf. Figure 5C). The Raman
band at 1206 cm™ is attributed to tyrosine, the band at 1249 cm™
originates from the polypeptide backbone, and the band at
1341 cm™ is a composite of overlapping signals from both the
polypeptide backbone and tryptophan (Maiti et al., 2004; Rygula
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et al., 2013). The band at 1249 cm™ originates from the buffer
component Tris (Socrates, 2004). A larger pre-cropping interval of
920-1200 cm™ (P2) to further account for the broad sulfate band
around 1106 cm™ resulted in a similar spectral appearance in the
1270-1400 cm™' region but essentially obscured the 1206 cm™
tyrosine band (cf. Figure 5D). Both preprocessed spectra differing
in the pre-cropping interval (P1/P2) have been further cropped to a
distinct wavenumber interval prior to regression modeling (cf.
Table 2; Figures 5C,D). The error metrics R> and RMSE of the
PLS-P2-C2y; p model are with 0.999 higher and 0.02 gL' lower than
PLS-P2-Clyyp with 0.994 and 0.05 gL, respectively. In contrast,
both models with the smaller pre-cropping interval (P1) achieved R?
values of 0.984 and RMSE values of 0.08 gL'

In summary, spectral preprocessing was developed through
spectral comparison considering (i) the spectral appearance in
the protein region and (i) potential interferences from the
precipitant to make the model suitable for data from CFF-based
processes. The combination of pre-cropping to remove certain
wavenumber intervals, baseline correction, signal smoothing, and
further cropping to select intervals in the protein-associated region
allows for uniform spectral preprocessing and model building for
VLP quantification.

3.4 VLP: on-line Raman spectral data reveal
VLP accumulation and sensor fouling

All the PLSyp models built on stock solutions were transferred to
process-derived spectra to determine the accumulation of re-dissolved
VLPs in the second membrane stage throughout the CFF-based
recovery step (DFII/UF). The PLSy;p models differ in the pre-
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Raman spectral data: VLP. Derived from a set of stock solutions with varying VLP concentrations, averaged raw spectral data (A) were differently
preprocessed (B—D). For raw spectra (A) and baseline-corrected, signal-smoothed spectra (B), the wavenumber region around the predominant Raman
band near 980 cm™ and the wavenumber region associated with proteins are additionally presented on an enlarged scale. The wavenumber intervals
920-1030 cm™ (P1) or 920-1200 cm™ (P2) removed by pre-cropping prior to preprocessing are highlighted in gray (B). Including pre-cropping
changed the spectral appearance in the protein-associated region, as presented in (C) and (D), respectively. Pre-cropped, baseline-corrected, and signal-

smoothed spectra were further cropped to the wavenumber intervals 1203—

1349 cm™ (C1) or 1331-1349 cm™ (C2) for PLS modeling, as highlighted in

gray (C,D). The spectra are colored with brighter colors representing higher VLP concentrations.

cropping (P1/P2) and cropping (C1/C2) intervals used in the respective
preprocessing operations. Figure 6 presents the predicted VLP
concentrations for the applied VLP models on the off-line and on-
line spectral data for the three CFF experiments (EXP1-3) performed.

Across all CFF experiments, the observed progression of the HPLC-
derived VLP concentration follows a distinct pattern, attributable to the
CFF-based VLP recovery step (DFII/UF). DF with re-dissolution buffer
in the dual-stage CFF set-up leads to VLP re-dissolution in the first
membrane stage, their passage through the microfiltration membrane,
and their accumulation in the second membrane stage. DF is followed
by UF, resulting in an approximately twofold concentration of the VLPs
in the second membrane stage. The higher VLP concentrations
observed in EXP3 compared to EXP1-2 are attributable to the VLP-
enriched lysate used as starting material for EXP3, representing a
diversification of the process data. Final SEC-purity values of the
concentrated VLPs ranged between 94% and 96%, consistent with
the purity values reported by Dietrich et al. (2025), demonstrating
reproducible processing by dual-stage CFF.

Applying the PLSy;p models to off-line spectral data, the trend
observed in the HPLC-derived data is reflected in all of the model
predictions. However, the prediction accuracy varies between and
within the experiments EXP1-3 (cf. Figures 6A-C). In general, the
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predictions for EXP3 are slightly scattered around the observed VLP
concentrations. On the contrary, the ones for EXP2 lie slightly above,
seeming to be systematic, and the predictions for EXP1 are significantly
higher and exhibit a broader spread. Such a process-dependent
occurrence of these deviations can be linked to underlying process-
specific factors, resulting in deviating and inconsistent spectral features.
When comparing the model predictions for EXP2-3, the predicted VLP
concentrations of the PLS-P2 models are almost identical, while those of
the PLS-P1 models show higher or lower predicted VLP concentrations
at specific DVs (cf. Figures 6B,C). This observation suggests that using
the pre-cropping interval P2 results in more consistent spectral features
after further spectral preprocessing and less dependence on the
cropping interval (C1/C2). Notably, the most noticeable deviations
between the HPLC-derived and the predicted VLP concentrations are
observed in the range of relatively low and high VLP concentrations at
the beginning and the end of the CFF processes, respectively. Overall,
the PLS-P2 models show consistent predictions in the range of
moderate protein concentrations but lack accuracy at low and high
protein concentrations, especially during the concentration step with
protein concentrations up to twice as high.

A similar pattern in prediction accuracy emerges when the models
are applied to on-line spectral data (cf. Figures 6D-F). For EXPI,
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VLP model predictions. Next to HPLC-derived VLP concentrations, the predicted VLP concentrations are shown for all CFF runs. The predictions
derived from individual Raman measurements at 1,250 ms exposure time. Predictions from off-line and on-line measurements in semi-continuous (EXP1)
or continuous (EXP2-3) acquisition mode are shown in (A—C) and (D—F), respectively, along with their corresponding color assignments for the models
used. The models differ in pre-cropping and cropping operations, with their respective intervals P1/P2 and C1/C2. Dotted lines (off-line) serve solely
as visual guides to facilitate interpretation. The dashed lines (on-line) represent continuous prediction. Predictions by defective spectra are highlighted

with dark-gray shaded areas.

fouling on the Raman probe was observed after on-line spectral data
acquisition, which, however, did not impact the prediction of AMS (cf.
Section 3.2). The deviations in the predictions of the VLP concentration
suggest that there was a gradual accumulation of protein on the probe
throughout the process, leading to the increasing overestimation of the
VLP concentrations (cf. Figure 6D). Concerning fouling, the flow rate of
the on-line loop was doubled from EXP1 to EXP2-3, which, along with
the switch to continuous spectral data acquisition, represents a process
adjustment. For EXP2-3, all predictions seem to scatter around the
observed VLP concentrations, with even more pronounced scatter
spikes for the PLS-P1 than the PLS-P2 models (cf. Figures 6E,F).
Further and consistent with the off-line data predictions, the models
also fail to predict the concentration step based on the on-line spectral
data. Especially for EXP2, the observed gradual increase in VLP
concentration from the fifth DV onward is not reflected by the off-
line data (cf. Figure 6E), which may also be indicative of fouling.

No difference in accuracy was observed for predictions from
both off-line and on-line spectral data, regardless of whether the
sulfate peak at 980 cm ™ in the raw spectra was saturated, which the
pre-cropping operation was intended to address.
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In summary, PLSy1p models were transferred to continuously
monitor the accumulation of re-dissolved VLPs in the second
membrane stage throughout the CFF-based VLP recovery step
(DFII/UF). The PLS-P2 models show the most consistent
predictions in the range of moderate protein concentrations, both
for off-line and on-line spectral data, across all processes where
fouling behavior was neither observed nor suspected.

4 Discussion

4.1 Sensor selection and implications for
multi-attribute monitoring

Raman spectroscopy was selected for multi-attribute monitoring
during recovery of precipitated VLPs by dual-stage CFF—a dynamic DF
process isolating the re-dissolved VLPs through precipitant depletion in
the second membrane stage (Dietrich et al, 2025). Sensitivity and
selectivity significantly differed when comparing precipitant or
protein monitoring using Raman spectroscopy and chemometrics.
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Precipitant quantification is not routinely performed during
small-scale screenings with predefined precipitant conditions
where the results can be directly correlated. However, its
quantification becomes essential in dynamic processes due to
varying precipitant concentrations throughout these processes.
While Barros Grofy and Kind (2018) calculated the theoretical
precipitant content based on the volume reduction through
Dietrich (2024) further
combined the theoretical content with Raman spectral data

evaporative  crystallization, et al
derived from fed-batch precipitation and chemometrics to predict
AMS contents in unseen fed-batch precipitation processes.
Accordingly, Dietrich et al. (2024) had already demonstrated the
use of Raman spectroscopy for near real-time AMS monitoring
through PLS modeling.

With stock solutions covering the AMS concentration range,
simple spectral processing, and linear regression using the
predominant sulfate band at 980 cm™ (Spinner, 2003; Fontana
et al, 2013), Raman spectroscopy is highly selective for AMS
quantification. Linear regression has already been applied for off-
line AMS quantification to reveal integrated AMS depletion,
representing one advantage for VLP recovery by the dual-stage
CFF compared to the single-stage CFF set-up (Dietrich et al., 2025).
Our study demonstrates the successful transfer of a linear regression
model for AMS quantification to process-derived, on-line spectral
data, under the condition that no band oversaturation is present,
thereby extending its use beyond prior off-line applications. Further,
model development for model transfer to accommodate spectral
data exhibiting oversaturation effects is successfully demonstrated.

Although conductivity and density measurements, which are
both influenced by salts like AMS, also enable real-time monitoring
(Rolinger et al., 2021; Hillebrandt et al., 2022), these techniques may
lack selectivity, which can compromise accuracy in processes with
varying environmental concentrations or compositions. Particularly
throughout this dual-stage CFF process for VLP recovery, changes
occur not only in precipitant content but also in buffer composition,
protein composition, and total protein concentration. Moreover,
relying solely on univariate signals from conductivity or density
measurements is insufficient for simultaneously predicting both
precipitant and product concentrations. Other techniques for
AMS quantification pose similar challenges in selectivity and are
further limited to off-line measurements as multiple steps are
involved. Among others, ammonium is traditionally quantified
spectrophotometrically through complex formation (Krug et al,
1979; Patton and Crouch, 1977), while sulfate can be determined
fluorescence-based (Saini and Kumar, 2013).

Considering polyethylene glycol (PEG), the other widely used
precipitant, using Raman spectroscopy for quantification may pose
challenges due to its suspected contributions overlapping with
protein-associated wavenumber regions (Kuzmin et al, 2020),
which is why enhanced spectral processing and models of higher
complexity, such as PLS or non-linear models, may be required. It
has to be noted that using PEG in such filtration-based processes in
general may have disadvantages, particularly concerning its
influence on viscosity and, consequently, filtration behavior
(Plisko et al., 2016; Li and Zydney, 2017; Burgstaller et al., 2019)
as well as its larger molecular size compared to salts, which may
hinder its depletion in the here presented dual-stage CFF process.
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Among protein quality attributes, protein concentration is one
of the most monitored during the downstream processing of
biopharmaceuticals. Several spectroscopic methods and their
applicability to protein monitoring are outlined in detail by
et (2020b),
spectroscopy are sensitive for aromatic amino acids, peptide

Rolinger al. among which Raman and UV
bonds, and disulfide bonds. Although water interference in
Raman spectroscopy is relatively low (Rolinger et al., 2020b), a
limited sensor applicability was found at low protein concentrations,
attributable to the increasing dominance of the water band.
the exhibit

fluctuations than the precipitant predictions, which might result

Moreover, protein  predictions much higher
from the substantially lower intensity of protein contributions than
sulfate contributions. Raman spectroscopy has recently been
compared with UV spectroscopy for predicting monoclonal
A

highlighting the significantly superior prediction accuracy of UV

antibody  concentrations in  Protein chromatography,
spectroscopy (Rolinger et al., 2021). The authors suggest that UV
spectroscopy would likely have been more accurate for protein
concentration monitoring, which would have resulted in a
spectroscopy  setup this  study.

spectroscopy has already been implemented together with UV for

multimodal in Raman
monitoring enzyme crystallization in complex lysate (Wegner et al.,
2024) and as a basis for data fusion to improve prediction accuracy
(Rolinger et al,, 2021). In such multi-sensor setups, however, the
different spectroscopic data require distinct data preprocessing, and,
if combined, additional preprocessing may be needed due to signal
dispersion between detectors (Rolinger et al., 2020b).

Sensor fouling is a known but rarely reported challenge in
spectroscopic process monitoring, describing unintended material
accumulation or burning by the laser light. After the first CFF run,
spectral inconsistencies were observed in the protein-associated
wavenumber region during off-line analysis of process samples,
suggesting sensor fouling on the sensor surface or within the flow
cell. Although sapphire surfaces and convex geometries tend to be
less favorable for material deposition (Prasad et al, 2023), the
observed fouling may indicate the influence of residence time
within the flow cell. Doubling the flow rate, thereby reducing the
residence time by half, prevented the occurrence of spectral
inconsistencies in the data of the following CFF runs. In
filtration  processes, spectroscopic
implemented on-line (Riidt et al., 2019; Rolinger et al., 2020a;
Hillebrandt et al., 2022) or in-line (Wasalathanthri et al., 2020;
Thakur et al., 2020; Rolinger et al., 2023; Vaskd et al., 2024) using a
flow cell, providing precise control over measurement conditions.

sensors are frequently

Installing sensors directly in situ by immersing them into the well-
stirred  process solution within the system’s reservoir
(Wasalathanthri et al.,, 2020; Thakur et al, 2021; Wegner et al,
2024) may offer a practical alternative to mitigate fouling. Further,
the authors suggest that in situ monitoring may be less prone to
spectra diverging from the others—termed ‘defective spectra’ in
this study.

In summary, spectroscopic sensors should be selected based
on their sensitivity and selectivity towards the target quality
attributes to be monitored. Moreover, sensor implementation
should be carefully considered to ensure reliable spectroscopic
measurements.
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4.2 Effects of detector saturation on raw
Raman spectral data

The contributions of precipitant and protein to the spectral data
were investigated using stock solutions of pure components. A
substantially higher sensor sensitivity towards precipitant than
protein was observed concerning the spectral features observed in
the raw spectral data. The initial objective involved increasing the
exposure time to enhance the sensor’s sensitivity to proteins, which,
however, led to oversaturation of the predominant sulfate band at
980 cm™ (Spinner, 2003; Fontana et al., 2013) directly related to the
precipitant. To the best of the author’s knowledge, the analysis and
use of spectral data exhibiting saturation effects at specific
wavenumber regions has not been reported in the literature yet.

The raw on-line spectral data collected during processing show a
characteristic split peak formation, which stands in contrast to
reported oversaturation characteristics observed in the low
wavenumber regions, where entire bands disappear due to the
baseline being elevated to the saturation level (Tornado, 2021).
The manufacturer recommends increasing the exposure time
only below the saturation limit of the detector, thereby
preventing saturation and the associated increase in uncorrelated
noise (Tornado, 2021). A comparison of the baseline levels before
and after oversaturation at the same AMS concentration revealed a
baseline shift, suggesting the influence of a secondary factor beyond
detector saturation. The authors hypothesize that the baseline shift
may be attributable to intrinsic fluorescence or scattering effects
caused by the proteins (Gautam et al., 2015), as the VLPs accumulate
throughout the process. As expected, spectral preprocessing
removed those differences in baseline level; however, the split
peak remained present in the spectral data.

4.3 Effects of preprocessing operations on
Raman spectral data and model transfer

The differences in sensor selectivity and Raman spectral features
towards AMS and VLP underscore the importance of individual
spectral preprocessing. Attribute-specific preprocessing operations
beyond baseline correction and signal smoothing were selected to
enhance computational selectivity. All preprocessing operations
were specified and applied in a defined sequence to enable the
model transfer to the process data.

Prior normalization of the spectra before baseline correction
and signal smoothing allows not only for accounting for turbidity
effects in the previous precipitation step (Dietrich et al., 2024) but
also facilitates model transfer to spectral data obtained at different
exposure times, which is the case for the AMS models. A Raman
band of the OH-bond of water was used for normalization as
neither the analytes nor the background interferes in this spectral
region, according to the approach of Sinfield and Monwuba
(2014). This strategy was chosen for the AMS models to
maintain their applicability across different exposure times and
across the earlier process steps of precipitation and wash, where
turbidity was observed. To solely account for intensity differences
caused by the varying applied exposure times, normalization by
exposure time (Rolinger et al., 2023) or standard normal variate
(SNV) normalization of already preprocessed spectra (Wei et al.,
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2022; Vasko et al., 2024; Wei et al., 2022) have been reported. In
this study, however, SNV normalization was omitted since the absolute
intensity differences of the major peak—the sulfate band at 980 cm™
(Spinner, 2003; Fontana et al, 2013), which represents a target
analyte—would be diminished. For the VLP models, OH-band
normalization was not implemented as an additional preprocessing
step, as its implementation likely limited model performances, possibly
due to introducing a larger error in the relatively smaller intensity ranges
of the proteins.

Cropping allows for selecting spectral regions of interest by
targeted discarding of the others. A comparison of different,
manually selected cropping intervals to systematically improve
model performance has been reported by Dietrich et al. (2024),
driven by the exclusion of residual baseline variance and impurity-
or buffer-related interferences. For AMS monitoring, the
predominant sulfate band at 980 cm™ (Spinner, 2003; Fontana
et al., 2013) was chosen for the linear regression model, and the
edge regions potentially exhibiting unintended variability
introduced by prior preprocessing steps were discarded for PLS
modeling. Both models reliably predict AMS from off-line and on-
line spectral data, but lack prediction accuracy at higher exposure
times when oversaturation of the predominant sulfate band is
present, attributable to the observed split peak behavior. To
refine the PLS model for AMS quantification, VIP was used as a
data-driven variable selection technique (Mehmood et al., 2012) for
metric-based cropping. Such variable selection techniques aim to
minimize the loss of important spectral data while improving model
robustness (Andersen and Bro, 2010). In studies dealing with
spectral data processing, VIP scores have been used as a spectral
region selection criterion (Berry et al., 2015; Santos et al., 2018; Bayer
et al, 2020) or simply as feature importance to quantitatively
evaluate which spectral regions contribute to PLS models
(Kuligowski et al.,, 2012; Wei et al., 2022; Schiemer et al., 2024;
Dietrich et al., 2024). Cropping is typically applied as one of the final
preprocessing steps before PLS modeling. For VLP modeling, a pre-
cropping approach is presented, describing the manual removal of
AMS-associated regions next to the protein-associated region. Pre-
cropping was introduced as insufficient baseline correction was
observed in the protein-associated region, which could not be
removed using alternative baseline correction settings. The
authors hypothesize that this effect is again attributable to the
much higher sensor sensitivity towards AMS than the proteins.
Eventually, preprocessed spectra were manually cropped to only use
protein-associated regions for modeling, free from potential
interferences from the precipitant. In addition to the already
relatively small interval of 147 wavenumbers, a further reduced
interval comprising only 19 wavenumbers was also tested. Generally,
it is worth noting that variable reduction to such narrow intervals
may also remove useful information for prediction.

Both presented PLS-VIP models accommodate precipitant
predictions from spectral data exhibiting saturation effects. In
ranges without saturation, the continuous predictions of the PLS-
VIP models exhibit more noise than those from linear regression or
the PLS model, which could be attributed to the smaller spectral
range resulting from the spectral cropping, and, consequently, a
lower information density. To our knowledge, using spectra with
such a saturation-induced split peak behavior for prediction has not
been previously reported in the literature. In general, the AMS
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predictions exhibit much lower fluctuations than the VLP
predictions, regardless of which developed PLS model is applied
for VLP prediction. In addition to the even lower information
density used for model building, this phenomenon can also be
attributed to Raman spectroscopy’s inherent sensitivity and
selectivity towards proteins.

Another multivariate modeling approach for multi-attribute
monitoring from spectral data obtained from a single sensor may
be indirect hard modeling regression, which describes the spectrum as
a sum of prior parameterized peak functions assigned to individual
components. First introduced by Alsmeyer et al. (2004) in
combination with Raman spectroscopy, indirect hard modeling has
been shown to account for non-linear spectral changes (Kriesten et al.,
2008; Meyer-Kirschner et al., 2016). In biopharmaceutical processing,
it has been applied for in-line monitoring (Miiller et al., 2023) and
control (Miiller et al., 2024) of fermentation processes; however, its
use for multi-attribute monitoring during downstream processing has
not yet been reported.

In summary, attribute-specific preprocessing operations were
strategically employed beyond baseline correction and signal
smoothing to enable model transfer.

5 Conclusion and outlook

In conclusion, soft sensors based on Raman spectroscopy and
chemometrics were developed and transferred to a filtration-
based recovery step of precipitated VLPs for monitoring product
The
spectrometer was implemented in an on-line loop in the
second membrane stage of the dual-stage CFF setup, and near
three CFF
experiments with variations in initial product concentration

accumulation and precipitant  depletion. Raman

real-time process data were collected from
and process parameters.

Through the initial investigation of individual contributions of
precipitant and product to the spectral data using stock solutions of
the pure components, a substantially higher sensor sensitivity was
found for AMS than VLPs. Increasing the exposure time to enhance
the sensor’s sensitivity towards VLPs led to the oversaturation of the
predominant sulfate band directly related to AMS, which impaired
the prediction accuracy for AMS by linear regression. With
attribute-specific preprocessing operations next to baseline
correction and signal smoothing, namely, normalization and
VIP-based cropping, and PLS modeling,
demonstrated model transfer for AMS monitoring despite these

we  successfully
detector saturation effects.

For simultaneous VLP monitoring, spectral data were
differently preprocessed using a pre-cropping approach before
baseline correction and signal smoothing, which effectively
improved the spectral appearance, as without, insufficient
baseline correction was observed in the protein-associated
spectral regions. Even though the larger of the two tested pre-
cropping intervals led to more consistent PLS model predictions,
the VLP predictions exhibit generally much higher fluctuations
than the AMS predictions.

This study highlights that soft sensor selectivity towards
target quality attributes is highly dependent on, but also, to
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some extent, limited by the sensor’s inherent selectivity,
although it can be further improved by enhancing the
computational selectivity using attribute-specific operations for
spectral preprocessing.
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